This repository has been archived by the owner on Feb 4, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathval.py
89 lines (79 loc) · 4.15 KB
/
val.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import numpy
from keras.engine.saving import load_model
from skimage import io
from skimage.transform import resize
from tqdm import tqdm
from config import MODEL_PATH, VALSET_FILE, IMAGES_PATH, N_SUPERPIXELS, \
SLIC_SIGMA, OUTPUT_PATH, IMAGE_SHAPE, VALIDATION_IMAGES, \
PREDICT_BATCH_SIZE, SLIC_SHAPE, custom_mse
from layers.ConfidenceLayer import Confidence
from layers.GraphLSTM import GraphLSTM
from layers.GraphLSTMCell import GraphLSTMCell
from layers.GraphPropagation import GraphPropagation
from layers.InverseGraphPropagation import InverseGraphPropagation
from utils.utils import obtain_superpixels, average_rgb_for_superpixels, \
get_neighbors
if __name__ == '__main__':
with open(VALSET_FILE) as f:
image_list = [line.replace("\n", "") for line in f]
while len(image_list) % PREDICT_BATCH_SIZE != 0:
image_list.append(None)
model = load_model("./data/checkpoints/model_20_0.49.hdf5", custom_objects={'Confidence': Confidence,
'GraphPropagation': GraphPropagation,
'InverseGraphPropagation': InverseGraphPropagation,
'GraphLSTM': GraphLSTM,
'GraphLSTMCell': GraphLSTMCell,
"custom_mse": custom_mse})
for img_batch_start in tqdm(range(int(numpy.ceil(len(image_list) / PREDICT_BATCH_SIZE)))):
batch_img = []
batch_slic = []
batch_vertices = []
batch_neighbors = []
scale_list = []
image_names = []
images_list = []
for img_index in range(PREDICT_BATCH_SIZE):
real_index = PREDICT_BATCH_SIZE * img_batch_start + img_index
image_name = image_list[real_index]
if image_name is not None:
# LOAD IMAGES
image = io.imread(IMAGES_PATH + image_name + ".jpg")
images_list.append(image)
scale_list.append(image.shape)
image_names.append(image_name)
img = resize(image, IMAGE_SHAPE, anti_aliasing=True)
# OBTAIN OTHER USEFUL DATA
slic = obtain_superpixels(img, N_SUPERPIXELS, SLIC_SIGMA)
vertices = average_rgb_for_superpixels(img, slic)
neighbors = get_neighbors(slic, N_SUPERPIXELS)
else:
img = numpy.zeros(IMAGE_SHAPE, dtype=float)
slic = numpy.zeros(SLIC_SHAPE, dtype=float)
vertices = average_rgb_for_superpixels(img, slic)
neighbors = get_neighbors(slic, N_SUPERPIXELS)
# ADD TO BATCH
batch_img += [img]
batch_slic += [slic]
batch_vertices += [vertices]
batch_neighbors += [neighbors]
batch_img = numpy.array(batch_img)
batch_slic = numpy.array(batch_slic)
batch_vertices = numpy.array(batch_vertices)
batch_neighbors = numpy.array(batch_neighbors)
output_vertices, _ = model.predict_on_batch([batch_img, batch_slic, batch_vertices, batch_neighbors])
for index, shape in enumerate(scale_list):
slic_out = batch_slic[index]
output_image = numpy.zeros(batch_img[index].shape, dtype="uint8")
for segment_num in range(output_vertices.shape[1]):
if segment_num not in numpy.unique(batch_slic[index]):
break
mask = numpy.zeros(batch_slic[index, :, :].shape + (3,), dtype="uint8")
mask[batch_slic[index, :, :] == segment_num] = 255 * output_vertices[index, segment_num, :]
output_image += mask
output_image = resize(output_image, shape, anti_aliasing=True)
output_image = numpy.clip(output_image * 255, 0, 255)
expected_image = io.imread(VALIDATION_IMAGES + image_names[index] + ".png")
i = numpy.concatenate((images_list[index], expected_image, output_image), axis=1)
output = numpy.clip(i, 0, 255)
output = output.astype(numpy.uint8)
io.imsave(OUTPUT_PATH + image_names[index] + ".png", output)