-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmonte-carlo-localization_code.py
394 lines (313 loc) · 15.1 KB
/
monte-carlo-localization_code.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
import matplotlib.pyplot as plt
# plt.use('Agg')
import rosbag
import math
import pandas as pd
import numpy as np
from tqdm import tqdm
import pickle
import os
import random
import argparse
pi = math.pi
precision = 0.1
sigma_hit = 0.25
def transform(odom_message, lm_msg):
xr, yr,theta = odom_message[0], odom_message[1], odom_message[2]
lx, ly = lm_msg[3], -lm_msg[1]
xl1 = xr + lx * np.cos(theta) - ly * np.sin(theta)
yl1 = yr + lx * np.sin(theta) + ly*np.cos(theta)
return (lm_msg[0],xl1,yl1)
def quart_to_euler(x,y,z,w):
roll = math.atan2(2*y*w - 2*x*z, 1 - 2*y*y - 2*z*z);
pitch = math.atan2(2*x*w - 2*y*z, 1 - 2*x*x - 2*z*z);
yaw = math.asin(2*x*y + 2*z*w);
return roll,pitch, yaw
landmarks = list(zip(pd.read_csv("landmarks.csv")['X'].tolist(),
pd.read_csv("landmarks.csv")['Y'].tolist()))
'''
def visualization(n, Robot robot, step, p, pr, landmarks):
# Draw the robot, landmarks, particles and resampled particles on a graph
# Graph Format
plt.title("MCL, step %d"%step)
plt.set_xlim(0, 100)
plt.set_ylim(0, 100)
# Draw particles in green
for i in range(n):
plt.plot(p[i][0], p[i][1], "go")
# Draw resampled particles in yellow
for i in range(n):
plt.plot(pr[i][0], pr[i][1], "yo")
# Draw landmarks in red
for i in range(len(landmarks)):
plt.plot(landmarks[i][0], landmarks[i][1], "ro")
Draw robot position in blue
plt.plot(robot.x, robot.y, "bo")
# Save the image and close the plot
plt.save("./Images/Step" + str(step) + ".png")
plt.clf()
'''
class monte_carlo:
def __init__(self,
grid_dims,
resultArray,
landmark_locs,
precision = 0.1,
num_particles = 100,
motion_noise = 0.25,
turn_noise = 0.1
):
self.resultArray = resultArray
self.inv_precision = 1/precision
self.grid_dims = [int(grid_dims[0]),int(grid_dims[1]),
int(grid_dims[2]*self.inv_precision)+1]
self.landmark_locs = landmark_locs #Dictionary containing (x,y) of actual landmarks
self.pNoise = 0.8
self.sigma_hit = 0.25
self.__form_grid()
self.num_particles = num_particles
self.particles =[]
self.motion_noise = float(motion_noise)
self.turn_noise = float(turn_noise)
def __form_grid(self):
self.grid = np.ones(self.grid_dims)/(self.grid_dims[0]*self.grid_dims[1]*self.grid_dims[2])
print("Created grid of size: ", self.grid_dims)
def motion_mc(self, startState, endState):
#startState and endState are the control inputs
new_grid = np.zeros(shape = self.grid.shape) + 0.00001
new_grid = new_grid/sum(new_grid)
##Change the orientation
x1, y1, theta1 = startState[0], startState[1], startState[2]
x2, y2, theta2 = endState[0], endState[1], endState[2]
orientation = math.atan2((x2-x1),(y2 -y1)) - theta1
particles = []
for i,tup in enumerate(self.particles):
x = tup[0]
y = tup[1]
theta = tup[2]
x_new = x + (x2 - x1) + random.gauss(0.0, self.motion_noise)
y_new = y + (y2-y1) + random.gauss(0.0, self.motion_noise)
theta_new = theta + orientation + random.gauss(0.0, self.turn_noise)
particles.append((x_new,y_new, theta_new))
#Place probability in new grid cell
x,y,theta = int(x*self.inv_precision), int(y*self.inv_precision), int(theta*self.inv_precision)
x_new , y_new, theta_new = int(x_new*self.inv_precision),int(y_new*self.inv_precision), \
int(theta_new*self.inv_precision)
##Shift x_new to fit in positive axis
x_new += 100
x += 100
print("Trying to move from ", (x,y,theta)," to ", (x_new,y_new, theta_new))
if (x_new >= 0 and x_new < self.grid.shape[0] and
y_new >= 0 and y_new < self.grid.shape[1] and
theta_new >= 0 and theta_new < self.grid.shape[2] and
x >= 0 and x < self.grid.shape[0] and
y >= 0 and y < self.grid.shape[1] and
theta >= 0 and theta < self.grid.shape[2]):
new_grid[x_new][y_new][theta_new] += self.grid[x][y][theta]
self.particles = particles
self.grid = new_grid
print(np.sum(new_grid))
def euclidean_dist(self,start,end):
#start and end are of type (x,y)
return math.sqrt((start[0] - end[0]) **2 + (start[1] - end[1])**2)
def beam(self,z_range, z_star):
"""
Returns the corrected value of the range measurement
z_range = sensor measurement at that time step
z_star = point in state space being considered at that time step
"""
exponent = (-0.5*(z_range-z_star)**2)/(self.sigma_hit**2)
noise = (1/np.sqrt(2*pi*self.sigma_hit*self.sigma_hit))* np.exp(exponent)
result = self.pNoise * noise + (1-self.pNoise) * (1/z_range)
return result
def observe_mc(self,newMsg):
weights = []
land_id = newMsg["landmark1"][0]
xl = newMsg["landmark1"][1]
yl = newMsg["landmark1"][2]
for tup in self.particles:
x = tup[0]
y = tup[1]
theta = tup[2]
plt.plot(x, y, "bo")
#For every point, check distance from landmark
observed_dist = self.euclidean_dist((x,y),(xl,yl))
actual_dist = self.euclidean_dist((x,y),self.landmark_locs[land_id])
x_new,y_new,theta_new = int(x*self.inv_precision), int(y* self.inv_precision), \
int(theta*self.inv_precision)
#Shift x_new to positive axis
x_new += 100
wt = self.beam(observed_dist,actual_dist)
weights.append(wt)
if (x_new >= 0 and x_new < self.grid.shape[0] and
y_new >= 0 and y_new < self.grid.shape[1] and
theta_new >= 0 and theta_new < self.grid.shape[2]):
self.grid[x_new][y_new][theta_new] *= wt
self.grid = self.grid/np.sum(self.grid)
print(np.sum(self.grid))
return weights
def resample(self,weights):
particles = []
#Normalize weights
norm_weights = weights/np.sum(weights)
#Draw representative sample
indices = [np.random.choice(np.arange(0, self.num_particles),
p=norm_weights) for i in range(self.num_particles)]
for i in indices:
particles.append(self.particles[i])
assert self.num_particles == len(particles)
# #Plot resamples particles
# plt.plot(particles[0], particles[1], "yo")
#Update particles
self.particles = particles
self.num_particles = len(particles)
print("There are now %d particles"%self.num_particles)
def localize_mc(self,steps):
grids = []
f = open("stuff.txt", 'a')
#Generate random set of particles
message_stream = get_message(self.resultArray)
while True:
startMsg = next(message_stream)
if startMsg is not {}:
break
startState = (startMsg["msg"][0],startMsg["msg"][1],startMsg["msg"][2])
# plt.title("MCL, step %d"%steps)
# plt.xlim(0, 100)
# plt.ylim(0, 100)
# for i in self.landmark_locs:
# plt.plot(self.landmark_locs[i][0], self.landmark_locs[i][1], "ro")
#Generate random particles
for i in range(0,self.num_particles):
x = round(random.random(),5) * self.grid_dims[0] /(2*self.inv_precision)
y = round(random.random(),5) * self.grid_dims[1] /self.inv_precision
orientation = round(random.random(),5) *self.grid_dims[2] /self.inv_precision
self.particles.append((x,y,orientation))
# plt.plot(x, y, "go")
print("Particles created")
for i in range(steps):
print("Iteration %d"%i)
while True:
endMsg = next(message_stream)
if endMsg is not {}:
break
print(endMsg)
endState = (endMsg["msg"][0],endMsg["msg"][1],endMsg["msg"][2])
print("Moving")
self.motion_mc(startState,endState)
print("Observing")
print("Calculating particle weights")
weights = self.observe_mc(endMsg)
print("Resampling")
self.resample(weights)
startState = endState
ans = np.where(self.grid == np.amax(self.grid))
print(ans)
grids.append(self.grid)
f.write(str(ans))
startMsg = endMsg
# # Save the image and close the plot
# plt.savefig("./Images/Step" + str(i) + ".png")
# plt.clf()
pickle.dump(grids, open("grids.pkl",'wb'),protocol = 2)
return self.grid
def get_ros_samples(bagFile):
bag = rosbag.Bag(bagFile)
lm_msg_prev = (None,0.0,0.0)
lm_msg_prev2 = (None,0.0,0.0)
results = []
count = 0
for topic, msg, t in bag.read_messages(topics=['/odom', '/tag_detections']):
if topic == "/odom":
#Flipping the x coordinate
#y = -round(msg.pose.pose.position.x,5)
#x = round(msg.pose.pose.position.y,5)
x = round(msg.pose.pose.position.x,5)
y = round(msg.pose.pose.position.y,5)
q0 = msg.pose.pose.orientation.x
q1 = msg.pose.pose.orientation.y
q2 = msg.pose.pose.orientation.z
q3 = msg.pose.pose.orientation.w
_,_,yaw = quart_to_euler(q0,q1,q2,q3)
odom_message = (x,y,yaw)
if topic == "/tag_detections":
if len(msg.detections) == 1:
#1 landmark
landmark_id = msg.detections[0].id
if landmark_id != 18:
x = round(msg.detections[0].pose.pose.position.x,5)
y = round(msg.detections[0].pose.pose.position.y,5)
z = round(msg.detections[0].pose.pose.position.z,5)
q0 = msg.detections[0].pose.pose.orientation.x
q1 = msg.detections[0].pose.pose.orientation.y
q2 = msg.detections[0].pose.pose.orientation.z
q3 = msg.detections[0].pose.pose.orientation.w
_,_,yaw = quart_to_euler(q0,q1,q2,q3)
##Calculate landmark coordinates with respect to robot
lm_msg_cur = transform(odom_message, (landmark_id,x,y,z))
if ((abs(lm_msg_cur[1] - lm_msg_prev[1]) >= precision) or
(abs(lm_msg_cur[2] - lm_msg_prev[2]) >= precision)):
count += 1
result = {}
result["msg"] = odom_message
result["landmark1"] = lm_msg_cur
result["landmark2"] = None
results.append(result)
lm_msg_prev = lm_msg_cur
#Check for landmark 2
if len(msg.detections) == 2:
#2 landmark
landmark_id_2 = msg.detections[1].id
if landmark_id_2 != 18:
x2 = round(msg.detections[1].pose.pose.position.x,5)
y2 = round(msg.detections[1].pose.pose.position.y,5)
z2 = round(msg.detections[1].pose.pose.position.z,5)
q02 = msg.detections[1].pose.pose.orientation.x
q12 = msg.detections[1].pose.pose.orientation.y
q22 = msg.detections[1].pose.pose.orientation.z
q32 = msg.detections[1].pose.pose.orientation.w
_,_,yaw2 = quart_to_euler(q02,q12,q22,q32)
##Calculate landmark coordinates with respect to robot
lm_msg_cur2 = transform(odom_message, (landmark_id_2,x2,y2,z2))
if (((abs(lm_msg_cur2[1] - lm_msg_prev2[1]) >= precision) or
(abs(lm_msg_cur2[2] - lm_msg_prev2[2]) >= precision)) or
((abs(lm_msg_cur2[1] - lm_msg_prev[1]) >= precision) or
(abs(lm_msg_cur2[2] - lm_msg_prev[2]) >= precision))):
results[-1]["landmark2"] = lm_msg_cur2
lm_msg_prev2 = lm_msg_cur2
print("Loaded %d ros samples"%len(results))
return results
def get_message(resultArray):
for dic in resultArray:
yield dic
if __name__ == "__main__":
# parser = argparse.ArgumentParser()
# parser.add_argument("--steps", help="Number of localization steps",type = int,required = True)
# parser.add_argument("--num_particles", help="Number of particles",type = int,required = True)
# args = parser.parse_args()
# steps = args.steps
# num_particles = args.num_particles
steps = 40
num_particles = 100
bagFile = "rosbag.bag"
tr = get_ros_samples(bagFile)
#Get actual landmark locations and put into a dictionary
df_landmark = pd.read_csv("landmarks.csv")
landmark_locs = {df_landmark['ID'][i]:(df_landmark['X'][i],df_landmark['Y'][i])
for i in range(len(df_landmark))}
#a = read_from_ros2(rosbag.Bag(bagFile))
mc = monte_carlo(grid_dims = [200,100,6.2], resultArray = tr,
landmark_locs = landmark_locs,num_particles=num_particles)
grid = mc.localize_mc(steps)
#Get x values of trajectory points.
x = [dic["msg"][0] for dic in tr]
y = [dic["msg"][1] for dic in tr]
ids = [dic["landmark1"][0] for dic in tr]
xl = [dic["landmark1"][1] for dic in tr]
yl = [dic["landmark1"][2] for dic in tr]
xl2 = [dic["landmark2"][1] if dic["landmark2"] is not None else None for dic in tr]
yl2 = [dic["landmark2"][2] if dic["landmark2"] is not None else None for dic in tr]
ids2 = [dic["landmark2"][0] if dic["landmark2"] is not None else None for dic in tr]
#Saving to a dataframe for printing later
df = pd.DataFrame(data = {"x":x,"y":y,"xl":xl,"yl":yl,"id":ids,"xl2":xl2,"yl2":yl2,"id2":ids2})
df.to_csv("plotting.csv")