-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkinect_bundle_data.py
31 lines (23 loc) · 1.17 KB
/
kinect_bundle_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import numpy as np
import gzip
import argparse
import rftk.buffers as buffers
import kinect_utils as kinect_utils
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Build body part classification trees online')
parser.add_argument('-i', '--pose_files_input_path', type=str, required=True)
parser.add_argument('-p', '--poses_to_use_file', type=str, required=True)
parser.add_argument('-n', '--number_of_images', type=int, required=True)
parser.add_argument('-m', '--number_of_pixels_per_image', type=int, required=True)
parser.add_argument('-o', '--output_file', type=str, required=True)
args = parser.parse_args()
poses_to_include_file = open(args.poses_to_use_file, 'r')
pose_filenames = poses_to_include_file.read().split('\n')
poses_to_include_file.close()
depths, labels = kinect_utils.load_data(args.pose_files_input_path, pose_filenames[0:args.number_of_images])
pixel_indices, pixel_labels = kinect_utils.sample_pixels_from_images(labels, args.number_of_pixels_per_image)
f = open(args.output_file, 'wb')
np.save(f, depths)
np.save(f, labels)
np.save(f, pixel_indices)
np.save(f, pixel_labels)