diff --git a/contributor_folders/aidan/__pycache__/dataset.cpython-312.pyc b/contributor_folders/aidan/__pycache__/dataset.cpython-312.pyc
index 48c2861..a6342db 100644
Binary files a/contributor_folders/aidan/__pycache__/dataset.cpython-312.pyc and b/contributor_folders/aidan/__pycache__/dataset.cpython-312.pyc differ
diff --git a/contributor_folders/aidan/dataset.py b/contributor_folders/aidan/dataset.py
index 6c29316..d2e5000 100644
--- a/contributor_folders/aidan/dataset.py
+++ b/contributor_folders/aidan/dataset.py
@@ -14,13 +14,19 @@ class SpatialBounds(BaseModel):
class Access(BaseModel):
platform: str
path: str
+<<<<<<< HEAD
+=======
access_function: Optional[str] = ""
other_args: Optional[dict] = {}
+>>>>>>> aa213b2d152fb29a697d7271cdf076f9f2c1a546
class Variable(BaseModel):
standard_name: str
description: str
+<<<<<<< HEAD
+=======
units: str
+>>>>>>> aa213b2d152fb29a697d7271cdf076f9f2c1a546
class Variables(BaseModel):
variables: List[Variable]
diff --git a/contributor_folders/aidan/datasets.ipynb b/contributor_folders/aidan/datasets.ipynb
index b748633..167ba13 100644
--- a/contributor_folders/aidan/datasets.ipynb
+++ b/contributor_folders/aidan/datasets.ipynb
@@ -2,7 +2,11 @@
"cells": [
{
"cell_type": "code",
+<<<<<<< HEAD
+ "execution_count": 2,
+=======
"execution_count": 1,
+>>>>>>> aa213b2d152fb29a697d7271cdf076f9f2c1a546
"id": "f571ec6c-d60e-4049-a198-25b4dad1b7bb",
"metadata": {},
"outputs": [],
@@ -13,11 +17,36 @@
},
{
"cell_type": "code",
+<<<<<<< HEAD
+ "execution_count": 3,
+=======
"execution_count": 2,
+>>>>>>> aa213b2d152fb29a697d7271cdf076f9f2c1a546
"id": "e1f9d631-4ba9-435c-bddf-97962db3ccce",
"metadata": {},
"outputs": [],
"source": [
+<<<<<<< HEAD
+ "d = Dataset(\n",
+ " name=\"Multi-Scale Ultra High Resolution (MUR) Sea Surface Temperature (SST)\",\n",
+ " description=\"A global, gap-free, gridded, daily 1 km Sea Surface Temperature (SST) dataset created by merging multiple Level-2 satellite SST datasets. Those input datasets include the NASA Advanced Microwave Scanning Radiometer-EOS (AMSR-E), the JAXA Advanced Microwave Scanning Radiometer 2 (AMSR-2) on GCOM-W1, the Moderate Resolution Imaging Spectroradiometers (MODIS) on the NASA Aqua and Terra platforms, the US Navy microwave WindSat radiometer, the Advanced Very High Resolution Radiometer (AVHRR) on several NOAA satellites, and in situ SST observations from the NOAA iQuam project. Data are available from 2002 to present in Zarr format. The original source of the MUR data is the NASA JPL Physical Oceanography DAAC.\",\n",
+ " spatial_bounds=SpatialBounds(\n",
+ " min_lat=1.0,\n",
+ " min_lon=1.0,\n",
+ " max_lat=1.0,\n",
+ " max_lon=1.0\n",
+ " ),\n",
+ " temporal_bounds=TemporalBounds(\n",
+ " start_time=\"1234\",\n",
+ " end_time=\"4567\"\n",
+ " ),\n",
+ " variables=Variables(\n",
+ " variables=[Variable(standard_name=\"water temp\", description=\"how hot da water\")]\n",
+ " ),\n",
+ " access=Access(\n",
+ " platform=\"aws\",\n",
+ " path=\"s3://path_to_file.zarr\"\n",
+=======
"mur = Dataset(\n",
" name=\"GHRSST Level 4 MUR Global Foundation Sea Surface Temperature Analysis (v4.1)\",\n",
" description=\"The GHRSST MUR Level 4 sea surface temperature dataset provides global 0.01° analyses using wavelet-based optimal interpolation, combining nighttime SST observations from multiple satellite instruments and in situ sources, with retrospective (four-day latency) and near-real-time (one-day latency) products. It also includes ice concentration data for high-latitude SST improvements, SST anomalies, and the temporal distance to the nearest IR measurement for each pixel.\",\n",
@@ -74,12 +103,41 @@
" platform=\"aws\",\n",
" path=\"s3://mur-sst/zarr-v1/\",\n",
" access_function=\"load_mur\"\n",
+>>>>>>> aa213b2d152fb29a697d7271cdf076f9f2c1a546
" )\n",
")"
]
},
{
"cell_type": "code",
+<<<<<<< HEAD
+ "execution_count": 4,
+ "id": "0440e690-0fc9-48af-a10a-41283d7bc009",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "{'name': 'Multi-Scale Ultra High Resolution (MUR) Sea Surface Temperature (SST)',\n",
+ " 'description': 'A global, gap-free, gridded, daily 1 km Sea Surface Temperature (SST) dataset created by merging multiple Level-2 satellite SST datasets. Those input datasets include the NASA Advanced Microwave Scanning Radiometer-EOS (AMSR-E), the JAXA Advanced Microwave Scanning Radiometer 2 (AMSR-2) on GCOM-W1, the Moderate Resolution Imaging Spectroradiometers (MODIS) on the NASA Aqua and Terra platforms, the US Navy microwave WindSat radiometer, the Advanced Very High Resolution Radiometer (AVHRR) on several NOAA satellites, and in situ SST observations from the NOAA iQuam project. Data are available from 2002 to present in Zarr format. The original source of the MUR data is the NASA JPL Physical Oceanography DAAC.',\n",
+ " 'temporal_bounds': {'start_time': '1234', 'end_time': '4567'},\n",
+ " 'spatial_bounds': {'min_lat': 1.0,\n",
+ " 'min_lon': 1.0,\n",
+ " 'max_lat': 1.0,\n",
+ " 'max_lon': 1.0},\n",
+ " 'variables': {'variables': [{'standard_name': 'water temp',\n",
+ " 'description': 'how hot da water'}]},\n",
+ " 'access': {'platform': 'aws', 'path': 's3://path_to_file.zarr'}}"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "json.loads(d.json())"
+=======
"execution_count": 3,
"id": "d600f8e8-6e99-448e-85f2-c24e1255f908",
"metadata": {},
@@ -249,11 +307,15 @@
" )\n",
"\n",
")"
+>>>>>>> aa213b2d152fb29a697d7271cdf076f9f2c1a546
]
},
{
"cell_type": "code",
"execution_count": 5,
+<<<<<<< HEAD
+ "id": "ed735e0c-28b6-41e0-a36e-e551627b1af5",
+=======
"id": "c617b4e2-588a-41f3-9944-e8db06ac04fe",
"metadata": {},
"outputs": [],
@@ -325,11 +387,27 @@
"cell_type": "code",
"execution_count": 7,
"id": "05959572-9556-4a9a-aa9a-ee11e296575d",
+>>>>>>> aa213b2d152fb29a697d7271cdf076f9f2c1a546
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
+<<<<<<< HEAD
+ "{'datasets': [{'name': 'Multi-Scale Ultra High Resolution (MUR) Sea Surface Temperature (SST)',\n",
+ " 'description': 'A global, gap-free, gridded, daily 1 km Sea Surface Temperature (SST) dataset created by merging multiple Level-2 satellite SST datasets. Those input datasets include the NASA Advanced Microwave Scanning Radiometer-EOS (AMSR-E), the JAXA Advanced Microwave Scanning Radiometer 2 (AMSR-2) on GCOM-W1, the Moderate Resolution Imaging Spectroradiometers (MODIS) on the NASA Aqua and Terra platforms, the US Navy microwave WindSat radiometer, the Advanced Very High Resolution Radiometer (AVHRR) on several NOAA satellites, and in situ SST observations from the NOAA iQuam project. Data are available from 2002 to present in Zarr format. The original source of the MUR data is the NASA JPL Physical Oceanography DAAC.',\n",
+ " 'temporal_bounds': {'start_time': '1234', 'end_time': '4567'},\n",
+ " 'spatial_bounds': {'min_lat': 1.0,\n",
+ " 'min_lon': 1.0,\n",
+ " 'max_lat': 1.0,\n",
+ " 'max_lon': 1.0},\n",
+ " 'variables': {'variables': [{'standard_name': 'water temp',\n",
+ " 'description': 'how hot da water'}]},\n",
+ " 'access': {'platform': 'aws', 'path': 's3://path_to_file.zarr'}}]}"
+ ]
+ },
+ "execution_count": 5,
+=======
"{'datasets': [{'name': 'Indian Ocean grid',\n",
" 'description': 'Our Indian Ocean IO.zarr is a 1972-2022 blended dataset for the Arabian Sea and Bay of Bengal formated as a .zarr file, containing daily cleaned and interpolated data from variables across multiple sources, mostly from processed NASA/NOAA and Copernicus collections and the ERA5 reanalysis products.',\n",
" 'temporal_bounds': {'start_time': '1979-01-01', 'end_time': '2022-12-31'},\n",
@@ -521,11 +599,15 @@
]
},
"execution_count": 7,
+>>>>>>> aa213b2d152fb29a697d7271cdf076f9f2c1a546
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
+<<<<<<< HEAD
+ "json.loads(DatasetCollection(datasets=[d]).json())"
+=======
"json.loads(dataset_collection.json())"
]
},
@@ -540,12 +622,17 @@
"\n",
"with open(dataset_path, \"w\") as f:\n",
" f.write(dataset_collection.model_dump_json(indent=2)) "
+>>>>>>> aa213b2d152fb29a697d7271cdf076f9f2c1a546
]
},
{
"cell_type": "code",
"execution_count": null,
+<<<<<<< HEAD
+ "id": "cca20b5c-7b2d-4b2d-844c-011d301c2ba8",
+=======
"id": "e71e91c1-07dd-48cb-bbbe-afbfb83c7f07",
+>>>>>>> aa213b2d152fb29a697d7271cdf076f9f2c1a546
"metadata": {},
"outputs": [],
"source": []
diff --git a/contributor_folders/aidan/explore_langchain.ipynb b/contributor_folders/aidan/explore_langchain.ipynb
index 928d92c..e9d7a78 100644
--- a/contributor_folders/aidan/explore_langchain.ipynb
+++ b/contributor_folders/aidan/explore_langchain.ipynb
@@ -115,7 +115,11 @@
},
{
"cell_type": "code",
+<<<<<<< HEAD
+ "execution_count": 14,
+=======
"execution_count": 2,
+>>>>>>> aa213b2d152fb29a697d7271cdf076f9f2c1a546
"id": "c48c0b5a-95e0-45ed-bca7-033baecac369",
"metadata": {},
"outputs": [],
@@ -125,7 +129,11 @@
},
{
"cell_type": "code",
+<<<<<<< HEAD
+ "execution_count": 15,
+=======
"execution_count": 3,
+>>>>>>> aa213b2d152fb29a697d7271cdf076f9f2c1a546
"id": "0001cc2c-3fd2-4665-9f7f-7dfabf86fb44",
"metadata": {},
"outputs": [],
@@ -135,7 +143,11 @@
},
{
"cell_type": "code",
+<<<<<<< HEAD
+ "execution_count": 16,
+=======
"execution_count": 4,
+>>>>>>> aa213b2d152fb29a697d7271cdf076f9f2c1a546
"id": "86001908-aa14-44b5-9f56-06e7bbe12970",
"metadata": {},
"outputs": [],
@@ -158,19 +170,32 @@
},
{
"cell_type": "code",
+<<<<<<< HEAD
+ "execution_count": null,
+=======
"execution_count": 7,
+>>>>>>> aa213b2d152fb29a697d7271cdf076f9f2c1a546
"id": "3acde5d4-3299-4a30-8624-2f40af33bf17",
"metadata": {},
"outputs": [],
"source": [
+<<<<<<< HEAD
+ "read_arraylake_dataset(\n",
+ " \"earthmover-public/era5-surface-aws\",\n",
+ " \"spatial\",\n",
+ " \"sst\"\n",
+=======
"ds = read_arraylake_dataset(\n",
" \"earthmover-public/era5-surface-aws\",\n",
" \"spatial\"\n",
+>>>>>>> aa213b2d152fb29a697d7271cdf076f9f2c1a546
")"
]
},
{
"cell_type": "code",
+<<<<<<< HEAD
+=======
"execution_count": 9,
"id": "8a4c3fb5-5ccc-49ae-a523-86cfb11e0dba",
"metadata": {},
@@ -3543,6 +3568,7 @@
},
{
"cell_type": "code",
+>>>>>>> aa213b2d152fb29a697d7271cdf076f9f2c1a546
"execution_count": 20,
"id": "00fff333-8015-4776-92bc-88700297235a",
"metadata": {},
diff --git a/contributor_folders/finn/data_readin.ipynb b/contributor_folders/finn/data_readin.ipynb
index 2ea91de..f6972b9 100644
--- a/contributor_folders/finn/data_readin.ipynb
+++ b/contributor_folders/finn/data_readin.ipynb
@@ -8,12 +8,9 @@
"outputs": [],
"source": [
"from __future__ import annotations\n",
- "from typing import Tuple\n",
- "\n",
+ "from typing import Optional, Union, Tuple, Dict, Any\n",
"import xarray as xr\n",
- "import numpy as np\n",
- "import cf_xarray\n",
- "import s3fs, gcsfs, fsspec, zarr"
+ "import numpy as np"
]
},
{
@@ -25,9 +22,6 @@
"source": [
"### helper functions to normalize coords\n",
"\n",
- "# --------------------- helpers (unchanged from previous) --------------------- #\n",
- "# Note: These helpers are kept as they perform general-purpose coordinate and variable handling.\n",
- "\n",
"def _select_variable(ds: xr.Dataset, var: Union[str, Dict[str, str]]) -> str:\n",
" \"\"\"\n",
" Pick a variable name from a Dataset.\n",
@@ -60,15 +54,22 @@
" raise KeyError(f\"Could not locate variable from hints {var}. Variables: {list(ds.data_vars)}\")\n",
"\n",
"\n",
- "def _normalize_coord_names(ds: xr.Dataset) -> xr.Dataset:\n",
+ "def _get_coord_names(ds: xr.Dataset) -> Tuple[str, str]:\n",
" \"\"\"\n",
- " Standardize coordinate names to 'latitude', 'longitude', 'time'.\n",
+ " Get the longitude and latitude coordinate names from the dataset.\n",
+ " Supports both long ('longitude', 'latitude') and short ('lon', 'lat') names.\n",
+ " \n",
+ " Returns\n",
+ " -------\n",
+ " tuple of (lon_name, lat_name)\n",
" \"\"\"\n",
- " rename_map = {}\n",
- " for alias, standard in {\"lat\": \"latitude\", \"lon\": \"longitude\"}.items():\n",
- " if alias in ds.coords and standard not in ds.coords:\n",
- " rename_map[alias] = standard\n",
- " return ds.rename(rename_map) if rename_map else ds\n",
+ " lon_name = next((name for name in ['longitude', 'lon'] if name in ds.coords), None)\n",
+ " lat_name = next((name for name in ['latitude', 'lat'] if name in ds.coords), None)\n",
+ " \n",
+ " if not lon_name or not lat_name:\n",
+ " raise ValueError(f\"Could not find longitude/latitude coordinates. Found: {list(ds.coords)}\")\n",
+ " \n",
+ " return lon_name, lat_name\n",
"\n",
"\n",
"def _infer_target_lon_frame(lon_min: float, lon_max: float) -> str:\n",
@@ -81,11 +82,11 @@
"def _coerce_longitudes(ds: xr.Dataset, target_frame: str, assume_frame: Optional[str] = None) -> xr.Dataset:\n",
" \"\"\"\n",
" Coerce dataset longitudes to a target frame ('0-360' or '-180-180').\n",
+ " Works with either 'longitude' or 'lon' coordinate names.\n",
" \"\"\"\n",
- " if \"longitude\" not in ds.coords:\n",
- " return ds\n",
- "\n",
- " lon = ds[\"longitude\"].values\n",
+ " lon_name, _ = _get_coord_names(ds)\n",
+ " \n",
+ " lon = ds[lon_name].values\n",
" if assume_frame:\n",
" current = assume_frame\n",
" else:\n",
@@ -99,159 +100,7412 @@
" else: # target is -180-180\n",
" lon_new = ((lon + 180) % 360) - 180\n",
" \n",
- " ds = ds.assign_coords(longitude=lon_new)\n",
- " return ds.sortby(\"longitude\")\n",
+ " ds = ds.assign_coords({lon_name: lon_new})\n",
+ " return ds.sortby(lon_name)\n",
"\n",
"\n",
"def _ensure_lat_monotonic(ds: xr.Dataset) -> xr.Dataset:\n",
" \"\"\"\n",
" Ensures the latitude coordinate is monotonically increasing.\n",
+ " Works with either 'latitude' or 'lat' coordinate names.\n",
" \"\"\"\n",
- " if \"latitude\" in ds.coords and ds[\"latitude\"].ndim == 1 and ds[\"latitude\"].values[0] > ds[\"latitude\"].values[-1]:\n",
- " return ds.sortby(\"latitude\")\n",
+ " _, lat_name = _get_coord_names(ds)\n",
+ " \n",
+ " if ds[lat_name].ndim == 1 and ds[lat_name].values[0] > ds[lat_name].values[-1]:\n",
+ " return ds.sortby(lat_name)\n",
" return ds\n",
"\n",
"\n",
"def _slice_longitude(ds: xr.Dataset, lon_min: float, lon_max: float) -> xr.Dataset:\n",
" \"\"\"\n",
" Slice longitude robustly, handling wrap-around for ranges like 350E to 10E.\n",
+ " Works with either 'longitude' or 'lon' coordinate names.\n",
" \"\"\"\n",
+ " lon_name, _ = _get_coord_names(ds)\n",
+ " \n",
" if lon_min <= lon_max:\n",
- " return ds.sel(longitude=slice(lon_min, lon_max))\n",
+ " return ds.sel(**{lon_name: slice(lon_min, lon_max)})\n",
" \n",
- " lon = ds[\"longitude\"]\n",
- " part1 = ds.sel(longitude=slice(lon_min, float(lon.max())))\n",
- " part2 = ds.sel(longitude=slice(float(lon.min()), lon_max))\n",
- " return xr.concat([part1, part2], dim=\"longitude\")"
+ " lon = ds[lon_name]\n",
+ " part1 = ds.sel(**{lon_name: slice(lon_min, float(lon.max()))})\n",
+ " part2 = ds.sel(**{lon_name: slice(float(lon.min()), lon_max)})\n",
+ " return xr.concat([part1, part2], dim=lon_name)"
]
},
{
"cell_type": "code",
"execution_count": 3,
- "id": "d5ebf53d-efcf-4498-aac2-86dba953ab22",
+ "id": "6391de80-3409-4398-82cc-5a880af149d3",
"metadata": {},
"outputs": [],
"source": [
- "def load_aws_dataset(\n",
- " s3_path: str,\n",
- " variable_of_interest: Union[str, Dict[str, str]],\n",
- " region_of_interest: Optional[Dict[str, float]] = None,\n",
- " time_of_interest: Optional[Union[slice, Tuple[str, str]]] = None,\n",
+ "def load_climate_data(\n",
+ " cloud_path: str,\n",
+ " variable: Union[str, Dict[str, str]],\n",
+ " lon_range: Optional[Tuple[float, float]] = None,\n",
+ " lat_range: Optional[Tuple[float, float]] = None,\n",
" *,\n",
- " group: Optional[str] = None,\n",
- " consolidated: Optional[bool] = None,\n",
- " chunks: Optional[Dict] = None,\n",
- " assume_lon: Optional[str] = None, # \"0-360\" or \"-180-180\" if you know...\n",
- " return_dataset: bool = False,\n",
- " save_to: Optional[Union[str, pathlib.Path]] = None,\n",
- ") -> Union[xr.DataArray, xr.Dataset]:\n",
+ " time_range: Optional[Tuple[str, str]] = None,\n",
+ " resample_to: Optional[str] = None,\n",
+ " chunks: Optional[Dict[str, int]] = None,\n",
+ "):\n",
" \"\"\"\n",
- " Load and subset a Zarr dataset from a public AWS S3 bucket.\n",
- "\n",
+ " Load climate data from cloud storage (S3 or GCS) with consistent processing.\n",
+ " \n",
" Parameters\n",
" ----------\n",
- " s3_path:\n",
- " The full S3 path to the Zarr store (e.g., \"s3://era5-pds/zarr/...\").\n",
- " variable_of_interest:\n",
- " - Name of the variable in the dataset (e.g., \"sst\", \"tos\", \"t2m\"), OR\n",
- " - A mapping of CF/long-name hints to try, e.g.:\n",
- " {\"standard_name\": \"sea_surface_temperature\"}\n",
- " region_of_interest:\n",
- " Dict with geographic bounds: {\"lat_min\": -90, \"lat_max\": 90, \"lon_min\": 0, \"lon_max\": 360}.\n",
- " Longitudes may be 0–360 or −180–180. Function will reconcile.\n",
- " time_of_interest:\n",
- " Either a Python slice (e.g., slice(\"1990-01-01\",\"2000-12-31\")) or a 2-tuple of ISO strings.\n",
- " group:\n",
- " Zarr group within the store (e.g., \"spatial\" for ERA5).\n",
- " consolidated:\n",
- " Whether the Zarr store is consolidated. If None, attempts sensible defaults.\n",
- " chunks:\n",
- " Dask chunking dict, e.g., {\"time\": 2400}.\n",
- " assume_lon:\n",
- " If set, forces interpretation of dataset longitudes as \"0-360\" or \"-180-180\".\n",
- " return_dataset:\n",
- " If True, return the full Dataset. Otherwise return the selected DataArray.\n",
- " save_to:\n",
- " Optional path to save the subset as NetCDF.\n",
- "\n",
+ " cloud_path : str\n",
+ " Full URL to the Zarr store (e.g., \"s3://...\" or \"gs://...\")\n",
+ " variable : str or dict\n",
+ " Variable name or CF-style selector (e.g., {\"standard_name\": \"air_temperature\"})\n",
+ " lon_range : tuple of float\n",
+ " (min_longitude, max_longitude) in dataset's native frame\n",
+ " lat_range : tuple of float\n",
+ " (min_latitude, max_latitude)\n",
+ " time_range : tuple of str, optional\n",
+ " (start_date, end_date) as ISO strings\n",
+ " convert_kelvin_to_celsius : bool, default True\n",
+ " If True, convert temperature data from Kelvin to Celsius\n",
+ " resample_to : str, optional\n",
+ " If provided, resample time dimension (e.g., \"MS\" for month start)\n",
+ " chunks : dict, optional\n",
+ " Dask chunks specification (e.g., {\"time\": 1024})\n",
+ " \n",
" Returns\n",
" -------\n",
- " xr.DataArray or xr.Dataset\n",
- " The subsetted data.\n",
+ " xr.Dataset\n",
+ " Processed dataset with consistent dimensions\n",
" \"\"\"\n",
- " # normalize input params\n",
- " if isinstance(time_of_interest, tuple):\n",
- " time_of_interest = slice(time_of_interest[0], time_of_interest[1])\n",
- "\n",
- " region = region_of_interest or {}\n",
- " lat_min = region.get(\"lat_min\", None)\n",
- " lat_max = region.get(\"lat_max\", None)\n",
- " lon_min = region.get(\"lon_min\", None)\n",
- " lon_max = region.get(\"lon_max\", None)\n",
- "\n",
- " # config aws\n",
- " storage_options = {\"anon\": True}\n",
- " if consolidated is None:\n",
- " consolidated = False if (group is not None and \"era5\" in s3_path.lower()) else True\n",
- "\n",
- " # open dataset\n",
+ " \n",
+ " # Open dataset\n",
" ds = xr.open_dataset(\n",
- " s3_path,\n",
+ " cloud_path,\n",
" engine=\"zarr\",\n",
" chunks=chunks,\n",
- " consolidated=consolidated,\n",
- " backend_kwargs={\n",
- " \"storage_options\": storage_options,\n",
- " **({\"group\": group} if group else {}),\n",
- " },\n",
" )\n",
+ " \n",
+ " # Get coordinate names\n",
+ " lon_name, lat_name = _get_coord_names(ds)\n",
+ " \n",
+ " # Subset space and time\n",
+ " region = {}\n",
+ " if lon_range is not None and lat_range is not None:\n",
+ " region.update({\n",
+ " lon_name: slice(*lon_range),\n",
+ " lat_name: slice(*lat_range)\n",
+ " })\n",
+ " if time_range is not None:\n",
+ " region[\"time\"] = slice(*time_range)\n",
+ " \n",
+ " # Only apply selection if we have regions to subset\n",
+ " if region:\n",
+ " ds = ds.sel(**region)\n",
+ " \n",
+ " # Handle longitude frame and monotonic latitude\n",
+ " # Handle longitude frame and monotonic latitude\n",
+ " if lon_range is not None:\n",
+ " target_frame = _infer_target_lon_frame(*lon_range)\n",
+ " ds = _coerce_longitudes(ds, target_frame)\n",
+ " ds = _ensure_lat_monotonic(ds)\n",
+ " \n",
+ " # Optional time resampling\n",
+ " if resample_to:\n",
+ " ds = ds.resample(time=resample_to).mean()\n",
+ " \n",
+ " # Ensure consistent dimension order\n",
+ " # Get available dimensions\n",
+ " dims = list(ds.dims)\n",
+ " # Core dims we want first (if they exist)\n",
+ " core_dims = [\"time\", \"latitude\", \"longitude\"]\n",
+ " # Filter out core dims that actually exist\n",
+ " core_dims = [d for d in core_dims if d in dims]\n",
+ " # Add any remaining dims at the end\n",
+ " other_dims = [d for d in dims if d not in core_dims]\n",
+ " # Combine for final ordering\n",
+ " final_dims = core_dims + other_dims\n",
+ " \n",
+ " ds = ds.transpose(*final_dims)\n",
"\n",
- " # select variable (cf-aware if possible)\n",
- " var = _select_variable(ds, variable_of_interest)\n",
- "\n",
- " # normalize coordinate names\n",
- " ds = _normalize_coord_names(ds)\n",
- "\n",
- " # fix lon to desired slicing frame, if needed \n",
- " if (lon_min is not None) and (lon_max is not None):\n",
- " ds = _coerce_longitudes(ds, target_frame=_infer_target_lon_frame(lon_min, lon_max), assume_frame=assume_lon)\n",
- "\n",
- " # wnsure latitude selection works if lat is descending (ERA5 style)\n",
- " if (lat_min is not None) and (lat_max is not None):\n",
- " ds = _ensure_lat_monotonic(ds)\n",
- "\n",
- " # apply coord selections\n",
- " sel = ds\n",
- " if time_of_interest is not None and (\"time\" in sel.dims or \"time\" in sel.coords):\n",
- " sel = sel.sel(time=time_of_interest)\n",
- " if (lat_min is not None) and (lat_max is not None) and \"latitude\" in sel.coords:\n",
- " sel = sel.sel(latitude=slice(min(lat_min, lat_max), max(lat_min, lat_max)))\n",
- " if (lon_min is not None) and (lon_max is not None) and \"longitude\" in sel.coords:\n",
- " sel = _slice_longitude(sel, lon_min, lon_max)\n",
- "\n",
- " # return subset da/ds\n",
- " out = sel if return_dataset else sel[var]\n",
- " if save_to is not None:\n",
- " save_path = pathlib.Path(save_to).expanduser().resolve()\n",
- " save_path.parent.mkdir(parents=True, exist_ok=True)\n",
- " out.to_netcdf(save_path)\n",
- " return out"
+ " if variable:\n",
+ " var = _select_variable(ds, variable)\n",
+ " ds = ds[var]\n",
+ " \n",
+ " return ds"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "a4811e9a-5912-4094-90ed-9d6c478c4a7b",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "era5_data = load_climate_data(\n",
+ " cloud_path=\"gs://weatherbench2/datasets/era5/1959-2023_01_10-6h-240x121_equiangular_with_poles_conservative.zarr\",\n",
+ " variable=None,\n",
+ " lon_range=(0, 90), \n",
+ " lat_range=(-20, 60), \n",
+ " time_range=(\"2020-01-01\", \"2020-12-31\"),\n",
+ " resample_to=\"MS\", \n",
+ " chunks={\"time\": 1024})"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "e1d1e0db-a5b1-40a0-b43c-91a46fc95c0f",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "
<xarray.Dataset> Size: 38MB\n",
+ "Dimensions: (time: 12, longitude: 61,\n",
+ " latitude: 54, level: 13)\n",
+ "Coordinates:\n",
+ " * latitude (latitude) float64 432B ...\n",
+ " * level (level) int64 104B 50 ....\n",
+ " * longitude (longitude) float64 488B ...\n",
+ " * time (time) datetime64[ns] 96B ...\n",
+ "Data variables: (12/62)\n",
+ " 10m_u_component_of_wind (time, latitude, longitude) float32 158kB dask.array<chunksize=(12, 54, 61), meta=np.ndarray>\n",
+ " 10m_v_component_of_wind (time, latitude, longitude) float32 158kB dask.array<chunksize=(12, 54, 61), meta=np.ndarray>\n",
+ " 10m_wind_speed (time, latitude, longitude) float32 158kB dask.array<chunksize=(12, 54, 61), meta=np.ndarray>\n",
+ " 2m_dewpoint_temperature (time, latitude, longitude) float32 158kB dask.array<chunksize=(12, 54, 61), meta=np.ndarray>\n",
+ " 2m_temperature (time, latitude, longitude) float32 158kB dask.array<chunksize=(12, 54, 61), meta=np.ndarray>\n",
+ " above_ground (time, latitude, longitude, level) float32 2MB dask.array<chunksize=(12, 54, 61, 13), meta=np.ndarray>\n",
+ " ... ...\n",
+ " slope_of_sub_gridscale_orography (time, latitude, longitude) float32 158kB dask.array<chunksize=(12, 54, 61), meta=np.ndarray>\n",
+ " soil_type (time, latitude, longitude) float32 158kB dask.array<chunksize=(12, 54, 61), meta=np.ndarray>\n",
+ " standard_deviation_of_filtered_subgrid_orography (time, latitude, longitude) float32 158kB dask.array<chunksize=(12, 54, 61), meta=np.ndarray>\n",
+ " standard_deviation_of_orography (time, latitude, longitude) float32 158kB dask.array<chunksize=(12, 54, 61), meta=np.ndarray>\n",
+ " type_of_high_vegetation (time, latitude, longitude) float32 158kB dask.array<chunksize=(12, 54, 61), meta=np.ndarray>\n",
+ " type_of_low_vegetation (time, latitude, longitude) float32 158kB dask.array<chunksize=(12, 54, 61), meta=np.ndarray> Dimensions: time : 12longitude : 61latitude : 54level : 13
Coordinates: (4)
latitude
(latitude)
float64
-19.5 -18.0 -16.5 ... 58.5 60.0
array([-19.5, -18. , -16.5, -15. , -13.5, -12. , -10.5, -9. , -7.5, -6. ,\n",
+ " -4.5, -3. , -1.5, 0. , 1.5, 3. , 4.5, 6. , 7.5, 9. ,\n",
+ " 10.5, 12. , 13.5, 15. , 16.5, 18. , 19.5, 21. , 22.5, 24. ,\n",
+ " 25.5, 27. , 28.5, 30. , 31.5, 33. , 34.5, 36. , 37.5, 39. ,\n",
+ " 40.5, 42. , 43.5, 45. , 46.5, 48. , 49.5, 51. , 52.5, 54. ,\n",
+ " 55.5, 57. , 58.5, 60. ]) level
(level)
int64
50 100 150 200 ... 700 850 925 1000
array([ 50, 100, 150, 200, 250, 300, 400, 500, 600, 700, 850, 925,\n",
+ " 1000]) longitude
(longitude)
float64
0.0 1.5 3.0 4.5 ... 87.0 88.5 90.0
array([ 0. , 1.5, 3. , 4.5, 6. , 7.5, 9. , 10.5, 12. , 13.5, 15. , 16.5,\n",
+ " 18. , 19.5, 21. , 22.5, 24. , 25.5, 27. , 28.5, 30. , 31.5, 33. , 34.5,\n",
+ " 36. , 37.5, 39. , 40.5, 42. , 43.5, 45. , 46.5, 48. , 49.5, 51. , 52.5,\n",
+ " 54. , 55.5, 57. , 58.5, 60. , 61.5, 63. , 64.5, 66. , 67.5, 69. , 70.5,\n",
+ " 72. , 73.5, 75. , 76.5, 78. , 79.5, 81. , 82.5, 84. , 85.5, 87. , 88.5,\n",
+ " 90. ]) time
(time)
datetime64[ns]
2020-01-01 ... 2020-12-01
array(['2020-01-01T00:00:00.000000000', '2020-02-01T00:00:00.000000000',\n",
+ " '2020-03-01T00:00:00.000000000', '2020-04-01T00:00:00.000000000',\n",
+ " '2020-05-01T00:00:00.000000000', '2020-06-01T00:00:00.000000000',\n",
+ " '2020-07-01T00:00:00.000000000', '2020-08-01T00:00:00.000000000',\n",
+ " '2020-09-01T00:00:00.000000000', '2020-10-01T00:00:00.000000000',\n",
+ " '2020-11-01T00:00:00.000000000', '2020-12-01T00:00:00.000000000'],\n",
+ " dtype='datetime64[ns]') Data variables: (62)
10m_u_component_of_wind
(time, latitude, longitude)
float32
dask.array<chunksize=(12, 54, 61), meta=np.ndarray>
long_name : 10 metre U wind component short_name : u10 units : m s**-1 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 154.41 kiB \n",
+ " 154.41 kiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (12, 54, 61) \n",
+ " (12, 54, 61) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 1 chunks in 10 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float32 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 61 \n",
+ " 54 \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
10m_v_component_of_wind
(time, latitude, longitude)
float32
dask.array<chunksize=(12, 54, 61), meta=np.ndarray>
long_name : 10 metre V wind component short_name : v10 units : m s**-1 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 154.41 kiB \n",
+ " 154.41 kiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (12, 54, 61) \n",
+ " (12, 54, 61) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 1 chunks in 10 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float32 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 61 \n",
+ " 54 \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
10m_wind_speed
(time, latitude, longitude)
float32
dask.array<chunksize=(12, 54, 61), meta=np.ndarray>
\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 154.41 kiB \n",
+ " 154.41 kiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (12, 54, 61) \n",
+ " (12, 54, 61) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 1 chunks in 10 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float32 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 61 \n",
+ " 54 \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
2m_dewpoint_temperature
(time, latitude, longitude)
float32
dask.array<chunksize=(12, 54, 61), meta=np.ndarray>
long_name : 2 metre dewpoint temperature short_name : d2m units : K \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 154.41 kiB \n",
+ " 154.41 kiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (12, 54, 61) \n",
+ " (12, 54, 61) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 1 chunks in 10 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float32 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 61 \n",
+ " 54 \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
2m_temperature
(time, latitude, longitude)
float32
dask.array<chunksize=(12, 54, 61), meta=np.ndarray>
long_name : 2 metre temperature short_name : t2m units : K \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 154.41 kiB \n",
+ " 154.41 kiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (12, 54, 61) \n",
+ " (12, 54, 61) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 1 chunks in 10 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float32 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 61 \n",
+ " 54 \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
above_ground
(time, latitude, longitude, level)
float32
dask.array<chunksize=(12, 54, 61, 13), meta=np.ndarray>
\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 1.96 MiB \n",
+ " 1.96 MiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (12, 54, 61, 13) \n",
+ " (12, 54, 61, 13) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 1 chunks in 11 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float32 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 12 \n",
+ " 1 \n",
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 13 \n",
+ " 61 \n",
+ " 54 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
ageostrophic_wind_speed
(time, latitude, longitude, level)
float32
dask.array<chunksize=(12, 54, 61, 13), meta=np.ndarray>
\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 1.96 MiB \n",
+ " 1.96 MiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (12, 54, 61, 13) \n",
+ " (12, 54, 61, 13) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 1 chunks in 11 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float32 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 12 \n",
+ " 1 \n",
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 13 \n",
+ " 61 \n",
+ " 54 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
boundary_layer_height
(time, latitude, longitude)
float32
dask.array<chunksize=(12, 54, 61), meta=np.ndarray>
long_name : Boundary layer height short_name : blh units : m \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 154.41 kiB \n",
+ " 154.41 kiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (12, 54, 61) \n",
+ " (12, 54, 61) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 1 chunks in 10 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float32 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 61 \n",
+ " 54 \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
divergence
(time, latitude, longitude, level)
float32
dask.array<chunksize=(12, 54, 61, 13), meta=np.ndarray>
\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 1.96 MiB \n",
+ " 1.96 MiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (12, 54, 61, 13) \n",
+ " (12, 54, 61, 13) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 1 chunks in 11 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float32 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 12 \n",
+ " 1 \n",
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 13 \n",
+ " 61 \n",
+ " 54 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
eddy_kinetic_energy
(time, latitude, longitude)
float32
dask.array<chunksize=(12, 54, 61), meta=np.ndarray>
\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 154.41 kiB \n",
+ " 154.41 kiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (12, 54, 61) \n",
+ " (12, 54, 61) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 1 chunks in 10 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float32 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 61 \n",
+ " 54 \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
geopotential
(time, latitude, longitude, level)
float32
dask.array<chunksize=(12, 54, 61, 13), meta=np.ndarray>
long_name : Geopotential short_name : z standard_name : geopotential units : m**2 s**-2 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 1.96 MiB \n",
+ " 1.96 MiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (12, 54, 61, 13) \n",
+ " (12, 54, 61, 13) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 1 chunks in 11 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float32 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 12 \n",
+ " 1 \n",
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 13 \n",
+ " 61 \n",
+ " 54 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
geostrophic_wind_speed
(time, latitude, longitude, level)
float32
dask.array<chunksize=(12, 54, 61, 13), meta=np.ndarray>
\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 1.96 MiB \n",
+ " 1.96 MiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (12, 54, 61, 13) \n",
+ " (12, 54, 61, 13) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 1 chunks in 11 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float32 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 12 \n",
+ " 1 \n",
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 13 \n",
+ " 61 \n",
+ " 54 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
integrated_vapor_transport
(time, latitude, longitude)
float32
dask.array<chunksize=(12, 54, 61), meta=np.ndarray>
\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 154.41 kiB \n",
+ " 154.41 kiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (12, 54, 61) \n",
+ " (12, 54, 61) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 1 chunks in 10 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float32 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 61 \n",
+ " 54 \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
lapse_rate
(time, latitude, longitude, level)
float32
dask.array<chunksize=(12, 54, 61, 13), meta=np.ndarray>
\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 1.96 MiB \n",
+ " 1.96 MiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (12, 54, 61, 13) \n",
+ " (12, 54, 61, 13) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 1 chunks in 11 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float32 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 12 \n",
+ " 1 \n",
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 13 \n",
+ " 61 \n",
+ " 54 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
leaf_area_index_high_vegetation
(time, latitude, longitude)
float32
dask.array<chunksize=(12, 54, 61), meta=np.ndarray>
long_name : Leaf area index, high vegetation short_name : lai_hv units : m**2 m**-2 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 154.41 kiB \n",
+ " 154.41 kiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (12, 54, 61) \n",
+ " (12, 54, 61) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 1 chunks in 10 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float32 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 61 \n",
+ " 54 \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
leaf_area_index_low_vegetation
(time, latitude, longitude)
float32
dask.array<chunksize=(12, 54, 61), meta=np.ndarray>
long_name : Leaf area index, low vegetation short_name : lai_lv units : m**2 m**-2 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 154.41 kiB \n",
+ " 154.41 kiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (12, 54, 61) \n",
+ " (12, 54, 61) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 1 chunks in 10 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float32 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 61 \n",
+ " 54 \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
mean_sea_level_pressure
(time, latitude, longitude)
float32
dask.array<chunksize=(12, 54, 61), meta=np.ndarray>
long_name : Mean sea level pressure short_name : msl standard_name : air_pressure_at_mean_sea_level units : Pa \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 154.41 kiB \n",
+ " 154.41 kiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (12, 54, 61) \n",
+ " (12, 54, 61) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 1 chunks in 10 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float32 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 61 \n",
+ " 54 \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
mean_surface_latent_heat_flux
(time, latitude, longitude)
float32
dask.array<chunksize=(12, 54, 61), meta=np.ndarray>
long_name : Mean surface latent heat flux short_name : mslhf units : W m**-2 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 154.41 kiB \n",
+ " 154.41 kiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (12, 54, 61) \n",
+ " (12, 54, 61) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 1 chunks in 10 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float32 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 61 \n",
+ " 54 \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
mean_surface_net_long_wave_radiation_flux
(time, latitude, longitude)
float32
dask.array<chunksize=(12, 54, 61), meta=np.ndarray>
long_name : Mean surface net long-wave radiation flux short_name : msnlwrf units : W m**-2 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 154.41 kiB \n",
+ " 154.41 kiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (12, 54, 61) \n",
+ " (12, 54, 61) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 1 chunks in 10 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float32 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 61 \n",
+ " 54 \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
mean_surface_net_short_wave_radiation_flux
(time, latitude, longitude)
float32
dask.array<chunksize=(12, 54, 61), meta=np.ndarray>
long_name : Mean surface net short-wave radiation flux short_name : msnswrf units : W m**-2 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 154.41 kiB \n",
+ " 154.41 kiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (12, 54, 61) \n",
+ " (12, 54, 61) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 1 chunks in 10 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float32 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 61 \n",
+ " 54 \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
mean_surface_sensible_heat_flux
(time, latitude, longitude)
float32
dask.array<chunksize=(12, 54, 61), meta=np.ndarray>
long_name : Mean surface sensible heat flux short_name : msshf units : W m**-2 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 154.41 kiB \n",
+ " 154.41 kiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (12, 54, 61) \n",
+ " (12, 54, 61) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 1 chunks in 10 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float32 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 61 \n",
+ " 54 \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
mean_top_downward_short_wave_radiation_flux
(time, latitude, longitude)
float32
dask.array<chunksize=(12, 54, 61), meta=np.ndarray>
long_name : Mean top downward short-wave radiation flux short_name : mtdwswrf units : W m**-2 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 154.41 kiB \n",
+ " 154.41 kiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (12, 54, 61) \n",
+ " (12, 54, 61) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 1 chunks in 10 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float32 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 61 \n",
+ " 54 \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
mean_top_net_long_wave_radiation_flux
(time, latitude, longitude)
float32
dask.array<chunksize=(12, 54, 61), meta=np.ndarray>
long_name : Mean top net long-wave radiation flux short_name : mtnlwrf units : W m**-2 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 154.41 kiB \n",
+ " 154.41 kiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (12, 54, 61) \n",
+ " (12, 54, 61) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 1 chunks in 10 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float32 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 61 \n",
+ " 54 \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
mean_top_net_short_wave_radiation_flux
(time, latitude, longitude)
float32
dask.array<chunksize=(12, 54, 61), meta=np.ndarray>
long_name : Mean top net short-wave radiation flux short_name : mtnswrf units : W m**-2 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 154.41 kiB \n",
+ " 154.41 kiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (12, 54, 61) \n",
+ " (12, 54, 61) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 1 chunks in 10 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float32 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 61 \n",
+ " 54 \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
mean_vertically_integrated_moisture_divergence
(time, latitude, longitude)
float32
dask.array<chunksize=(12, 54, 61), meta=np.ndarray>
long_name : Mean vertically integrated moisture divergence short_name : mvimd units : kg m**-2 s**-1 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 154.41 kiB \n",
+ " 154.41 kiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (12, 54, 61) \n",
+ " (12, 54, 61) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 1 chunks in 10 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float32 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 61 \n",
+ " 54 \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
potential_vorticity
(time, latitude, longitude, level)
float32
dask.array<chunksize=(12, 54, 61, 13), meta=np.ndarray>
long_name : Potential vorticity short_name : pv units : K m**2 kg**-1 s**-1 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 1.96 MiB \n",
+ " 1.96 MiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (12, 54, 61, 13) \n",
+ " (12, 54, 61, 13) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 1 chunks in 11 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float32 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 12 \n",
+ " 1 \n",
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 13 \n",
+ " 61 \n",
+ " 54 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
relative_humidity
(time, latitude, longitude, level)
float32
dask.array<chunksize=(12, 54, 61, 13), meta=np.ndarray>
\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 1.96 MiB \n",
+ " 1.96 MiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (12, 54, 61, 13) \n",
+ " (12, 54, 61, 13) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 1 chunks in 11 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float32 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 12 \n",
+ " 1 \n",
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 13 \n",
+ " 61 \n",
+ " 54 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
sea_ice_cover
(time, latitude, longitude)
float32
dask.array<chunksize=(12, 54, 61), meta=np.ndarray>
long_name : Sea ice area fraction short_name : siconc standard_name : sea_ice_area_fraction units : (0 - 1) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 154.41 kiB \n",
+ " 154.41 kiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (12, 54, 61) \n",
+ " (12, 54, 61) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 1 chunks in 10 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float32 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 61 \n",
+ " 54 \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
sea_surface_temperature
(time, latitude, longitude)
float32
dask.array<chunksize=(12, 54, 61), meta=np.ndarray>
long_name : Sea surface temperature short_name : sst units : K \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 154.41 kiB \n",
+ " 154.41 kiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (12, 54, 61) \n",
+ " (12, 54, 61) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 1 chunks in 10 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float32 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 61 \n",
+ " 54 \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
snow_depth
(time, latitude, longitude)
float32
dask.array<chunksize=(12, 54, 61), meta=np.ndarray>
long_name : Snow depth short_name : sd standard_name : lwe_thickness_of_surface_snow_amount units : m of water equivalent \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 154.41 kiB \n",
+ " 154.41 kiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (12, 54, 61) \n",
+ " (12, 54, 61) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 1 chunks in 10 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float32 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 61 \n",
+ " 54 \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
specific_humidity
(time, latitude, longitude, level)
float32
dask.array<chunksize=(12, 54, 61, 13), meta=np.ndarray>
long_name : Specific humidity short_name : q standard_name : specific_humidity units : kg kg**-1 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 1.96 MiB \n",
+ " 1.96 MiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (12, 54, 61, 13) \n",
+ " (12, 54, 61, 13) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 1 chunks in 11 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float32 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 12 \n",
+ " 1 \n",
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 13 \n",
+ " 61 \n",
+ " 54 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
surface_pressure
(time, latitude, longitude)
float32
dask.array<chunksize=(12, 54, 61), meta=np.ndarray>
long_name : Surface pressure short_name : sp standard_name : surface_air_pressure units : Pa \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 154.41 kiB \n",
+ " 154.41 kiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (12, 54, 61) \n",
+ " (12, 54, 61) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 1 chunks in 10 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float32 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 61 \n",
+ " 54 \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
temperature
(time, latitude, longitude, level)
float32
dask.array<chunksize=(12, 54, 61, 13), meta=np.ndarray>
long_name : Temperature short_name : t standard_name : air_temperature units : K \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 1.96 MiB \n",
+ " 1.96 MiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (12, 54, 61, 13) \n",
+ " (12, 54, 61, 13) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 1 chunks in 11 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float32 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 12 \n",
+ " 1 \n",
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 13 \n",
+ " 61 \n",
+ " 54 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
total_cloud_cover
(time, latitude, longitude)
float32
dask.array<chunksize=(12, 54, 61), meta=np.ndarray>
long_name : Total cloud cover short_name : tcc standard_name : cloud_area_fraction units : (0 - 1) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 154.41 kiB \n",
+ " 154.41 kiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (12, 54, 61) \n",
+ " (12, 54, 61) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 1 chunks in 10 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float32 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 61 \n",
+ " 54 \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
total_column_vapor
(time, latitude, longitude)
float32
dask.array<chunksize=(12, 54, 61), meta=np.ndarray>
\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 154.41 kiB \n",
+ " 154.41 kiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (12, 54, 61) \n",
+ " (12, 54, 61) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 1 chunks in 10 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float32 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 61 \n",
+ " 54 \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
total_column_water
(time, latitude, longitude)
float32
dask.array<chunksize=(12, 54, 61), meta=np.ndarray>
long_name : Total column water short_name : tcw units : kg m**-2 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 154.41 kiB \n",
+ " 154.41 kiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (12, 54, 61) \n",
+ " (12, 54, 61) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 1 chunks in 10 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float32 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 61 \n",
+ " 54 \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
total_column_water_vapour
(time, latitude, longitude)
float32
dask.array<chunksize=(12, 54, 61), meta=np.ndarray>
long_name : Total column vertically-integrated water vapour short_name : tcwv standard_name : lwe_thickness_of_atmosphere_mass_content_of_water_vapor units : kg m**-2 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 154.41 kiB \n",
+ " 154.41 kiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (12, 54, 61) \n",
+ " (12, 54, 61) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 1 chunks in 10 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float32 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 61 \n",
+ " 54 \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
total_precipitation_12hr
(time, latitude, longitude)
float32
dask.array<chunksize=(12, 54, 61), meta=np.ndarray>
long_name : Total precipitation short_name : tp units : m \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 154.41 kiB \n",
+ " 154.41 kiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (12, 54, 61) \n",
+ " (12, 54, 61) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 1 chunks in 10 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float32 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 61 \n",
+ " 54 \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
total_precipitation_24hr
(time, latitude, longitude)
float32
dask.array<chunksize=(12, 54, 61), meta=np.ndarray>
long_name : Total precipitation short_name : tp units : m \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 154.41 kiB \n",
+ " 154.41 kiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (12, 54, 61) \n",
+ " (12, 54, 61) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 1 chunks in 10 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float32 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 61 \n",
+ " 54 \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
total_precipitation_6hr
(time, latitude, longitude)
float32
dask.array<chunksize=(12, 54, 61), meta=np.ndarray>
long_name : Total precipitation short_name : tp units : m \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 154.41 kiB \n",
+ " 154.41 kiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (12, 54, 61) \n",
+ " (12, 54, 61) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 1 chunks in 10 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float32 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 61 \n",
+ " 54 \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
u_component_of_wind
(time, latitude, longitude, level)
float32
dask.array<chunksize=(12, 54, 61, 13), meta=np.ndarray>
long_name : U component of wind short_name : u standard_name : eastward_wind units : m s**-1 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 1.96 MiB \n",
+ " 1.96 MiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (12, 54, 61, 13) \n",
+ " (12, 54, 61, 13) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 1 chunks in 11 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float32 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 12 \n",
+ " 1 \n",
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 13 \n",
+ " 61 \n",
+ " 54 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
v_component_of_wind
(time, latitude, longitude, level)
float32
dask.array<chunksize=(12, 54, 61, 13), meta=np.ndarray>
long_name : V component of wind short_name : v standard_name : northward_wind units : m s**-1 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 1.96 MiB \n",
+ " 1.96 MiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (12, 54, 61, 13) \n",
+ " (12, 54, 61, 13) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 1 chunks in 11 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float32 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 12 \n",
+ " 1 \n",
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 13 \n",
+ " 61 \n",
+ " 54 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
vertical_velocity
(time, latitude, longitude, level)
float32
dask.array<chunksize=(12, 54, 61, 13), meta=np.ndarray>
long_name : Vertical velocity short_name : w standard_name : lagrangian_tendency_of_air_pressure units : Pa s**-1 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 1.96 MiB \n",
+ " 1.96 MiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (12, 54, 61, 13) \n",
+ " (12, 54, 61, 13) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 1 chunks in 11 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float32 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 12 \n",
+ " 1 \n",
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 13 \n",
+ " 61 \n",
+ " 54 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
volumetric_soil_water_layer_1
(time, latitude, longitude)
float32
dask.array<chunksize=(12, 54, 61), meta=np.ndarray>
long_name : Volumetric soil water layer 1 short_name : swvl1 units : m**3 m**-3 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 154.41 kiB \n",
+ " 154.41 kiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (12, 54, 61) \n",
+ " (12, 54, 61) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 1 chunks in 10 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float32 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 61 \n",
+ " 54 \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
volumetric_soil_water_layer_2
(time, latitude, longitude)
float32
dask.array<chunksize=(12, 54, 61), meta=np.ndarray>
long_name : Volumetric soil water layer 2 short_name : swvl2 units : m**3 m**-3 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 154.41 kiB \n",
+ " 154.41 kiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (12, 54, 61) \n",
+ " (12, 54, 61) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 1 chunks in 10 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float32 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 61 \n",
+ " 54 \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
volumetric_soil_water_layer_3
(time, latitude, longitude)
float32
dask.array<chunksize=(12, 54, 61), meta=np.ndarray>
long_name : Volumetric soil water layer 3 short_name : swvl3 units : m**3 m**-3 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 154.41 kiB \n",
+ " 154.41 kiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (12, 54, 61) \n",
+ " (12, 54, 61) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 1 chunks in 10 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float32 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 61 \n",
+ " 54 \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
volumetric_soil_water_layer_4
(time, latitude, longitude)
float32
dask.array<chunksize=(12, 54, 61), meta=np.ndarray>
long_name : Volumetric soil water layer 4 short_name : swvl4 units : m**3 m**-3 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 154.41 kiB \n",
+ " 154.41 kiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (12, 54, 61) \n",
+ " (12, 54, 61) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 1 chunks in 10 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float32 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 61 \n",
+ " 54 \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
vorticity
(time, latitude, longitude, level)
float32
dask.array<chunksize=(12, 54, 61, 13), meta=np.ndarray>
\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 1.96 MiB \n",
+ " 1.96 MiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (12, 54, 61, 13) \n",
+ " (12, 54, 61, 13) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 1 chunks in 11 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float32 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 12 \n",
+ " 1 \n",
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 13 \n",
+ " 61 \n",
+ " 54 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
wind_speed
(time, latitude, longitude, level)
float32
dask.array<chunksize=(12, 54, 61, 13), meta=np.ndarray>
\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 1.96 MiB \n",
+ " 1.96 MiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (12, 54, 61, 13) \n",
+ " (12, 54, 61, 13) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 1 chunks in 11 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float32 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 12 \n",
+ " 1 \n",
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 13 \n",
+ " 61 \n",
+ " 54 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
angle_of_sub_gridscale_orography
(time, latitude, longitude)
float32
dask.array<chunksize=(12, 54, 61), meta=np.ndarray>
long_name : Angle of sub-gridscale orography short_name : anor units : radians \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 154.41 kiB \n",
+ " 154.41 kiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (12, 54, 61) \n",
+ " (12, 54, 61) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 1 chunks in 5 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float32 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 61 \n",
+ " 54 \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
anisotropy_of_sub_gridscale_orography
(time, latitude, longitude)
float32
dask.array<chunksize=(12, 54, 61), meta=np.ndarray>
long_name : Anisotropy of sub-gridscale orography short_name : isor units : ~ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 154.41 kiB \n",
+ " 154.41 kiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (12, 54, 61) \n",
+ " (12, 54, 61) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 1 chunks in 5 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float32 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 61 \n",
+ " 54 \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
geopotential_at_surface
(time, latitude, longitude)
float32
dask.array<chunksize=(12, 54, 61), meta=np.ndarray>
long_name : Geopotential short_name : z standard_name : geopotential units : m**2 s**-2 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 154.41 kiB \n",
+ " 154.41 kiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (12, 54, 61) \n",
+ " (12, 54, 61) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 1 chunks in 5 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float32 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 61 \n",
+ " 54 \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
high_vegetation_cover
(time, latitude, longitude)
float32
dask.array<chunksize=(12, 54, 61), meta=np.ndarray>
long_name : High vegetation cover short_name : cvh units : (0 - 1) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 154.41 kiB \n",
+ " 154.41 kiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (12, 54, 61) \n",
+ " (12, 54, 61) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 1 chunks in 5 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float32 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 61 \n",
+ " 54 \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
lake_cover
(time, latitude, longitude)
float32
dask.array<chunksize=(12, 54, 61), meta=np.ndarray>
long_name : Lake cover short_name : cl units : (0 - 1) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 154.41 kiB \n",
+ " 154.41 kiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (12, 54, 61) \n",
+ " (12, 54, 61) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 1 chunks in 5 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float32 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 61 \n",
+ " 54 \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
land_sea_mask
(time, latitude, longitude)
float32
dask.array<chunksize=(12, 54, 61), meta=np.ndarray>
long_name : Land-sea mask short_name : lsm standard_name : land_binary_mask units : (0 - 1) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 154.41 kiB \n",
+ " 154.41 kiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (12, 54, 61) \n",
+ " (12, 54, 61) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 1 chunks in 5 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float32 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 61 \n",
+ " 54 \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
low_vegetation_cover
(time, latitude, longitude)
float32
dask.array<chunksize=(12, 54, 61), meta=np.ndarray>
long_name : Low vegetation cover short_name : cvl units : (0 - 1) \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 154.41 kiB \n",
+ " 154.41 kiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (12, 54, 61) \n",
+ " (12, 54, 61) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 1 chunks in 5 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float32 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 61 \n",
+ " 54 \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
slope_of_sub_gridscale_orography
(time, latitude, longitude)
float32
dask.array<chunksize=(12, 54, 61), meta=np.ndarray>
long_name : Slope of sub-gridscale orography short_name : slor units : ~ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 154.41 kiB \n",
+ " 154.41 kiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (12, 54, 61) \n",
+ " (12, 54, 61) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 1 chunks in 5 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float32 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 61 \n",
+ " 54 \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
soil_type
(time, latitude, longitude)
float32
dask.array<chunksize=(12, 54, 61), meta=np.ndarray>
long_name : Soil type short_name : slt units : ~ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 154.41 kiB \n",
+ " 154.41 kiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (12, 54, 61) \n",
+ " (12, 54, 61) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 1 chunks in 5 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float32 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 61 \n",
+ " 54 \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
standard_deviation_of_filtered_subgrid_orography
(time, latitude, longitude)
float32
dask.array<chunksize=(12, 54, 61), meta=np.ndarray>
long_name : Standard deviation of filtered subgrid orography short_name : sdfor units : m \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 154.41 kiB \n",
+ " 154.41 kiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (12, 54, 61) \n",
+ " (12, 54, 61) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 1 chunks in 5 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float32 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 61 \n",
+ " 54 \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
standard_deviation_of_orography
(time, latitude, longitude)
float32
dask.array<chunksize=(12, 54, 61), meta=np.ndarray>
long_name : Standard deviation of orography short_name : sdor units : m \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 154.41 kiB \n",
+ " 154.41 kiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (12, 54, 61) \n",
+ " (12, 54, 61) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 1 chunks in 5 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float32 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 61 \n",
+ " 54 \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
type_of_high_vegetation
(time, latitude, longitude)
float32
dask.array<chunksize=(12, 54, 61), meta=np.ndarray>
long_name : Type of high vegetation short_name : tvh units : ~ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 154.41 kiB \n",
+ " 154.41 kiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (12, 54, 61) \n",
+ " (12, 54, 61) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 1 chunks in 5 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float32 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 61 \n",
+ " 54 \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
type_of_low_vegetation
(time, latitude, longitude)
float32
dask.array<chunksize=(12, 54, 61), meta=np.ndarray>
long_name : Type of low vegetation short_name : tvl units : ~ \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Array \n",
+ " Chunk \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " Bytes \n",
+ " 154.41 kiB \n",
+ " 154.41 kiB \n",
+ " \n",
+ " \n",
+ " \n",
+ " Shape \n",
+ " (12, 54, 61) \n",
+ " (12, 54, 61) \n",
+ " \n",
+ " \n",
+ " Dask graph \n",
+ " 1 chunks in 5 graph layers \n",
+ " \n",
+ " \n",
+ " Data type \n",
+ " float32 numpy.ndarray \n",
+ " \n",
+ " \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " 61 \n",
+ " 54 \n",
+ " 12 \n",
+ " \n",
+ " \n",
+ " \n",
+ "
Indexes: (4)
PandasIndex
PandasIndex(Index([-19.500000000000007, -18.0, -16.500000000000004,\n",
+ " -15.000000000000009, -13.5, -12.000000000000004,\n",
+ " -10.500000000000009, -9.0, -7.500000000000004,\n",
+ " -6.000000000000009, -4.5, -3.0000000000000044,\n",
+ " -1.5000000000000084, 0.0, 1.4999999999999958,\n",
+ " 2.9999999999999916, 4.5, 5.999999999999996,\n",
+ " 7.499999999999991, 9.0, 10.499999999999996,\n",
+ " 11.999999999999991, 13.5, 14.999999999999996,\n",
+ " 16.499999999999993, 18.0, 19.499999999999996,\n",
+ " 20.999999999999993, 22.5, 24.0,\n",
+ " 25.49999999999999, 26.999999999999996, 28.499999999999982,\n",
+ " 29.999999999999993, 31.499999999999993, 32.999999999999986,\n",
+ " 34.49999999999999, 36.0, 37.499999999999986,\n",
+ " 38.99999999999999, 40.5, 41.999999999999986,\n",
+ " 43.499999999999986, 44.99999999999999, 46.499999999999986,\n",
+ " 47.99999999999999, 49.5, 50.999999999999986,\n",
+ " 52.49999999999999, 54.00000000000001, 55.499999999999986,\n",
+ " 56.99999999999999, 58.5, 59.999999999999986],\n",
+ " dtype='float64', name='latitude')) PandasIndex
PandasIndex(Index([50, 100, 150, 200, 250, 300, 400, 500, 600, 700, 850, 925, 1000], dtype='int64', name='level')) PandasIndex
PandasIndex(Index([ 0.0, 1.5, 3.0,\n",
+ " 4.5, 6.0, 7.499999999999999,\n",
+ " 9.0, 10.499999999999998, 12.0,\n",
+ " 13.5, 14.999999999999998, 16.499999999999996,\n",
+ " 18.0, 19.5, 20.999999999999996,\n",
+ " 22.5, 24.0, 25.499999999999996,\n",
+ " 27.0, 28.5, 29.999999999999996,\n",
+ " 31.5, 32.99999999999999, 34.5,\n",
+ " 36.0, 37.49999999999999, 39.0,\n",
+ " 40.5, 41.99999999999999, 43.5,\n",
+ " 45.0, 46.49999999999999, 48.0,\n",
+ " 49.5, 50.99999999999999, 52.5,\n",
+ " 54.0, 55.49999999999999, 57.0,\n",
+ " 58.5, 59.99999999999999, 61.49999999999999,\n",
+ " 63.0, 64.5, 65.99999999999999,\n",
+ " 67.5, 69.0, 70.49999999999999,\n",
+ " 72.0, 73.5, 74.99999999999999,\n",
+ " 76.5, 78.0, 79.49999999999999,\n",
+ " 81.0, 82.5, 83.99999999999999,\n",
+ " 85.5, 87.0, 88.49999999999999,\n",
+ " 90.0],\n",
+ " dtype='float64', name='longitude')) PandasIndex
PandasIndex(DatetimeIndex(['2020-01-01', '2020-02-01', '2020-03-01', '2020-04-01',\n",
+ " '2020-05-01', '2020-06-01', '2020-07-01', '2020-08-01',\n",
+ " '2020-09-01', '2020-10-01', '2020-11-01', '2020-12-01'],\n",
+ " dtype='datetime64[ns]', name='time', freq='MS')) Attributes: (0)
"
+ ],
+ "text/plain": [
+ " Size: 38MB\n",
+ "Dimensions: (time: 12, longitude: 61,\n",
+ " latitude: 54, level: 13)\n",
+ "Coordinates:\n",
+ " * latitude (latitude) float64 432B ...\n",
+ " * level (level) int64 104B 50 ....\n",
+ " * longitude (longitude) float64 488B ...\n",
+ " * time (time) datetime64[ns] 96B ...\n",
+ "Data variables: (12/62)\n",
+ " 10m_u_component_of_wind (time, latitude, longitude) float32 158kB dask.array\n",
+ " 10m_v_component_of_wind (time, latitude, longitude) float32 158kB dask.array\n",
+ " 10m_wind_speed (time, latitude, longitude) float32 158kB dask.array\n",
+ " 2m_dewpoint_temperature (time, latitude, longitude) float32 158kB dask.array\n",
+ " 2m_temperature (time, latitude, longitude) float32 158kB dask.array\n",
+ " above_ground (time, latitude, longitude, level) float32 2MB dask.array\n",
+ " ... ...\n",
+ " slope_of_sub_gridscale_orography (time, latitude, longitude) float32 158kB dask.array\n",
+ " soil_type (time, latitude, longitude) float32 158kB dask.array\n",
+ " standard_deviation_of_filtered_subgrid_orography (time, latitude, longitude) float32 158kB dask.array\n",
+ " standard_deviation_of_orography (time, latitude, longitude) float32 158kB dask.array\n",
+ " type_of_high_vegetation (time, latitude, longitude) float32 158kB dask.array\n",
+ " type_of_low_vegetation (time, latitude, longitude) float32 158kB dask.array"
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "era5_data"
]
},
{
"cell_type": "code",
- "execution_count": null,
- "id": "3b9e2d45-2f97-40d3-9596-634bf031320a",
+ "execution_count": 9,
+ "id": "9b05cb01-a62f-4570-bf06-305d7e887b0a",
"metadata": {},
"outputs": [],
- "source": []
+ "source": [
+ "chl_data = load_climate_data(\n",
+ " cloud_path=\"gcs://nmfs_odp_nwfsc/CB/mind_the_chl_gap/IO.zarr\",\n",
+ " variable=None,\n",
+ " time_range=(\"2020-01-01\", \"2020-03-31\"),\n",
+ " resample_to=\"MS\",)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "id": "4d0835c4-fe09-472a-a0a5-055bac4a86ae",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "\n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ "
<xarray.Dataset> Size: 14MB\n",
+ "Dimensions: (time: 3, lat: 177, lon: 241)\n",
+ "Coordinates:\n",
+ " * lat (lat) float32 708B -12.0 -11.75 ... 31.75 32.0\n",
+ " * lon (lon) float32 964B 42.0 42.25 ... 101.8 102.0\n",
+ " * time (time) datetime64[ns] 24B 2020-01-01 ... 20...\n",
+ "Data variables: (12/27)\n",
+ " CHL (time, lat, lon) float32 512kB nan nan ... nan\n",
+ " CHL_cmes-cloud (time, lat, lon) float64 1MB 2.0 2.0 ... 2.0\n",
+ " CHL_cmes-gapfree (time, lat, lon) float32 512kB nan nan ... nan\n",
+ " CHL_cmes-level3 (time, lat, lon) float32 512kB nan nan ... nan\n",
+ " CHL_cmes_flags-gapfree (time, lat, lon) float32 512kB nan nan ... nan\n",
+ " CHL_cmes_flags-level3 (time, lat, lon) float32 512kB nan nan ... nan\n",
+ " ... ...\n",
+ " v_wind (time, lat, lon) float32 512kB -3.804 ... 0...\n",
+ " vg_curr (time, lat, lon) float32 512kB -0.1609 ... nan\n",
+ " wind_dir (time, lat, lon) float32 512kB -65.01 ... 6...\n",
+ " wind_speed (time, lat, lon) float32 512kB 4.731 ... 0....\n",
+ " CHL_cmes-land (time, lat, lon) uint8 128kB 2 2 2 2 ... 2 2 2\n",
+ " topo (time, lat, lon) float64 1MB -2.658e+03 ......\n",
+ "Attributes: (12/92)\n",
+ " Conventions: CF-1.8, ACDD-1.3\n",
+ " DPM_reference: GC-UD-ACRI-PUG\n",
+ " IODD_reference: GC-UD-ACRI-PUG\n",
+ " acknowledgement: The Licensees will ensure that original ...\n",
+ " citation: The Licensees will ensure that original ...\n",
+ " cmems_product_id: OCEANCOLOUR_GLO_BGC_L3_MY_009_103\n",
+ " ... ...\n",
+ " time_coverage_end: 2024-04-18T02:58:23Z\n",
+ " time_coverage_resolution: P1D\n",
+ " time_coverage_start: 2024-04-16T21:12:05Z\n",
+ " title: cmems_obs-oc_glo_bgc-plankton_my_l3-mult...\n",
+ " westernmost_longitude: -180.0\n",
+ " westernmost_valid_longitude: -180.0 Dimensions:
Coordinates: (3)
lat
(lat)
float32
-12.0 -11.75 -11.5 ... 31.75 32.0
long_name : latitude standard_name : latitude units : degrees_north array([-12. , -11.75, -11.5 , -11.25, -11. , -10.75, -10.5 , -10.25, -10. ,\n",
+ " -9.75, -9.5 , -9.25, -9. , -8.75, -8.5 , -8.25, -8. , -7.75,\n",
+ " -7.5 , -7.25, -7. , -6.75, -6.5 , -6.25, -6. , -5.75, -5.5 ,\n",
+ " -5.25, -5. , -4.75, -4.5 , -4.25, -4. , -3.75, -3.5 , -3.25,\n",
+ " -3. , -2.75, -2.5 , -2.25, -2. , -1.75, -1.5 , -1.25, -1. ,\n",
+ " -0.75, -0.5 , -0.25, 0. , 0.25, 0.5 , 0.75, 1. , 1.25,\n",
+ " 1.5 , 1.75, 2. , 2.25, 2.5 , 2.75, 3. , 3.25, 3.5 ,\n",
+ " 3.75, 4. , 4.25, 4.5 , 4.75, 5. , 5.25, 5.5 , 5.75,\n",
+ " 6. , 6.25, 6.5 , 6.75, 7. , 7.25, 7.5 , 7.75, 8. ,\n",
+ " 8.25, 8.5 , 8.75, 9. , 9.25, 9.5 , 9.75, 10. , 10.25,\n",
+ " 10.5 , 10.75, 11. , 11.25, 11.5 , 11.75, 12. , 12.25, 12.5 ,\n",
+ " 12.75, 13. , 13.25, 13.5 , 13.75, 14. , 14.25, 14.5 , 14.75,\n",
+ " 15. , 15.25, 15.5 , 15.75, 16. , 16.25, 16.5 , 16.75, 17. ,\n",
+ " 17.25, 17.5 , 17.75, 18. , 18.25, 18.5 , 18.75, 19. , 19.25,\n",
+ " 19.5 , 19.75, 20. , 20.25, 20.5 , 20.75, 21. , 21.25, 21.5 ,\n",
+ " 21.75, 22. , 22.25, 22.5 , 22.75, 23. , 23.25, 23.5 , 23.75,\n",
+ " 24. , 24.25, 24.5 , 24.75, 25. , 25.25, 25.5 , 25.75, 26. ,\n",
+ " 26.25, 26.5 , 26.75, 27. , 27.25, 27.5 , 27.75, 28. , 28.25,\n",
+ " 28.5 , 28.75, 29. , 29.25, 29.5 , 29.75, 30. , 30.25, 30.5 ,\n",
+ " 30.75, 31. , 31.25, 31.5 , 31.75, 32. ], dtype=float32) lon
(lon)
float32
42.0 42.25 42.5 ... 101.8 102.0
long_name : longitude standard_name : longitude units : degrees_east array([ 42. , 42.25, 42.5 , ..., 101.5 , 101.75, 102. ],\n",
+ " shape=(241,), dtype=float32) time
(time)
datetime64[ns]
2020-01-01 2020-02-01 2020-03-01
axis : T comment : Data is averaged over the day long_name : time centered on the day standard_name : time array(['2020-01-01T00:00:00.000000000', '2020-02-01T00:00:00.000000000',\n",
+ " '2020-03-01T00:00:00.000000000'], dtype='datetime64[ns]') Data variables: (27)
CHL
(time, lat, lon)
float32
nan nan nan nan ... nan nan nan nan
_ChunkSizes : [1, 256, 256] ancillary_variables : flags CHL_uncertainty coverage_content_type : modelResult input_files_reprocessings : Processors versions: MODIS R2022.0NRT/VIIRSN R2022.0NRT/OLCIA 07.02/VIIRSJ1 R2022.0NRT/OLCIB 07.02 long_name : Chlorophyll-a concentration - Mean of the binned pixels standard_name : mass_concentration_of_chlorophyll_a_in_sea_water type : surface units : milligram m-3 valid_max : 1000.0 valid_min : 0.0 array([[[ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [0.08963673, 0.09668725, 0.10521862, ..., 0.07735077,\n",
+ " 0.07596114, nan],\n",
+ " [0.08123095, 0.0961177 , 0.10070178, ..., 0.07694263,\n",
+ " 0.07438752, nan],\n",
+ " ...,\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan]],\n",
+ "\n",
+ " [[ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [0.10686646, 0.10673089, 0.10706177, ..., 0.07782888,\n",
+ " 0.08068376, nan],\n",
+ " [0.10742011, 0.10921946, 0.10691211, ..., 0.07551343,\n",
+ " 0.08343678, nan],\n",
+ "...\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan]],\n",
+ "\n",
+ " [[ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [0.09967695, 0.10433189, 0.10763698, ..., 0.08846588,\n",
+ " 0.08986784, nan],\n",
+ " [0.09645882, 0.10206723, 0.10684799, ..., 0.08677667,\n",
+ " 0.08885781, nan],\n",
+ " ...,\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan]]], shape=(3, 177, 241), dtype=float32) CHL_cmes-cloud
(time, lat, lon)
float64
2.0 2.0 2.0 2.0 ... 2.0 2.0 2.0 2.0
title : flag for CHL-gapfree and CHL-level3. 0 is land; 1 is cloud; 0 is water array([[[2. , 2. , 2. , ..., 2. ,\n",
+ " 2. , 2. ],\n",
+ " [2. , 0.61290323, 0.67741935, ..., 0.35483871,\n",
+ " 0.41935484, 2. ],\n",
+ " [2. , 0.64516129, 0.67741935, ..., 0.32258065,\n",
+ " 0.35483871, 2. ],\n",
+ " ...,\n",
+ " [2. , 2. , 2. , ..., 2. ,\n",
+ " 2. , 2. ],\n",
+ " [2. , 2. , 2. , ..., 2. ,\n",
+ " 2. , 2. ],\n",
+ " [2. , 2. , 2. , ..., 2. ,\n",
+ " 2. , 2. ]],\n",
+ "\n",
+ " [[2. , 2. , 2. , ..., 2. ,\n",
+ " 2. , 2. ],\n",
+ " [2. , 0.34482759, 0.37931034, ..., 0.48275862,\n",
+ " 0.44827586, 2. ],\n",
+ " [2. , 0.37931034, 0.34482759, ..., 0.51724138,\n",
+ " 0.48275862, 2. ],\n",
+ "...\n",
+ " [2. , 2. , 2. , ..., 2. ,\n",
+ " 2. , 2. ],\n",
+ " [2. , 2. , 2. , ..., 2. ,\n",
+ " 2. , 2. ],\n",
+ " [2. , 2. , 2. , ..., 2. ,\n",
+ " 2. , 2. ]],\n",
+ "\n",
+ " [[2. , 2. , 2. , ..., 2. ,\n",
+ " 2. , 2. ],\n",
+ " [2. , 0.35483871, 0.38709677, ..., 0.58064516,\n",
+ " 0.5483871 , 2. ],\n",
+ " [2. , 0.25806452, 0.25806452, ..., 0.61290323,\n",
+ " 0.5483871 , 2. ],\n",
+ " ...,\n",
+ " [2. , 2. , 2. , ..., 2. ,\n",
+ " 2. , 2. ],\n",
+ " [2. , 2. , 2. , ..., 2. ,\n",
+ " 2. , 2. ],\n",
+ " [2. , 2. , 2. , ..., 2. ,\n",
+ " 2. , 2. ]]], shape=(3, 177, 241)) CHL_cmes-gapfree
(time, lat, lon)
float32
nan nan nan nan ... nan nan nan nan
Conventions : CF-1.8, ACDD-1.3 DPM_reference : GC-UD-ACRI-PUG IODD_reference : GC-UD-ACRI-PUG acknowledgement : The Licensees will ensure that original CMEMS products - or value added products or derivative works developed from CMEMS Products including publications and pictures - shall credit CMEMS by explicitly making mention of the originator (CMEMS) in the following manner: <Generated using CMEMS Products, production centre ACRI-ST> ancillary_variables : flags CHL_uncertainty citation : The Licensees will ensure that original CMEMS products - or value added products or derivative works developed from CMEMS Products including publications and pictures - shall credit CMEMS by explicitly making mention of the originator (CMEMS) in the following manner: <Generated using CMEMS Products, production centre ACRI-ST> cmems_product_id : OCEANCOLOUR_GLO_BGC_L4_MY_009_104 cmems_production_unit : OC-ACRI-NICE-FR comment : average contact : servicedesk.cmems@acri-st.fr copernicusmarine_version : 1.3.1 coverage_content_type : modelResult creation_date : 2023-11-29 UTC creation_time : 01:06:50 UTC creator_email : servicedesk.cmems@acri-st.fr creator_name : ACRI creator_url : http://marine.copernicus.eu date_created : 2023-11-29T01:06:50Z distribution_statement : See CMEMS Data License duration_time : PT146878S earth_radius : 6378.137 easternmost_longitude : 180.0 easternmost_valid_longitude : 180.00001525878906 file_quality_index : 0 geospatial_bounds : POLYGON ((90.000000 -180.000000, 90.000000 180.000000, -90.000000 180.000000, -90.000000 -180.000000, 90.000000 -180.000000)) geospatial_bounds_crs : EPSG:4326 geospatial_bounds_vertical_crs : EPSG:5829 geospatial_lat_max : 89.97916412353516 geospatial_lat_min : -89.97917175292969 geospatial_lon_max : 179.9791717529297 geospatial_lon_min : -179.9791717529297 geospatial_vertical_max : 0 geospatial_vertical_min : 0 geospatial_vertical_positive : up grid_mapping : Equirectangular grid_resolution : 4.638312339782715 history : Created using software developed at ACRI-ST id : 20231121_cmems_obs-oc_glo_bgc-plankton_myint_l4-gapfree-multi-4km_P1D input_files_reprocessings : Processors versions: MODIS R2022.0NRT/VIIRSN R2022.0.1NRT/OLCIA 07.02/VIIRSJ1 R2022.0NRT/OLCIB 07.02 institution : ACRI keywords : EARTH SCIENCE > OCEANS > OCEAN CHEMISTRY > CHLOROPHYLL keywords_vocabulary : NASA Global Change Master Directory (GCMD) Science Keywords lat_step : 0.0416666679084301 license : See CMEMS Data License lon_step : 0.0416666679084301 long_name : Chlorophyll-a concentration - Mean of the binned pixels naming_authority : CMEMS nb_bins : 37324800 nb_equ_bins : 8640 nb_grid_bins : 37324800 nb_valid_bins : 19169208 netcdf_version_id : 4.3.3.1 of Jul 8 2016 18:15:50 $ northernmost_latitude : 90.0 northernmost_valid_latitude : 58.08333206176758 overall_quality : mode=myint parameter : Chlorophyll-a concentration parameter_code : CHL pct_bins : 100.0 pct_valid_bins : 51.357831790123456 period_duration_day : P1D period_end_day : 20231121 period_start_day : 20231121 platform : Aqua,Suomi-NPP,Sentinel-3a,JPSS-1 (NOAA-20),Sentinel-3b processing_level : L4 product_level : 4 product_name : 20231121_cmems_obs-oc_glo_bgc-plankton_myint_l4-gapfree-multi-4km_P1D product_type : day project : CMEMS publication : Gohin, F., Druon, J. N., Lampert, L. (2002). A five channel chlorophyll concentration algorithm applied to SeaWiFS data processed by SeaDAS in coastal waters. International journal of remote sensing, 23(8), 1639-1661 + Hu, C., Lee, Z., Franz, B. (2012). Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference. Journal of Geophysical Research, 117(C1). doi: 10.1029/2011jc007395 publisher_email : servicedesk.cmems@mercator-ocean.eu publisher_name : CMEMS publisher_url : http://marine.copernicus.eu references : http://www.globcolour.info GlobColour has been originally funded by ESA with data from ESA, NASA, NOAA and GeoEye. This version has received funding from the European Community s Seventh Framework Programme ([FP7/2007-2013]) under grant agreement n. 282723 [OSS2015 project]. registration : 5 sensor : Moderate Resolution Imaging Spectroradiometer,Visible Infrared Imaging Radiometer Suite,Ocean and Land Colour Instrument sensor_name : MODISA,VIIRSN,OLCIa,VIIRSJ1,OLCIb sensor_name_list : MOD,VIR,OLA,VJ1,OLB site_name : GLO software_name : globcolour_l3_reproject software_version : 2022.2 source : surface observation southernmost_latitude : -90.0 southernmost_valid_latitude : -78.58333587646484 standard_name : mass_concentration_of_chlorophyll_a_in_sea_water standard_name_vocabulary : NetCDF Climate and Forecast (CF) Metadata Convention start_date : 2023-11-20 UTC start_time : 15:24:55 UTC stop_date : 2023-11-22 UTC stop_time : 08:12:52 UTC summary : CMEMS product: cmems_obs-oc_glo_bgc-plankton_my_l4-gapfree-multi-4km_P1D, generated by ACRI-ST time_coverage_duration : PT146878S time_coverage_end : 2023-11-22T08:12:52Z time_coverage_resolution : P1D time_coverage_start : 2023-11-20T15:24:55Z title : cmems_obs-oc_glo_bgc-plankton_my_l4-gapfree-multi-4km_P1D type : surface units : milligram m-3 valid_max : 1000.0 valid_min : 0.0 westernmost_longitude : -180.0 westernmost_valid_longitude : -180.0 array([[[ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, 0.09677278, 0.10406224, ..., 0.07833828,\n",
+ " 0.07732321, nan],\n",
+ " [ nan, 0.09570915, 0.098921 , ..., 0.07837009,\n",
+ " 0.07524563, nan],\n",
+ " ...,\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan]],\n",
+ "\n",
+ " [[ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, 0.11005849, 0.10861778, ..., 0.07888763,\n",
+ " 0.08150112, nan],\n",
+ " [ nan, 0.10940601, 0.1066048 , ..., 0.07697992,\n",
+ " 0.08235319, nan],\n",
+ "...\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan]],\n",
+ "\n",
+ " [[ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, 0.10377627, 0.10725067, ..., 0.08929881,\n",
+ " 0.09173717, nan],\n",
+ " [ nan, 0.10172307, 0.10663458, ..., 0.08804075,\n",
+ " 0.08947676, nan],\n",
+ " ...,\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan]]], shape=(3, 177, 241), dtype=float32) CHL_cmes-level3
(time, lat, lon)
float32
nan nan nan nan ... nan nan nan nan
Conventions : CF-1.8, ACDD-1.3 DPM_reference : GC-UD-ACRI-PUG IODD_reference : GC-UD-ACRI-PUG acknowledgement : The Licensees will ensure that original CMEMS products - or value added products or derivative works developed from CMEMS Products including publications and pictures - shall credit CMEMS by explicitly making mention of the originator (CMEMS) in the following manner: <Generated using CMEMS Products, production centre ACRI-ST> ancillary_variables : flags CHL_uncertainty citation : The Licensees will ensure that original CMEMS products - or value added products or derivative works developed from CMEMS Products including publications and pictures - shall credit CMEMS by explicitly making mention of the originator (CMEMS) in the following manner: <Generated using CMEMS Products, production centre ACRI-ST> cmems_product_id : OCEANCOLOUR_GLO_BGC_L3_MY_009_103 cmems_production_unit : OC-ACRI-NICE-FR comment : average contact : servicedesk.cmems@acri-st.fr copernicusmarine_version : 1.3.1 coverage_content_type : modelResult creation_date : 2024-04-25 UTC creation_time : 00:47:33 UTC creator_email : servicedesk.cmems@acri-st.fr creator_name : ACRI creator_url : http://marine.copernicus.eu date_created : 2024-04-25T00:47:33Z distribution_statement : See CMEMS Data License duration_time : PT107179S earth_radius : 6378.137 easternmost_longitude : 180.0 easternmost_valid_longitude : 180.00001525878906 file_quality_index : 0 geospatial_bounds : POLYGON ((90.000000 -180.000000, 90.000000 180.000000, -90.000000 180.000000, -90.000000 -180.000000, 90.000000 -180.000000)) geospatial_bounds_crs : EPSG:4326 geospatial_bounds_vertical_crs : EPSG:5829 geospatial_lat_max : 89.97916412353516 geospatial_lat_min : -89.97917175292969 geospatial_lon_max : 179.9791717529297 geospatial_lon_min : -179.9791717529297 geospatial_vertical_max : 0 geospatial_vertical_min : 0 geospatial_vertical_positive : up grid_mapping : Equirectangular grid_resolution : 4.638312339782715 history : Created using software developed at ACRI-ST id : 20240417_cmems_obs-oc_glo_bgc-plankton_myint_l3-multi-4km_P1D input_files_reprocessings : Processors versions: MODIS R2022.0NRT/VIIRSN R2022.0.1NRT/OLCIA 07.04/VIIRSJ1 R2022.0NRT/OLCIB 07.04 institution : ACRI keywords : EARTH SCIENCE > OCEANS > OCEAN CHEMISTRY > CHLOROPHYLL, EARTH SCIENCE > BIOLOGICAL CLASSIFICATION > PROTISTS > PLANKTON > PHYTOPLANKTON keywords_vocabulary : NASA Global Change Master Directory (GCMD) Science Keywords lat_step : 0.0416666679084301 license : See CMEMS Data License lon_step : 0.0416666679084301 long_name : Chlorophyll-a concentration - Mean of the binned pixels naming_authority : CMEMS nb_bins : 37324800 nb_equ_bins : 8640 nb_grid_bins : 37324800 nb_valid_bins : 9704694 netcdf_version_id : 4.3.3.1 of Jul 8 2016 18:15:50 $ northernmost_latitude : 90.0 northernmost_valid_latitude : 82.70833587646484 overall_quality : mode=myint parameter : Chlorophyll-a concentration,Phytoplankton Functional Types parameter_code : CHL,DIATO,DINO,HAPTO,GREEN,PROKAR,PROCHLO,MICRO,NANO,PICO pct_bins : 100.0 pct_valid_bins : 26.000659079218106 period_duration_day : P1D period_end_day : 20240417 period_start_day : 20240417 platform : Aqua,Suomi-NPP,Sentinel-3a,JPSS-1 (NOAA-20),Sentinel-3b processing_level : L3 product_level : 3 product_name : 20240417_cmems_obs-oc_glo_bgc-plankton_myint_l3-multi-4km_P1D product_type : day project : CMEMS publication : Gohin, F., Druon, J. N., Lampert, L. (2002). A five channel chlorophyll concentration algorithm applied to SeaWiFS data processed by SeaDAS in coastal waters. International journal of remote sensing, 23(8), 1639-1661 + Hu, C., Lee, Z., Franz, B. (2012). Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference. Journal of Geophysical Research, 117(C1). doi: 10.1029/2011jc007395 + Xi H, Losa S N, Mangin A, Garnesson P, Bretagnon M, Demaria J, Soppa M A, Hembise Fanton d Andon O, Bracher A (2021) Global chlorophyll a concentrations of phytoplankton functional types with detailed uncertainty assessment using multi-sensor ocean color and sea surface temperature satellite products, JGR, in review. publisher_email : servicedesk.cmems@mercator-ocean.eu publisher_name : CMEMS publisher_url : http://marine.copernicus.eu references : http://www.globcolour.info GlobColour has been originally funded by ESA with data from ESA, NASA, NOAA and GeoEye. This version has received funding from the European Community s Seventh Framework Programme ([FP7/2007-2013]) under grant agreement n. 282723 [OSS2015 project]. registration : 5 sensor : Moderate Resolution Imaging Spectroradiometer,Visible Infrared Imaging Radiometer Suite,Ocean and Land Colour Instrument sensor_name : MODISA,VIIRSN,OLCIa,VIIRSJ1,OLCIb sensor_name_list : MOD,VIR,OLA,VJ1,OLB site_name : GLO software_name : globcolour_l3_reproject software_version : 2022.2 source : surface observation southernmost_latitude : -90.0 southernmost_valid_latitude : -66.33333587646484 standard_name : mass_concentration_of_chlorophyll_a_in_sea_water standard_name_vocabulary : NetCDF Climate and Forecast (CF) Metadata Convention start_date : 2024-04-16 UTC start_time : 21:12:05 UTC stop_date : 2024-04-18 UTC stop_time : 02:58:23 UTC summary : CMEMS product: cmems_obs-oc_glo_bgc-plankton_my_l3-multi-4km_P1D, generated by ACRI-ST time_coverage_duration : PT107179S time_coverage_end : 2024-04-18T02:58:23Z time_coverage_resolution : P1D time_coverage_start : 2024-04-16T21:12:05Z title : cmems_obs-oc_glo_bgc-plankton_my_l3-multi-4km_P1D type : surface units : milligram m-3 valid_max : 1000.0 valid_min : 0.0 westernmost_longitude : -180.0 westernmost_valid_longitude : -180.0 array([[[ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, 0.08437974, 0.09217595, ..., 0.08256184,\n",
+ " 0.07814349, nan],\n",
+ " [ nan, 0.09088024, 0.09069466, ..., 0.08125658,\n",
+ " 0.07624435, nan],\n",
+ " ...,\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan]],\n",
+ "\n",
+ " [[ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, 0.10991713, 0.10753035, ..., 0.08344243,\n",
+ " 0.08289301, nan],\n",
+ " [ nan, 0.11200542, 0.10962465, ..., 0.07948913,\n",
+ " 0.08262773, nan],\n",
+ "...\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan]],\n",
+ "\n",
+ " [[ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, 0.10824063, 0.11352411, ..., 0.08961776,\n",
+ " 0.09411339, nan],\n",
+ " [ nan, 0.10615346, 0.10961726, ..., 0.08797679,\n",
+ " 0.09373271, nan],\n",
+ " ...,\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan]]], shape=(3, 177, 241), dtype=float32) CHL_cmes_flags-gapfree
(time, lat, lon)
float32
nan nan nan nan ... nan nan nan nan
Conventions : CF-1.8, ACDD-1.3 DPM_reference : GC-UD-ACRI-PUG IODD_reference : GC-UD-ACRI-PUG acknowledgement : The Licensees will ensure that original CMEMS products - or value added products or derivative works developed from CMEMS Products including publications and pictures - shall credit CMEMS by explicitly making mention of the originator (CMEMS) in the following manner: <Generated using CMEMS Products, production centre ACRI-ST> citation : The Licensees will ensure that original CMEMS products - or value added products or derivative works developed from CMEMS Products including publications and pictures - shall credit CMEMS by explicitly making mention of the originator (CMEMS) in the following manner: <Generated using CMEMS Products, production centre ACRI-ST> cmems_product_id : OCEANCOLOUR_GLO_BGC_L4_MY_009_104 cmems_production_unit : OC-ACRI-NICE-FR comment : average contact : servicedesk.cmems@acri-st.fr copernicusmarine_version : 1.3.1 coverage_content_type : auxiliaryInformation creation_date : 2023-11-29 UTC creation_time : 01:06:50 UTC creator_email : servicedesk.cmems@acri-st.fr creator_name : ACRI creator_url : http://marine.copernicus.eu date_created : 2023-11-29T01:06:50Z distribution_statement : See CMEMS Data License duration_time : PT146878S earth_radius : 6378.137 easternmost_longitude : 180.0 easternmost_valid_longitude : 180.00001525878906 file_quality_index : 0 flag_masks : [1, 2] flag_meanings : LAND INTERPOLATED geospatial_bounds : POLYGON ((90.000000 -180.000000, 90.000000 180.000000, -90.000000 180.000000, -90.000000 -180.000000, 90.000000 -180.000000)) geospatial_bounds_crs : EPSG:4326 geospatial_bounds_vertical_crs : EPSG:5829 geospatial_lat_max : 89.97916412353516 geospatial_lat_min : -89.97917175292969 geospatial_lon_max : 179.9791717529297 geospatial_lon_min : -179.9791717529297 geospatial_vertical_max : 0 geospatial_vertical_min : 0 geospatial_vertical_positive : up grid_mapping : Equirectangular grid_resolution : 4.638312339782715 history : Created using software developed at ACRI-ST id : 20231121_cmems_obs-oc_glo_bgc-plankton_myint_l4-gapfree-multi-4km_P1D institution : ACRI keywords : EARTH SCIENCE > OCEANS > OCEAN CHEMISTRY > CHLOROPHYLL keywords_vocabulary : NASA Global Change Master Directory (GCMD) Science Keywords lat_step : 0.0416666679084301 license : See CMEMS Data License lon_step : 0.0416666679084301 long_name : Flags naming_authority : CMEMS nb_bins : 37324800 nb_equ_bins : 8640 nb_grid_bins : 37324800 nb_valid_bins : 19169208 netcdf_version_id : 4.3.3.1 of Jul 8 2016 18:15:50 $ northernmost_latitude : 90.0 northernmost_valid_latitude : 58.08333206176758 overall_quality : mode=myint parameter : Chlorophyll-a concentration parameter_code : CHL pct_bins : 100.0 pct_valid_bins : 51.357831790123456 period_duration_day : P1D period_end_day : 20231121 period_start_day : 20231121 platform : Aqua,Suomi-NPP,Sentinel-3a,JPSS-1 (NOAA-20),Sentinel-3b processing_level : L4 product_level : 4 product_name : 20231121_cmems_obs-oc_glo_bgc-plankton_myint_l4-gapfree-multi-4km_P1D product_type : day project : CMEMS publication : Gohin, F., Druon, J. N., Lampert, L. (2002). A five channel chlorophyll concentration algorithm applied to SeaWiFS data processed by SeaDAS in coastal waters. International journal of remote sensing, 23(8), 1639-1661 + Hu, C., Lee, Z., Franz, B. (2012). Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference. Journal of Geophysical Research, 117(C1). doi: 10.1029/2011jc007395 publisher_email : servicedesk.cmems@mercator-ocean.eu publisher_name : CMEMS publisher_url : http://marine.copernicus.eu references : http://www.globcolour.info GlobColour has been originally funded by ESA with data from ESA, NASA, NOAA and GeoEye. This version has received funding from the European Community s Seventh Framework Programme ([FP7/2007-2013]) under grant agreement n. 282723 [OSS2015 project]. registration : 5 sensor : Moderate Resolution Imaging Spectroradiometer,Visible Infrared Imaging Radiometer Suite,Ocean and Land Colour Instrument sensor_name : MODISA,VIIRSN,OLCIa,VIIRSJ1,OLCIb sensor_name_list : MOD,VIR,OLA,VJ1,OLB site_name : GLO software_name : globcolour_l3_reproject software_version : 2022.2 source : surface observation southernmost_latitude : -90.0 southernmost_valid_latitude : -78.58333587646484 standard_name : status_flag standard_name_vocabulary : NetCDF Climate and Forecast (CF) Metadata Convention start_date : 2023-11-20 UTC start_time : 15:24:55 UTC stop_date : 2023-11-22 UTC stop_time : 08:12:52 UTC summary : CMEMS product: cmems_obs-oc_glo_bgc-plankton_my_l4-gapfree-multi-4km_P1D, generated by ACRI-ST time_coverage_duration : PT146878S time_coverage_end : 2023-11-22T08:12:52Z time_coverage_resolution : P1D time_coverage_start : 2023-11-20T15:24:55Z title : cmems_obs-oc_glo_bgc-plankton_my_l4-gapfree-multi-4km_P1D valid_max : 3 valid_min : 0 westernmost_longitude : -180.0 westernmost_valid_longitude : -180.0 array([[[ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, 1.2258065 , 1.3064498 , ..., 0.6129047 ,\n",
+ " 0.7096826 , nan],\n",
+ " [ nan, 1.1290094 , 1.2096652 , ..., 0.5967709 ,\n",
+ " 0.6612936 , nan],\n",
+ " ...,\n",
+ " [ nan, 1. , 1. , ..., 1. ,\n",
+ " 1. , nan],\n",
+ " [ nan, 1. , 1. , ..., 1. ,\n",
+ " 1. , nan],\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan]],\n",
+ "\n",
+ " [[ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, 0.6896552 , 0.6896457 , ..., 0.879325 ,\n",
+ " 0.84483665, nan],\n",
+ " [ nan, 0.62067467, 0.6034597 , ..., 0.79308844,\n",
+ " 0.81036496, nan],\n",
+ "...\n",
+ " [ nan, 1. , 1. , ..., 1. ,\n",
+ " 1. , nan],\n",
+ " [ nan, 1. , 1. , ..., 1. ,\n",
+ " 1. , nan],\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan]],\n",
+ "\n",
+ " [[ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, 0.64516646, 0.596762 , ..., 1. ,\n",
+ " 0.9677589 , nan],\n",
+ " [ nan, 0.40322766, 0.43548572, ..., 1.0806551 ,\n",
+ " 1. , nan],\n",
+ " ...,\n",
+ " [ nan, 1. , 1. , ..., 1. ,\n",
+ " 1. , nan],\n",
+ " [ nan, 1. , 1. , ..., 1. ,\n",
+ " 1. , nan],\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan]]], shape=(3, 177, 241), dtype=float32) CHL_cmes_flags-level3
(time, lat, lon)
float32
nan nan nan nan ... nan nan nan nan
Conventions : CF-1.8, ACDD-1.3 DPM_reference : GC-UD-ACRI-PUG IODD_reference : GC-UD-ACRI-PUG acknowledgement : The Licensees will ensure that original CMEMS products - or value added products or derivative works developed from CMEMS Products including publications and pictures - shall credit CMEMS by explicitly making mention of the originator (CMEMS) in the following manner: <Generated using CMEMS Products, production centre ACRI-ST> citation : The Licensees will ensure that original CMEMS products - or value added products or derivative works developed from CMEMS Products including publications and pictures - shall credit CMEMS by explicitly making mention of the originator (CMEMS) in the following manner: <Generated using CMEMS Products, production centre ACRI-ST> cmems_product_id : OCEANCOLOUR_GLO_BGC_L3_MY_009_103 cmems_production_unit : OC-ACRI-NICE-FR comment : average contact : servicedesk.cmems@acri-st.fr copernicusmarine_version : 1.3.1 coverage_content_type : auxiliaryInformation creation_date : 2024-04-25 UTC creation_time : 00:47:33 UTC creator_email : servicedesk.cmems@acri-st.fr creator_name : ACRI creator_url : http://marine.copernicus.eu date_created : 2024-04-25T00:47:33Z distribution_statement : See CMEMS Data License duration_time : PT107179S earth_radius : 6378.137 easternmost_longitude : 180.0 easternmost_valid_longitude : 180.00001525878906 file_quality_index : 0 flag_masks : 1 flag_meanings : LAND geospatial_bounds : POLYGON ((90.000000 -180.000000, 90.000000 180.000000, -90.000000 180.000000, -90.000000 -180.000000, 90.000000 -180.000000)) geospatial_bounds_crs : EPSG:4326 geospatial_bounds_vertical_crs : EPSG:5829 geospatial_lat_max : 89.97916412353516 geospatial_lat_min : -89.97917175292969 geospatial_lon_max : 179.9791717529297 geospatial_lon_min : -179.9791717529297 geospatial_vertical_max : 0 geospatial_vertical_min : 0 geospatial_vertical_positive : up grid_mapping : Equirectangular grid_resolution : 4.638312339782715 history : Created using software developed at ACRI-ST id : 20240417_cmems_obs-oc_glo_bgc-plankton_myint_l3-multi-4km_P1D institution : ACRI keywords : EARTH SCIENCE > OCEANS > OCEAN CHEMISTRY > CHLOROPHYLL, EARTH SCIENCE > BIOLOGICAL CLASSIFICATION > PROTISTS > PLANKTON > PHYTOPLANKTON keywords_vocabulary : NASA Global Change Master Directory (GCMD) Science Keywords lat_step : 0.0416666679084301 license : See CMEMS Data License lon_step : 0.0416666679084301 long_name : Flags naming_authority : CMEMS nb_bins : 37324800 nb_equ_bins : 8640 nb_grid_bins : 37324800 nb_valid_bins : 9704694 netcdf_version_id : 4.3.3.1 of Jul 8 2016 18:15:50 $ northernmost_latitude : 90.0 northernmost_valid_latitude : 82.70833587646484 overall_quality : mode=myint parameter : Chlorophyll-a concentration,Phytoplankton Functional Types parameter_code : CHL,DIATO,DINO,HAPTO,GREEN,PROKAR,PROCHLO,MICRO,NANO,PICO pct_bins : 100.0 pct_valid_bins : 26.000659079218106 period_duration_day : P1D period_end_day : 20240417 period_start_day : 20240417 platform : Aqua,Suomi-NPP,Sentinel-3a,JPSS-1 (NOAA-20),Sentinel-3b processing_level : L3 product_level : 3 product_name : 20240417_cmems_obs-oc_glo_bgc-plankton_myint_l3-multi-4km_P1D product_type : day project : CMEMS publication : Gohin, F., Druon, J. N., Lampert, L. (2002). A five channel chlorophyll concentration algorithm applied to SeaWiFS data processed by SeaDAS in coastal waters. International journal of remote sensing, 23(8), 1639-1661 + Hu, C., Lee, Z., Franz, B. (2012). Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference. Journal of Geophysical Research, 117(C1). doi: 10.1029/2011jc007395 + Xi H, Losa S N, Mangin A, Garnesson P, Bretagnon M, Demaria J, Soppa M A, Hembise Fanton d Andon O, Bracher A (2021) Global chlorophyll a concentrations of phytoplankton functional types with detailed uncertainty assessment using multi-sensor ocean color and sea surface temperature satellite products, JGR, in review. publisher_email : servicedesk.cmems@mercator-ocean.eu publisher_name : CMEMS publisher_url : http://marine.copernicus.eu references : http://www.globcolour.info GlobColour has been originally funded by ESA with data from ESA, NASA, NOAA and GeoEye. This version has received funding from the European Community s Seventh Framework Programme ([FP7/2007-2013]) under grant agreement n. 282723 [OSS2015 project]. registration : 5 sensor : Moderate Resolution Imaging Spectroradiometer,Visible Infrared Imaging Radiometer Suite,Ocean and Land Colour Instrument sensor_name : MODISA,VIIRSN,OLCIa,VIIRSJ1,OLCIb sensor_name_list : MOD,VIR,OLA,VJ1,OLB site_name : GLO software_name : globcolour_l3_reproject software_version : 2022.2 source : surface observation southernmost_latitude : -90.0 southernmost_valid_latitude : -66.33333587646484 standard_name : status_flag standard_name_vocabulary : NetCDF Climate and Forecast (CF) Metadata Convention start_date : 2024-04-16 UTC start_time : 21:12:05 UTC stop_date : 2024-04-18 UTC stop_time : 02:58:23 UTC summary : CMEMS product: cmems_obs-oc_glo_bgc-plankton_my_l3-multi-4km_P1D, generated by ACRI-ST time_coverage_duration : PT107179S time_coverage_end : 2024-04-18T02:58:23Z time_coverage_resolution : P1D time_coverage_start : 2024-04-16T21:12:05Z title : cmems_obs-oc_glo_bgc-plankton_my_l3-multi-4km_P1D valid_max : 1 valid_min : 0 westernmost_longitude : -180.0 westernmost_valid_longitude : -180.0 array([[[nan, nan, nan, ..., nan, nan, nan],\n",
+ " [nan, 0., 0., ..., 0., 0., nan],\n",
+ " [nan, 0., 0., ..., 0., 0., nan],\n",
+ " ...,\n",
+ " [nan, 1., 1., ..., 1., 1., nan],\n",
+ " [nan, 1., 1., ..., 1., 1., nan],\n",
+ " [nan, nan, nan, ..., nan, nan, nan]],\n",
+ "\n",
+ " [[nan, nan, nan, ..., nan, nan, nan],\n",
+ " [nan, 0., 0., ..., 0., 0., nan],\n",
+ " [nan, 0., 0., ..., 0., 0., nan],\n",
+ " ...,\n",
+ " [nan, 1., 1., ..., 1., 1., nan],\n",
+ " [nan, 1., 1., ..., 1., 1., nan],\n",
+ " [nan, nan, nan, ..., nan, nan, nan]],\n",
+ "\n",
+ " [[nan, nan, nan, ..., nan, nan, nan],\n",
+ " [nan, 0., 0., ..., 0., 0., nan],\n",
+ " [nan, 0., 0., ..., 0., 0., nan],\n",
+ " ...,\n",
+ " [nan, 1., 1., ..., 1., 1., nan],\n",
+ " [nan, 1., 1., ..., 1., 1., nan],\n",
+ " [nan, nan, nan, ..., nan, nan, nan]]],\n",
+ " shape=(3, 177, 241), dtype=float32) CHL_cmes_uncertainty-gapfree
(time, lat, lon)
float32
nan nan nan nan ... nan nan nan nan
Conventions : CF-1.8, ACDD-1.3 DPM_reference : GC-UD-ACRI-PUG IODD_reference : GC-UD-ACRI-PUG acknowledgement : The Licensees will ensure that original CMEMS products - or value added products or derivative works developed from CMEMS Products including publications and pictures - shall credit CMEMS by explicitly making mention of the originator (CMEMS) in the following manner: <Generated using CMEMS Products, production centre ACRI-ST> citation : The Licensees will ensure that original CMEMS products - or value added products or derivative works developed from CMEMS Products including publications and pictures - shall credit CMEMS by explicitly making mention of the originator (CMEMS) in the following manner: <Generated using CMEMS Products, production centre ACRI-ST> cmems_product_id : OCEANCOLOUR_GLO_BGC_L4_MY_009_104 cmems_production_unit : OC-ACRI-NICE-FR comment : average contact : servicedesk.cmems@acri-st.fr copernicusmarine_version : 1.3.1 coverage_content_type : qualityInformation creation_date : 2023-11-29 UTC creation_time : 01:06:50 UTC creator_email : servicedesk.cmems@acri-st.fr creator_name : ACRI creator_url : http://marine.copernicus.eu date_created : 2023-11-29T01:06:50Z distribution_statement : See CMEMS Data License duration_time : PT146878S earth_radius : 6378.137 easternmost_longitude : 180.0 easternmost_valid_longitude : 180.00001525878906 file_quality_index : 0 geospatial_bounds : POLYGON ((90.000000 -180.000000, 90.000000 180.000000, -90.000000 180.000000, -90.000000 -180.000000, 90.000000 -180.000000)) geospatial_bounds_crs : EPSG:4326 geospatial_bounds_vertical_crs : EPSG:5829 geospatial_lat_max : 89.97916412353516 geospatial_lat_min : -89.97917175292969 geospatial_lon_max : 179.9791717529297 geospatial_lon_min : -179.9791717529297 geospatial_vertical_max : 0 geospatial_vertical_min : 0 geospatial_vertical_positive : up grid_mapping : Equirectangular grid_resolution : 4.638312339782715 history : Created using software developed at ACRI-ST id : 20231121_cmems_obs-oc_glo_bgc-plankton_myint_l4-gapfree-multi-4km_P1D institution : ACRI keywords : EARTH SCIENCE > OCEANS > OCEAN CHEMISTRY > CHLOROPHYLL keywords_vocabulary : NASA Global Change Master Directory (GCMD) Science Keywords lat_step : 0.0416666679084301 license : See CMEMS Data License lon_step : 0.0416666679084301 long_name : Chlorophyll-a concentration - Uncertainty estimation naming_authority : CMEMS nb_bins : 37324800 nb_equ_bins : 8640 nb_grid_bins : 37324800 nb_valid_bins : 19169208 netcdf_version_id : 4.3.3.1 of Jul 8 2016 18:15:50 $ northernmost_latitude : 90.0 northernmost_valid_latitude : 58.08333206176758 overall_quality : mode=myint parameter : Chlorophyll-a concentration parameter_code : CHL pct_bins : 100.0 pct_valid_bins : 51.357831790123456 period_duration_day : P1D period_end_day : 20231121 period_start_day : 20231121 platform : Aqua,Suomi-NPP,Sentinel-3a,JPSS-1 (NOAA-20),Sentinel-3b processing_level : L4 product_level : 4 product_name : 20231121_cmems_obs-oc_glo_bgc-plankton_myint_l4-gapfree-multi-4km_P1D product_type : day project : CMEMS publication : Gohin, F., Druon, J. N., Lampert, L. (2002). A five channel chlorophyll concentration algorithm applied to SeaWiFS data processed by SeaDAS in coastal waters. International journal of remote sensing, 23(8), 1639-1661 + Hu, C., Lee, Z., Franz, B. (2012). Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference. Journal of Geophysical Research, 117(C1). doi: 10.1029/2011jc007395 publisher_email : servicedesk.cmems@mercator-ocean.eu publisher_name : CMEMS publisher_url : http://marine.copernicus.eu references : http://www.globcolour.info GlobColour has been originally funded by ESA with data from ESA, NASA, NOAA and GeoEye. This version has received funding from the European Community s Seventh Framework Programme ([FP7/2007-2013]) under grant agreement n. 282723 [OSS2015 project]. registration : 5 sensor : Moderate Resolution Imaging Spectroradiometer,Visible Infrared Imaging Radiometer Suite,Ocean and Land Colour Instrument sensor_name : MODISA,VIIRSN,OLCIa,VIIRSJ1,OLCIb sensor_name_list : MOD,VIR,OLA,VJ1,OLB site_name : GLO software_name : globcolour_l3_reproject software_version : 2022.2 source : surface observation southernmost_latitude : -90.0 southernmost_valid_latitude : -78.58333587646484 standard_name_vocabulary : NetCDF Climate and Forecast (CF) Metadata Convention start_date : 2023-11-20 UTC start_time : 15:24:55 UTC stop_date : 2023-11-22 UTC stop_time : 08:12:52 UTC summary : CMEMS product: cmems_obs-oc_glo_bgc-plankton_my_l4-gapfree-multi-4km_P1D, generated by ACRI-ST time_coverage_duration : PT146878S time_coverage_end : 2023-11-22T08:12:52Z time_coverage_resolution : P1D time_coverage_start : 2023-11-20T15:24:55Z title : cmems_obs-oc_glo_bgc-plankton_my_l4-gapfree-multi-4km_P1D units : % valid_max : 32767 valid_min : 0 westernmost_longitude : -180.0 westernmost_valid_longitude : -180.0 array([[[ nan, nan, nan, ..., nan, nan,\n",
+ " nan],\n",
+ " [ nan, 41.09284 , 41.303265, ..., 36.424664, 36.72218 ,\n",
+ " nan],\n",
+ " [ nan, 39.626156, 40.974007, ..., 36.30644 , 36.54066 ,\n",
+ " nan],\n",
+ " ...,\n",
+ " [ nan, nan, nan, ..., nan, nan,\n",
+ " nan],\n",
+ " [ nan, nan, nan, ..., nan, nan,\n",
+ " nan],\n",
+ " [ nan, nan, nan, ..., nan, nan,\n",
+ " nan]],\n",
+ "\n",
+ " [[ nan, nan, nan, ..., nan, nan,\n",
+ " nan],\n",
+ " [ nan, 34.821114, 35.975735, ..., 37.78529 , 37.296154,\n",
+ " nan],\n",
+ " [ nan, 34.74185 , 35.208977, ..., 37.26359 , 36.82845 ,\n",
+ " nan],\n",
+ "...\n",
+ " [ nan, nan, nan, ..., nan, nan,\n",
+ " nan],\n",
+ " [ nan, nan, nan, ..., nan, nan,\n",
+ " nan],\n",
+ " [ nan, nan, nan, ..., nan, nan,\n",
+ " nan]],\n",
+ "\n",
+ " [[ nan, nan, nan, ..., nan, nan,\n",
+ " nan],\n",
+ " [ nan, 35.149956, 34.70625 , ..., 37.230965, 36.681602,\n",
+ " nan],\n",
+ " [ nan, 34.204105, 34.16921 , ..., 36.948723, 37.142437,\n",
+ " nan],\n",
+ " ...,\n",
+ " [ nan, nan, nan, ..., nan, nan,\n",
+ " nan],\n",
+ " [ nan, nan, nan, ..., nan, nan,\n",
+ " nan],\n",
+ " [ nan, nan, nan, ..., nan, nan,\n",
+ " nan]]], shape=(3, 177, 241), dtype=float32) CHL_cmes_uncertainty-level3
(time, lat, lon)
float32
nan nan nan nan ... nan nan nan nan
Conventions : CF-1.8, ACDD-1.3 DPM_reference : GC-UD-ACRI-PUG IODD_reference : GC-UD-ACRI-PUG acknowledgement : The Licensees will ensure that original CMEMS products - or value added products or derivative works developed from CMEMS Products including publications and pictures - shall credit CMEMS by explicitly making mention of the originator (CMEMS) in the following manner: <Generated using CMEMS Products, production centre ACRI-ST> citation : The Licensees will ensure that original CMEMS products - or value added products or derivative works developed from CMEMS Products including publications and pictures - shall credit CMEMS by explicitly making mention of the originator (CMEMS) in the following manner: <Generated using CMEMS Products, production centre ACRI-ST> cmems_product_id : OCEANCOLOUR_GLO_BGC_L3_MY_009_103 cmems_production_unit : OC-ACRI-NICE-FR comment : average contact : servicedesk.cmems@acri-st.fr copernicusmarine_version : 1.3.1 coverage_content_type : qualityInformation creation_date : 2024-04-25 UTC creation_time : 00:47:33 UTC creator_email : servicedesk.cmems@acri-st.fr creator_name : ACRI creator_url : http://marine.copernicus.eu date_created : 2024-04-25T00:47:33Z distribution_statement : See CMEMS Data License duration_time : PT107179S earth_radius : 6378.137 easternmost_longitude : 180.0 easternmost_valid_longitude : 180.00001525878906 file_quality_index : 0 geospatial_bounds : POLYGON ((90.000000 -180.000000, 90.000000 180.000000, -90.000000 180.000000, -90.000000 -180.000000, 90.000000 -180.000000)) geospatial_bounds_crs : EPSG:4326 geospatial_bounds_vertical_crs : EPSG:5829 geospatial_lat_max : 89.97916412353516 geospatial_lat_min : -89.97917175292969 geospatial_lon_max : 179.9791717529297 geospatial_lon_min : -179.9791717529297 geospatial_vertical_max : 0 geospatial_vertical_min : 0 geospatial_vertical_positive : up grid_mapping : Equirectangular grid_resolution : 4.638312339782715 history : Created using software developed at ACRI-ST id : 20240417_cmems_obs-oc_glo_bgc-plankton_myint_l3-multi-4km_P1D institution : ACRI keywords : EARTH SCIENCE > OCEANS > OCEAN CHEMISTRY > CHLOROPHYLL, EARTH SCIENCE > BIOLOGICAL CLASSIFICATION > PROTISTS > PLANKTON > PHYTOPLANKTON keywords_vocabulary : NASA Global Change Master Directory (GCMD) Science Keywords lat_step : 0.0416666679084301 license : See CMEMS Data License lon_step : 0.0416666679084301 long_name : Chlorophyll-a concentration - Uncertainty estimation naming_authority : CMEMS nb_bins : 37324800 nb_equ_bins : 8640 nb_grid_bins : 37324800 nb_valid_bins : 9704694 netcdf_version_id : 4.3.3.1 of Jul 8 2016 18:15:50 $ northernmost_latitude : 90.0 northernmost_valid_latitude : 82.70833587646484 overall_quality : mode=myint parameter : Chlorophyll-a concentration,Phytoplankton Functional Types parameter_code : CHL,DIATO,DINO,HAPTO,GREEN,PROKAR,PROCHLO,MICRO,NANO,PICO pct_bins : 100.0 pct_valid_bins : 26.000659079218106 period_duration_day : P1D period_end_day : 20240417 period_start_day : 20240417 platform : Aqua,Suomi-NPP,Sentinel-3a,JPSS-1 (NOAA-20),Sentinel-3b processing_level : L3 product_level : 3 product_name : 20240417_cmems_obs-oc_glo_bgc-plankton_myint_l3-multi-4km_P1D product_type : day project : CMEMS publication : Gohin, F., Druon, J. N., Lampert, L. (2002). A five channel chlorophyll concentration algorithm applied to SeaWiFS data processed by SeaDAS in coastal waters. International journal of remote sensing, 23(8), 1639-1661 + Hu, C., Lee, Z., Franz, B. (2012). Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference. Journal of Geophysical Research, 117(C1). doi: 10.1029/2011jc007395 + Xi H, Losa S N, Mangin A, Garnesson P, Bretagnon M, Demaria J, Soppa M A, Hembise Fanton d Andon O, Bracher A (2021) Global chlorophyll a concentrations of phytoplankton functional types with detailed uncertainty assessment using multi-sensor ocean color and sea surface temperature satellite products, JGR, in review. publisher_email : servicedesk.cmems@mercator-ocean.eu publisher_name : CMEMS publisher_url : http://marine.copernicus.eu references : http://www.globcolour.info GlobColour has been originally funded by ESA with data from ESA, NASA, NOAA and GeoEye. This version has received funding from the European Community s Seventh Framework Programme ([FP7/2007-2013]) under grant agreement n. 282723 [OSS2015 project]. registration : 5 sensor : Moderate Resolution Imaging Spectroradiometer,Visible Infrared Imaging Radiometer Suite,Ocean and Land Colour Instrument sensor_name : MODISA,VIIRSN,OLCIa,VIIRSJ1,OLCIb sensor_name_list : MOD,VIR,OLA,VJ1,OLB site_name : GLO software_name : globcolour_l3_reproject software_version : 2022.2 source : surface observation southernmost_latitude : -90.0 southernmost_valid_latitude : -66.33333587646484 standard_name_vocabulary : NetCDF Climate and Forecast (CF) Metadata Convention start_date : 2024-04-16 UTC start_time : 21:12:05 UTC stop_date : 2024-04-18 UTC stop_time : 02:58:23 UTC summary : CMEMS product: cmems_obs-oc_glo_bgc-plankton_my_l3-multi-4km_P1D, generated by ACRI-ST time_coverage_duration : PT107179S time_coverage_end : 2024-04-18T02:58:23Z time_coverage_resolution : P1D time_coverage_start : 2024-04-16T21:12:05Z title : cmems_obs-oc_glo_bgc-plankton_my_l3-multi-4km_P1D units : % valid_max : 32767 valid_min : 0 westernmost_longitude : -180.0 westernmost_valid_longitude : -180.0 array([[[ nan, nan, nan, ..., nan, nan,\n",
+ " nan],\n",
+ " [ nan, 34.245842, 33.708008, ..., 34.205738, 34.4868 ,\n",
+ " nan],\n",
+ " [ nan, 33.808414, 33.884266, ..., 34.293922, 34.610996,\n",
+ " nan],\n",
+ " ...,\n",
+ " [ nan, nan, nan, ..., nan, nan,\n",
+ " nan],\n",
+ " [ nan, nan, nan, ..., nan, nan,\n",
+ " nan],\n",
+ " [ nan, nan, nan, ..., nan, nan,\n",
+ " nan]],\n",
+ "\n",
+ " [[ nan, nan, nan, ..., nan, nan,\n",
+ " nan],\n",
+ " [ nan, 32.75776 , 32.867622, ..., 34.19767 , 34.218456,\n",
+ " nan],\n",
+ " [ nan, 32.681526, 32.78079 , ..., 34.43197 , 34.24901 ,\n",
+ " nan],\n",
+ "...\n",
+ " [ nan, nan, nan, ..., nan, nan,\n",
+ " nan],\n",
+ " [ nan, nan, nan, ..., nan, nan,\n",
+ " nan],\n",
+ " [ nan, nan, nan, ..., nan, nan,\n",
+ " nan]],\n",
+ "\n",
+ " [[ nan, nan, nan, ..., nan, nan,\n",
+ " nan],\n",
+ " [ nan, 32.82264 , 32.58067 , ..., 33.819622, 33.558758,\n",
+ " nan],\n",
+ " [ nan, 32.919136, 32.773815, ..., 33.92667 , 33.578735,\n",
+ " nan],\n",
+ " ...,\n",
+ " [ nan, nan, nan, ..., nan, nan,\n",
+ " nan],\n",
+ " [ nan, nan, nan, ..., nan, nan,\n",
+ " nan],\n",
+ " [ nan, nan, nan, ..., nan, nan,\n",
+ " nan]]], shape=(3, 177, 241), dtype=float32) CHL_uncertainty
(time, lat, lon)
float32
nan nan nan nan ... nan nan nan nan
_ChunkSizes : [1, 256, 256] coverage_content_type : qualityInformation long_name : Chlorophyll-a concentration - Uncertainty estimation units : % valid_max : 32767 valid_min : 0 array([[[ nan, nan, nan, ..., nan, nan,\n",
+ " nan],\n",
+ " [40.446964, 40.936943, 40.651314, ..., 35.97117 , 36.57219 ,\n",
+ " nan],\n",
+ " [41.63968 , 39.377857, 40.614185, ..., 35.645927, 36.19973 ,\n",
+ " nan],\n",
+ " ...,\n",
+ " [ nan, nan, nan, ..., nan, nan,\n",
+ " nan],\n",
+ " [ nan, nan, nan, ..., nan, nan,\n",
+ " nan],\n",
+ " [ nan, nan, nan, ..., nan, nan,\n",
+ " nan]],\n",
+ "\n",
+ " [[ nan, nan, nan, ..., nan, nan,\n",
+ " nan],\n",
+ " [34.85233 , 34.284058, 34.19831 , ..., 37.42615 , 37.26856 ,\n",
+ " nan],\n",
+ " [34.106934, 34.044846, 34.377403, ..., 36.70366 , 36.501637,\n",
+ " nan],\n",
+ "...\n",
+ " [ nan, nan, nan, ..., nan, nan,\n",
+ " nan],\n",
+ " [ nan, nan, nan, ..., nan, nan,\n",
+ " nan],\n",
+ " [ nan, nan, nan, ..., nan, nan,\n",
+ " nan]],\n",
+ "\n",
+ " [[ nan, nan, nan, ..., nan, nan,\n",
+ " nan],\n",
+ " [34.985474, 35.12786 , 34.52536 , ..., 36.23566 , 35.742764,\n",
+ " nan],\n",
+ " [35.17052 , 34.106007, 34.12871 , ..., 36.42551 , 36.49977 ,\n",
+ " nan],\n",
+ " ...,\n",
+ " [ nan, nan, nan, ..., nan, nan,\n",
+ " nan],\n",
+ " [ nan, nan, nan, ..., nan, nan,\n",
+ " nan],\n",
+ " [ nan, nan, nan, ..., nan, nan,\n",
+ " nan]]], shape=(3, 177, 241), dtype=float32) adt
(time, lat, lon)
float32
nan nan nan nan ... nan nan nan nan
comment : The absolute dynamic topography is the sea surface height above geoid; the adt is obtained as follows: adt=sla+mdt where mdt is the mean dynamic topography; see the product user manual for details grid_mapping : crs long_name : Absolute dynamic topography standard_name : sea_surface_height_above_geoid units : m array([[[ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, 1.0961233 , 1.1097023 , ..., 0.8836403 ,\n",
+ " 0.87419593, nan],\n",
+ " [ nan, 1.0861113 , 1.0992855 , ..., 0.8895024 ,\n",
+ " 0.8808371 , nan],\n",
+ " ...,\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan]],\n",
+ "\n",
+ " [[ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, 1.1685017 , 1.1875622 , ..., 0.8077811 ,\n",
+ " 0.8099837 , nan],\n",
+ " [ nan, 1.1547172 , 1.172862 , ..., 0.8077957 ,\n",
+ " 0.80797243, nan],\n",
+ "...\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan]],\n",
+ "\n",
+ " [[ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, 1.0566081 , 1.0566776 , ..., 0.7766403 ,\n",
+ " 0.7780847 , nan],\n",
+ " [ nan, 1.0538782 , 1.0516492 , ..., 0.78238636,\n",
+ " 0.7855121 , nan],\n",
+ " ...,\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan]]], shape=(3, 177, 241), dtype=float32) air_temp
(time, lat, lon)
float32
301.0 301.0 300.9 ... 269.5 270.2
long_name : 2 metre temperature nameCDM : 2_metre_temperature_surface nameECMWF : 2 metre temperature product_type : analysis shortNameECMWF : 2t standard_name : air_temperature units : K array([[[301.00092, 300.99994, 300.88522, ..., 300.147 , 300.1553 ,\n",
+ " 300.18344],\n",
+ " [301.0144 , 301.01654, 300.88287, ..., 300.2021 , 300.22125,\n",
+ " 300.24506],\n",
+ " [301.02167, 301.0209 , 300.88614, ..., 300.24088, 300.25763,\n",
+ " 300.29013],\n",
+ " ...,\n",
+ " [283.5243 , 283.7081 , 283.71423, ..., 259.93246, 260.14005,\n",
+ " 262.5945 ],\n",
+ " [283.39667, 283.62082, 283.65067, ..., 260.41525, 260.6362 ,\n",
+ " 262.20218],\n",
+ " [283.17462, 283.3994 , 283.43137, ..., 262.00476, 261.75537,\n",
+ " 262.8981 ]],\n",
+ "\n",
+ " [[301.12393, 301.1471 , 301.05814, ..., 300.64883, 300.66876,\n",
+ " 300.69193],\n",
+ " [301.13477, 301.15628, 301.06024, ..., 300.66635, 300.68127,\n",
+ " 300.6955 ],\n",
+ " [301.15866, 301.18033, 301.08224, ..., 300.64984, 300.66745,\n",
+ " 300.67752],\n",
+ "...\n",
+ " [285.67188, 285.741 , 285.74796, ..., 261.07983, 261.72995,\n",
+ " 264.19974],\n",
+ " [285.25702, 285.38745, 285.48798, ..., 261.21857, 261.846 ,\n",
+ " 263.4035 ],\n",
+ " [284.83755, 285.03497, 285.14392, ..., 261.68317, 261.9876 ,\n",
+ " 263.16486]],\n",
+ "\n",
+ " [[301.21802, 301.25354, 301.16867, ..., 300.62656, 300.63113,\n",
+ " 300.6456 ],\n",
+ " [301.2536 , 301.28418, 301.19833, ..., 300.60483, 300.59723,\n",
+ " 300.6057 ],\n",
+ " [301.26376, 301.30554, 301.22964, ..., 300.5991 , 300.59067,\n",
+ " 300.58762],\n",
+ " ...,\n",
+ " [291.0588 , 291.22534, 291.23248, ..., 267.32428, 267.54846,\n",
+ " 270.5289 ],\n",
+ " [290.5373 , 290.76523, 290.90805, ..., 268.76587, 268.38266,\n",
+ " 269.63046],\n",
+ " [290.15863, 290.42206, 290.551 , ..., 270.08115, 269.46884,\n",
+ " 270.2496 ]]], shape=(3, 177, 241), dtype=float32) curr_dir
(time, lat, lon)
float32
-50.88 -53.93 -23.08 ... nan nan
comments : Computed from total surface current velocity elements. Velocities are an average over the top 30m of the mixed layer depth : 15m long_name : average direction of total surface currents units : degrees array([[[ -50.87933 , -53.92774 , -23.078354 , ...,\n",
+ " 44.68379 , 25.122341 , -2.198161 ],\n",
+ " [-102.6751 , -101.190384 , -70.15286 , ...,\n",
+ " 57.065155 , 35.283363 , 6.923112 ],\n",
+ " [-128.45084 , -89.779854 , -62.08135 , ...,\n",
+ " 79.639366 , 84.46631 , 64.353294 ],\n",
+ " ...,\n",
+ " [ nan, nan, nan, ...,\n",
+ " nan, nan, nan],\n",
+ " [ nan, nan, nan, ...,\n",
+ " nan, nan, nan],\n",
+ " [ nan, nan, nan, ...,\n",
+ " nan, nan, nan]],\n",
+ "\n",
+ " [[ -91.99648 , -114.44353 , -120.31758 , ...,\n",
+ " -56.06612 , -103.804504 , -108.70077 ],\n",
+ " [-114.33796 , -127.69751 , -130.70262 , ...,\n",
+ " -9.686462 , -38.356094 , -70.02651 ],\n",
+ " [-136.07898 , -137.38391 , -139.08244 , ...,\n",
+ " 0.19883212, -2.7577899 , -6.999552 ],\n",
+ "...\n",
+ " nan, nan, nan],\n",
+ " [ nan, nan, nan, ...,\n",
+ " nan, nan, nan],\n",
+ " [ nan, nan, nan, ...,\n",
+ " nan, nan, nan]],\n",
+ "\n",
+ " [[ -14.788807 , -32.558853 , 28.021748 , ...,\n",
+ " -52.949696 , -108.607315 , -69.31098 ],\n",
+ " [ -41.506577 , -32.20336 , -0.8918285 , ...,\n",
+ " -49.56149 , -60.431915 , -51.2078 ],\n",
+ " [ -29.360558 , -10.735903 , 0.26975718, ...,\n",
+ " -35.603188 , -36.045536 , -34.213417 ],\n",
+ " ...,\n",
+ " [ nan, nan, nan, ...,\n",
+ " nan, nan, nan],\n",
+ " [ nan, nan, nan, ...,\n",
+ " nan, nan, nan],\n",
+ " [ nan, nan, nan, ...,\n",
+ " nan, nan, nan]]],\n",
+ " shape=(3, 177, 241), dtype=float32) curr_speed
(time, lat, lon)
float32
0.2007 0.1723 0.1578 ... nan nan
comments : Velocities are an average over the top 30m of the mixed layer depth : 15m long_name : average total surface current speed units : m s**-1 array([[[0.20069508, 0.17227474, 0.15784504, ..., 0.19492619,\n",
+ " 0.15035668, 0.11994039],\n",
+ " [0.2398941 , 0.21763356, 0.19082102, ..., 0.18003175,\n",
+ " 0.12918828, 0.08701169],\n",
+ " [0.31947446, 0.29128674, 0.28873605, ..., 0.15952738,\n",
+ " 0.11880615, 0.08155948],\n",
+ " ...,\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan]],\n",
+ "\n",
+ " [[0.28762138, 0.2717665 , 0.20344163, ..., 0.09810857,\n",
+ " 0.09172928, 0.10075321],\n",
+ " [0.30015472, 0.29954407, 0.28516355, ..., 0.08124819,\n",
+ " 0.0662025 , 0.07449498],\n",
+ " [0.33588183, 0.32527697, 0.3403188 , ..., 0.07869078,\n",
+ " 0.07352121, 0.07647914],\n",
+ "...\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan]],\n",
+ "\n",
+ " [[0.13569166, 0.12066332, 0.11101453, ..., 0.08279231,\n",
+ " 0.07662992, 0.08004776],\n",
+ " [0.13426238, 0.14298528, 0.14837652, ..., 0.07145587,\n",
+ " 0.09760606, 0.12284396],\n",
+ " [0.16961476, 0.1784906 , 0.19027148, ..., 0.12393966,\n",
+ " 0.16018914, 0.18872908],\n",
+ " ...,\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan]]], shape=(3, 177, 241), dtype=float32) mlotst
(time, lat, lon)
float32
16.26 16.22 15.61 ... nan nan nan
_ChunkSizes : [1, 681, 1440] cell_methods : area: mean long_name : Density ocean mixed layer thickness standard_name : ocean_mixed_layer_thickness_defined_by_sigma_theta unit_long : Meters units : m array([[[16.263414, 16.221575, 15.608745, ..., 17.498922, 16.7778 ,\n",
+ " 14.870393],\n",
+ " [15.66043 , 14.710417, 14.363394, ..., 17.050987, 16.583366,\n",
+ " 14.939304],\n",
+ " [15.721957, 14.053286, 13.026978, ..., 16.790106, 15.173118,\n",
+ " 14.776867],\n",
+ " ...,\n",
+ " [ nan, nan, nan, ..., nan, nan,\n",
+ " nan],\n",
+ " [ nan, nan, nan, ..., nan, nan,\n",
+ " nan],\n",
+ " [ nan, nan, nan, ..., nan, nan,\n",
+ " nan]],\n",
+ "\n",
+ " [[13.246612, 13.146638, 13.036139, ..., 12.249499, 12.436292,\n",
+ " 12.662551],\n",
+ " [13.059818, 12.933534, 13.091389, ..., 12.023241, 12.202142,\n",
+ " 12.63361 ],\n",
+ " [12.652027, 12.16531 , 12.45997 , ..., 11.523369, 11.920636,\n",
+ " 12.51785 ],\n",
+ "...\n",
+ " [ nan, nan, nan, ..., nan, nan,\n",
+ " nan],\n",
+ " [ nan, nan, nan, ..., nan, nan,\n",
+ " nan],\n",
+ " [ nan, nan, nan, ..., nan, nan,\n",
+ " nan]],\n",
+ "\n",
+ " [[17.314335, 16.027142, 14.914691, ..., 13.620115, 13.565971,\n",
+ " 14.134501],\n",
+ " [17.9124 , 16.817177, 14.939305, ..., 12.874379, 13.423222,\n",
+ " 14.200955],\n",
+ " [18.124058, 16.839327, 14.643965, ..., 13.007287, 13.659493,\n",
+ " 14.422459],\n",
+ " ...,\n",
+ " [ nan, nan, nan, ..., nan, nan,\n",
+ " nan],\n",
+ " [ nan, nan, nan, ..., nan, nan,\n",
+ " nan],\n",
+ " [ nan, nan, nan, ..., nan, nan,\n",
+ " nan]]], shape=(3, 177, 241), dtype=float32) sla
(time, lat, lon)
float32
nan nan nan nan ... nan nan nan nan
ancillary_variables : err_sla comment : The sea level anomaly is the sea surface height above mean sea surface; it is referenced to the [1993, 2012] period; see the product user manual for details grid_mapping : crs long_name : Sea level anomaly standard_name : sea_surface_height_above_sea_level units : m array([[[ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, 0.09723144, 0.1022137 , ..., -0.04401694,\n",
+ " -0.05353307, nan],\n",
+ " [ nan, 0.10027822, 0.10493387, ..., -0.0340008 ,\n",
+ " -0.04286209, nan],\n",
+ " ...,\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan]],\n",
+ "\n",
+ " [[ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, 0.16960259, 0.18007413, ..., -0.11987414,\n",
+ " -0.11774741, nan],\n",
+ " [ nan, 0.16888791, 0.17850778, ..., -0.11570776,\n",
+ " -0.11572413, nan],\n",
+ "...\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan]],\n",
+ "\n",
+ " [[ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, 0.05770967, 0.04919032, ..., -0.15101776,\n",
+ " -0.14965 , nan],\n",
+ " [ nan, 0.06804274, 0.05729436, ..., -0.14112176,\n",
+ " -0.1381887 , nan],\n",
+ " ...,\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan]]], shape=(3, 177, 241), dtype=float32) so
(time, lat, lon)
float32
34.6 34.57 34.65 ... nan nan nan
_ChunkSizes : [1, 7, 341, 720] cell_methods : area: mean long_name : mean sea water salinity at 0.49 metres below ocean surface standard_name : sea_water_salinity unit_long : Practical Salinity Unit units : 1e-3 valid_max : 28336 valid_min : 1 array([[[34.595165, 34.572525, 34.65468 , ..., 34.692284, 34.71089 ,\n",
+ " 34.691444],\n",
+ " [34.571564, 34.514713, 34.548183, ..., 34.66597 , 34.698727,\n",
+ " 34.683765],\n",
+ " [34.58707 , 34.50563 , 34.505722, ..., 34.65377 , 34.678276,\n",
+ " 34.693886],\n",
+ " ...,\n",
+ " [ nan, nan, nan, ..., nan, nan,\n",
+ " nan],\n",
+ " [ nan, nan, nan, ..., nan, nan,\n",
+ " nan],\n",
+ " [ nan, nan, nan, ..., nan, nan,\n",
+ " nan]],\n",
+ "\n",
+ " [[34.421196, 34.42325 , 34.436535, ..., 34.33804 , 34.287125,\n",
+ " 34.30778 ],\n",
+ " [34.454002, 34.459423, 34.455822, ..., 34.31712 , 34.26721 ,\n",
+ " 34.30041 ],\n",
+ " [34.459423, 34.46229 , 34.46048 , ..., 34.29473 , 34.25795 ,\n",
+ " 34.31933 ],\n",
+ "...\n",
+ " [ nan, nan, nan, ..., nan, nan,\n",
+ " nan],\n",
+ " [ nan, nan, nan, ..., nan, nan,\n",
+ " nan],\n",
+ " [ nan, nan, nan, ..., nan, nan,\n",
+ " nan]],\n",
+ "\n",
+ " [[34.54338 , 34.546017, 34.591503, ..., 34.308075, 34.28971 ,\n",
+ " 34.276367],\n",
+ " [34.573853, 34.60693 , 34.59529 , ..., 34.285015, 34.25619 ,\n",
+ " 34.24898 ],\n",
+ " [34.568806, 34.590733, 34.56472 , ..., 34.254784, 34.208717,\n",
+ " 34.210175],\n",
+ " ...,\n",
+ " [ nan, nan, nan, ..., nan, nan,\n",
+ " nan],\n",
+ " [ nan, nan, nan, ..., nan, nan,\n",
+ " nan],\n",
+ " [ nan, nan, nan, ..., nan, nan,\n",
+ " nan]]], shape=(3, 177, 241), dtype=float32) sst
(time, lat, lon)
float32
302.5 302.5 302.4 ... nan nan nan
long_name : Sea surface temperature nameCDM : Sea_surface_temperature_surface nameECMWF : Sea surface temperature product_type : analysis shortNameECMWF : sst standard_name : sea_surface_temperature units : K array([[[302.46573, 302.4978 , 302.40085, ..., 301.37128, 301.40152,\n",
+ " 301.52505],\n",
+ " [302.46573, 302.48752, 302.38043, ..., 301.4424 , 301.4824 ,\n",
+ " 301.61798],\n",
+ " [302.46793, 302.48956, 302.39062, ..., 301.51535, 301.56958,\n",
+ " 301.70502],\n",
+ " ...,\n",
+ " [ nan, nan, nan, ..., nan, nan,\n",
+ " nan],\n",
+ " [ nan, nan, nan, ..., nan, nan,\n",
+ " nan],\n",
+ " [ nan, nan, nan, ..., nan, nan,\n",
+ " nan]],\n",
+ "\n",
+ " [[303.01584, 303.06122, 302.96857, ..., 302.40125, 302.50684,\n",
+ " 302.63345],\n",
+ " [303.01816, 303.08298, 302.97736, ..., 302.44562, 302.54745,\n",
+ " 302.67184],\n",
+ " [303.0027 , 303.05023, 302.9553 , ..., 302.46448, 302.57455,\n",
+ " 302.72522],\n",
+ "...\n",
+ " [ nan, nan, nan, ..., nan, nan,\n",
+ " nan],\n",
+ " [ nan, nan, nan, ..., nan, nan,\n",
+ " nan],\n",
+ " [ nan, nan, nan, ..., nan, nan,\n",
+ " nan]],\n",
+ "\n",
+ " [[303.16058, 303.20276, 303.10806, ..., 302.58118, 302.63354,\n",
+ " 302.6539 ],\n",
+ " [303.20108, 303.23117, 303.1324 , ..., 302.58972, 302.62402,\n",
+ " 302.66028],\n",
+ " [303.20343, 303.23148, 303.145 , ..., 302.61438, 302.64078,\n",
+ " 302.691 ],\n",
+ " ...,\n",
+ " [ nan, nan, nan, ..., nan, nan,\n",
+ " nan],\n",
+ " [ nan, nan, nan, ..., nan, nan,\n",
+ " nan],\n",
+ " [ nan, nan, nan, ..., nan, nan,\n",
+ " nan]]], shape=(3, 177, 241), dtype=float32) u_curr
(time, lat, lon)
float32
-0.01765 0.03385 ... nan nan
comment : Velocities are an average over the top 30m of the mixed layer coverage_content_type : modelResult depth : 15m long_name : zonal total surface current source : SSH source: CMEMS SSALTO/DUACS SEALEVEL_GLO_PHY_L4_MY_008_047 DOI: 10.48670/moi-00148 ; WIND source: ECMWF ERA5 10m wind DOI: 10.24381/cds.adbb2d47 ; SST source: CMC 0.2 deg SST V2.0 DOI: 10.5067/GHCMC-4FM02 standard_name : eastward_sea_water_velocity units : m s-1 valid_max : 3.0 valid_min : -3.0 array([[[-0.01765382, 0.03385244, 0.099936 , ..., 0.05560666,\n",
+ " 0.04487293, 0.03126916],\n",
+ " [-0.07070927, -0.05673515, -0.03618048, ..., 0.02994143,\n",
+ " 0.02224306, 0.01186002],\n",
+ " [-0.17027764, -0.17342119, -0.19719517, ..., -0.00462587,\n",
+ " 0.0006761 , -0.00427509],\n",
+ " ...,\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan]],\n",
+ "\n",
+ " [[-0.11089475, -0.09137655, -0.05498053, ..., -0.01509725,\n",
+ " -0.05329325, -0.08260361],\n",
+ " [-0.16624032, -0.17568634, -0.17628759, ..., 0.00840602,\n",
+ " -0.02675734, -0.05257566],\n",
+ " [-0.23112172, -0.23574795, -0.25405863, ..., 0.02302171,\n",
+ " -0.00272955, -0.0234137 ],\n",
+ "...\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan]],\n",
+ "\n",
+ " [[-0.10030971, -0.06898513, -0.02701892, ..., -0.06413575,\n",
+ " -0.03584463, -0.0054391 ],\n",
+ " [-0.05357629, -0.06073211, -0.08147079, ..., 0.01905205,\n",
+ " 0.05011301, 0.07915573],\n",
+ " [-0.02546242, -0.03747518, -0.09254371, ..., 0.09798786,\n",
+ " 0.13005653, 0.15475303],\n",
+ " ...,\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan]]], shape=(3, 177, 241), dtype=float32) u_wind
(time, lat, lon)
float32
1.117 1.219 ... 0.4783 -0.2223
long_name : 10 metre U wind component nameCDM : 10_metre_U_wind_component_surface nameECMWF : 10 metre U wind component product_type : analysis shortNameECMWF : 10u standard_name : eastward_wind units : m s**-1 array([[[ 1.1168516 , 1.21875 , 1.2988073 , ..., -1.8713876 ,\n",
+ " -1.810652 , -1.7489079 ],\n",
+ " [ 1.0563676 , 1.1470934 , 1.1840558 , ..., -1.7375673 ,\n",
+ " -1.6460853 , -1.5798892 ],\n",
+ " [ 1.0277218 , 1.0640961 , 1.1040827 , ..., -1.6178597 ,\n",
+ " -1.5124328 , -1.4013777 ],\n",
+ " ...,\n",
+ " [ 1.9178429 , 1.7586527 , 1.6669188 , ..., 0.830057 ,\n",
+ " 1.6776713 , 0.07955311],\n",
+ " [ 1.8520665 , 1.6651545 , 1.6139113 , ..., 0.859039 ,\n",
+ " 1.2242942 , -0.15843414],\n",
+ " [ 1.7993952 , 1.6077788 , 1.5546035 , ..., 0.8091397 ,\n",
+ " 0.90675396, -0.327957 ]],\n",
+ "\n",
+ " [[ 0.73374635, 0.80244255, 0.86206895, ..., -0.70806384,\n",
+ " -0.6672054 , -0.609824 ],\n",
+ " [ 0.6378413 , 0.7101294 , 0.70411277, ..., -0.2559267 ,\n",
+ " -0.25197557, -0.21488866],\n",
+ " [ 0.5977012 , 0.62877154, 0.6283226 , ..., 0.17537709,\n",
+ " 0.16496044, 0.17007905],\n",
+ "...\n",
+ " [ 0.5098779 , 0.3995151 , 0.32561067, ..., 0.5806393 ,\n",
+ " 1.2132722 , 0.01122486],\n",
+ " [ 0.5351114 , 0.40086207, 0.36144036, ..., 0.66073996,\n",
+ " 0.9278017 , -0.16154815],\n",
+ " [ 0.5971624 , 0.45671695, 0.4113686 , ..., 0.73769754,\n",
+ " 0.82354534, -0.19818607]],\n",
+ "\n",
+ " [[ 0.01058462, 0.125924 , 0.18724792, ..., -3.314096 ,\n",
+ " -3.3171203 , -3.3194723 ],\n",
+ " [ 0.03494623, 0.17153901, 0.20421708, ..., -3.0908098 ,\n",
+ " -3.091146 , -3.0930784 ],\n",
+ " [ 0.02822583, 0.16120632, 0.1966565 , ..., -2.8523188 ,\n",
+ " -2.8558471 , -2.843498 ],\n",
+ " ...,\n",
+ " [ 0.6447412 , 0.47143814, 0.38743278, ..., 0.639953 ,\n",
+ " 0.91843075, -0.05813173],\n",
+ " [ 0.6428091 , 0.46664986, 0.3661795 , ..., 0.54527885,\n",
+ " 0.6033266 , -0.18161963],\n",
+ " [ 0.66935474, 0.4850471 , 0.36374328, ..., 0.5266298 ,\n",
+ " 0.47832656, -0.22227824]]], shape=(3, 177, 241), dtype=float32) ug_curr
(time, lat, lon)
float32
-0.06153 -0.00638 ... nan nan
comment : Geostrophic velocities calculated from absolute dynamic topography depth : 15m long_name : zonal geostrophic surface current source : SSH source: CMEMS SSALTO/DUACS SEALEVEL_GLO_PHY_L4_MY_008_047 DOI: 10.48670/moi-00148 standard_name : geostrophic_eastward_sea_water_velocity units : m s-1 valid_max : 3.0 valid_min : -3.0 array([[[-6.15308806e-02, -6.38045650e-03, 6.45078123e-02, ...,\n",
+ " 9.25987065e-02, 8.13567266e-02, 6.84551522e-02],\n",
+ " [-1.13925107e-01, -9.77758914e-02, -7.56485239e-02, ...,\n",
+ " 6.67985305e-02, 5.97817153e-02, 4.70786914e-02],\n",
+ " [-2.15070695e-01, -2.16234297e-01, -2.40972489e-01, ...,\n",
+ " 3.35138962e-02, 3.94051038e-02, 3.41592357e-02],\n",
+ " ...,\n",
+ " [ nan, nan, nan, ...,\n",
+ " nan, nan, nan],\n",
+ " [ nan, nan, nan, ...,\n",
+ " nan, nan, nan],\n",
+ " [ nan, nan, nan, ...,\n",
+ " nan, nan, nan]],\n",
+ "\n",
+ " [[-1.25069082e-01, -1.04537427e-01, -6.74732476e-02, ...,\n",
+ " -1.23480484e-02, -4.78286333e-02, -7.39880428e-02],\n",
+ " [-1.80892482e-01, -1.91488653e-01, -1.91166312e-01, ...,\n",
+ " 8.55471473e-03, -2.32082624e-02, -4.87649813e-02],\n",
+ " [-2.45822042e-01, -2.50415832e-01, -2.70546854e-01, ...,\n",
+ " 2.29636636e-02, 4.18090087e-04, -2.02042647e-02],\n",
+ "...\n",
+ " nan, nan, nan],\n",
+ " [ nan, nan, nan, ...,\n",
+ " nan, nan, nan],\n",
+ " [ nan, nan, nan, ...,\n",
+ " nan, nan, nan]],\n",
+ "\n",
+ " [[-6.85582906e-02, -3.80389802e-02, 1.03138147e-04, ...,\n",
+ " -3.91922444e-02, -1.14998296e-02, 1.89772956e-02],\n",
+ " [-2.23762635e-02, -3.25999372e-02, -5.56462929e-02, ...,\n",
+ " 4.64133956e-02, 7.51315877e-02, 1.01021044e-01],\n",
+ " [ 4.84497007e-03, -8.77081230e-03, -6.81620240e-02, ...,\n",
+ " 1.26824796e-01, 1.57048419e-01, 1.79488778e-01],\n",
+ " ...,\n",
+ " [ nan, nan, nan, ...,\n",
+ " nan, nan, nan],\n",
+ " [ nan, nan, nan, ...,\n",
+ " nan, nan, nan],\n",
+ " [ nan, nan, nan, ...,\n",
+ " nan, nan, nan]]],\n",
+ " shape=(3, 177, 241), dtype=float32) v_curr
(time, lat, lon)
float32
-0.1699 -0.1369 ... nan nan
comment : Velocities are an average over the top 30m of the mixed layer coverage_content_type : modelResult depth : 15m long_name : meridional total surface current source : SSH source: CMEMS SSALTO/DUACS SEALEVEL_GLO_PHY_L4_MY_008_047 DOI: 10.48670/moi-00148 ; WIND source: ECMWF ERA5 10m wind DOI: 10.24381/cds.adbb2d47 ; SST source: CMC 0.2 deg SST V2.0 DOI: 10.5067/GHCMC-4FM02 standard_name : northward_sea_water_velocity units : m s-1 valid_max : 3.0 valid_min : -3.0 array([[[-0.1699353 , -0.13687326, -0.06103751, ..., 0.12995113,\n",
+ " 0.07631097, 0.02978639],\n",
+ " [-0.19970267, -0.17560814, -0.13737871, ..., 0.13982543,\n",
+ " 0.09016258, 0.04377209],\n",
+ " [-0.22503516, -0.18154627, -0.15638363, ..., 0.14086811,\n",
+ " 0.10006846, 0.05763157],\n",
+ " ...,\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan]],\n",
+ "\n",
+ " [[-0.21541311, -0.20859107, -0.14185084, ..., -0.04025499,\n",
+ " -0.04364957, -0.04545752],\n",
+ " [-0.21217793, -0.21225935, -0.19378081, ..., 0.0017595 ,\n",
+ " -0.00980902, -0.02182116],\n",
+ " [-0.22093025, -0.20725015, -0.21094045, ..., 0.036338 ,\n",
+ " 0.02024873, -0.00144467],\n",
+ "...\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan]],\n",
+ "\n",
+ " [[ 0.00413497, -0.0248819 , 0.02125266, ..., -0.00507911,\n",
+ " -0.02822247, -0.04736676],\n",
+ " [-0.00360593, -0.02366249, -0.00699762, ..., -0.03020123,\n",
+ " -0.05691313, -0.07267113],\n",
+ " [-0.02187056, 0.00678876, 0.02598871, ..., -0.0631277 ,\n",
+ " -0.08358444, -0.09705306],\n",
+ " ...,\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan]]], shape=(3, 177, 241), dtype=float32) v_wind
(time, lat, lon)
float32
-3.804 -3.752 ... 0.5098 0.4664
long_name : 10 metre V wind component nameCDM : 10_metre_V_wind_component_surface nameECMWF : 10 metre V wind component product_type : analysis shortNameECMWF : 10v standard_name : northward_wind units : m s**-1 array([[[-3.8035114 , -3.7521837 , -3.6139956 , ..., 3.299311 ,\n",
+ " 3.1764958 , 3.0538476 ],\n",
+ " [-3.862147 , -3.796455 , -3.6612904 , ..., 3.2186658 ,\n",
+ " 3.0910623 , 2.9636254 ],\n",
+ " [-3.918683 , -3.821321 , -3.7424397 , ..., 3.094254 ,\n",
+ " 2.9834511 , 2.8679438 ],\n",
+ " ...,\n",
+ " [-0.44707662, -0.28956655, -0.11416332, ..., 1.5365422 ,\n",
+ " 0.61937165, 0.2140457 ],\n",
+ " [-0.53419024, -0.3997816 , -0.2566365 , ..., 1.46833 ,\n",
+ " 0.8219086 , 0.6260922 ],\n",
+ " [-0.639533 , -0.52536964, -0.37768817, ..., 1.2193379 ,\n",
+ " 0.7001008 , 0.5632561 ]],\n",
+ "\n",
+ " [[-1.3694323 , -1.3709588 , -1.3118715 , ..., -0.03573995,\n",
+ " 0.06573277, 0.17456894],\n",
+ " [-1.4490843 , -1.4428877 , -1.3951148 , ..., -0.22602367,\n",
+ " -0.10560341, 0.00475932],\n",
+ " [-1.5402298 , -1.4841954 , -1.4590516 , ..., -0.4101113 ,\n",
+ " -0.2916667 , -0.17277287],\n",
+ "...\n",
+ " [-0.76679224, -0.6579562 , -0.5313399 , ..., 1.0472343 ,\n",
+ " 0.31842673, 0.02729885],\n",
+ " [-0.79058915, -0.7060884 , -0.622306 , ..., 1.0270295 ,\n",
+ " 0.44746768, 0.29409122],\n",
+ " [-0.8009159 , -0.7395834 , -0.65642965, ..., 0.84707254,\n",
+ " 0.36503232, 0.24452227]],\n",
+ "\n",
+ " [[ 3.9253187 , 3.7544527 , 3.5082324 , ..., 1.344926 ,\n",
+ " 1.3034275 , 1.2710013 ],\n",
+ " [ 3.789735 , 3.6262603 , 3.3760922 , ..., 1.3046035 ,\n",
+ " 1.2527719 , 1.2115252 ],\n",
+ " [ 3.6004708 , 3.4656422 , 3.220598 , ..., 1.2400033 ,\n",
+ " 1.1880879 , 1.126848 ],\n",
+ " ...,\n",
+ " [-0.28897855, -0.19606858, -0.0995464 , ..., 1.0752689 ,\n",
+ " 0.40330982, 0.26360887],\n",
+ " [-0.27738574, -0.19766465, -0.11500335, ..., 0.9775706 ,\n",
+ " 0.51100475, 0.4675739 ],\n",
+ " [-0.24260755, -0.17792341, -0.0875336 , ..., 0.85324264,\n",
+ " 0.50982857, 0.46639782]]], shape=(3, 177, 241), dtype=float32) vg_curr
(time, lat, lon)
float32
-0.1609 -0.1306 ... nan nan
comment : Geostrophic velocities calculated from absolute dynamic topography depth : 15m long_name : meridional geostrophic surface current source : SSH source: CMEMS SSALTO/DUACS SEALEVEL_GLO_PHY_L4_MY_008_047 DOI: 10.48670/moi-00148 standard_name : geostrophic_northward_sea_water_velocity units : m s-1 valid_max : 3.0 valid_min : -3.0 array([[[-0.16088663, -0.13064367, -0.05592426, ..., 0.14255606,\n",
+ " 0.0836803 , 0.03266481],\n",
+ " [-0.19206747, -0.17033765, -0.13194732, ..., 0.15048191,\n",
+ " 0.09706448, 0.04619164],\n",
+ " [-0.21710268, -0.17590985, -0.14903602, ..., 0.15042491,\n",
+ " 0.10766494, 0.06016111],\n",
+ " ...,\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan]],\n",
+ "\n",
+ " [[-0.21687713, -0.21152033, -0.14287525, ..., -0.03746608,\n",
+ " -0.04412986, -0.04939472],\n",
+ " [-0.21419482, -0.21532354, -0.19421661, ..., -0.00078121,\n",
+ " -0.01363084, -0.02835535],\n",
+ " [-0.22210301, -0.20948017, -0.21077563, ..., 0.02761056,\n",
+ " 0.01381276, -0.00831392],\n",
+ "...\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan]],\n",
+ "\n",
+ " [[-0.00276271, -0.03520766, 0.01363007, ..., 0.01591855,\n",
+ " -0.0056432 , -0.02321951],\n",
+ " [-0.01130674, -0.03385629, -0.01501899, ..., -0.01291432,\n",
+ " -0.03573121, -0.0509796 ],\n",
+ " [-0.02757397, -0.00198409, 0.01883435, ..., -0.04522416,\n",
+ " -0.0627977 , -0.07468333],\n",
+ " ...,\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan],\n",
+ " [ nan, nan, nan, ..., nan,\n",
+ " nan, nan]]], shape=(3, 177, 241), dtype=float32) wind_dir
(time, lat, lon)
float32
-65.01 -63.77 -63.89 ... 36.7 63.51
long_name : 10 metre wind direction units : degrees array([[[-65.01326 , -63.7694 , -63.89322 , ..., 108.86136 ,\n",
+ " 109.033936 , 98.32034 ],\n",
+ " [-66.43369 , -65.09371 , -65.08046 , ..., 109.22083 ,\n",
+ " 98.23224 , 99.38882 ],\n",
+ " [-67.12893 , -66.13173 , -64.22281 , ..., 102.52628 ,\n",
+ " 101.430115 , 100.61199 ],\n",
+ " ...,\n",
+ " [ 6.373776 , 14.150324 , 12.659034 , ..., 62.104908 ,\n",
+ " 23.078688 , 47.05679 ],\n",
+ " [ -9.036631 , 10.38537 , 9.918358 , ..., 60.851814 ,\n",
+ " 37.145874 , 93.78129 ],\n",
+ " [-11.38935 , -2.7716045, -3.0163956, ..., 55.623196 ,\n",
+ " 35.234444 , 100.70954 ]],\n",
+ "\n",
+ " [[-38.069126 , -35.048977 , -33.738686 , ..., 14.870149 ,\n",
+ " 9.463159 , 5.567059 ],\n",
+ " [-40.348038 , -49.425766 , -48.50631 , ..., 14.760821 ,\n",
+ " 11.342847 , 6.1203833],\n",
+ " [-42.085278 , -51.020508 , -61.823154 , ..., -2.959236 ,\n",
+ " 9.333742 , 8.705764 ],\n",
+ "...\n",
+ " [ -8.877494 , -6.866388 , -4.2263403, ..., 59.35967 ,\n",
+ " 15.640977 , 17.394985 ],\n",
+ " [-11.81672 , -8.934888 , -5.3717694, ..., 58.52636 ,\n",
+ " 24.2276 , 60.859184 ],\n",
+ " [-13.423419 , -10.516869 , -6.5409102, ..., 48.54566 ,\n",
+ " 19.4602 , 48.962257 ]],\n",
+ "\n",
+ " [[ 85.86022 , 84.47413 , 83.555504 , ..., 73.13372 ,\n",
+ " 71.24583 , 57.32272 ],\n",
+ " [ 85.71348 , 84.130226 , 83.6539 , ..., 72.47447 ,\n",
+ " 60.246178 , 59.48603 ],\n",
+ " [ 85.13743 , 83.85424 , 83.3255 , ..., 73.76286 ,\n",
+ " 61.678955 , 60.96163 ],\n",
+ " ...,\n",
+ " [ 20.048424 , 19.401514 , 20.064615 , ..., 58.323833 ,\n",
+ " 19.887148 , 57.390434 ],\n",
+ " [ 21.084576 , 20.680866 , 21.64765 , ..., 55.39407 ,\n",
+ " 33.448963 , 66.27134 ],\n",
+ " [ 11.052622 , 10.623982 , 11.433642 , ..., 47.643215 ,\n",
+ " 36.700756 , 63.514385 ]]], shape=(3, 177, 241), dtype=float32) wind_speed
(time, lat, lon)
float32
4.731 4.653 4.502 ... 0.9223 0.7502
long_name : 10 metre absolute speed units : m s**-1 array([[[4.730617 , 4.653335 , 4.5015006 , ..., 4.4042077 ,\n",
+ " 4.3029337 , 4.224654 ],\n",
+ " [4.6894236 , 4.5943913 , 4.436858 , ..., 4.3028965 ,\n",
+ " 4.1846075 , 4.096732 ],\n",
+ " [4.694862 , 4.5809503 , 4.489851 , ..., 4.2059255 ,\n",
+ " 4.115315 , 4.0100293 ],\n",
+ " ...,\n",
+ " [3.503713 , 3.3720684 , 3.344423 , ..., 1.8342206 ,\n",
+ " 1.8352563 , 0.4175896 ],\n",
+ " [3.472953 , 3.3231657 , 3.3374777 , ..., 1.7652775 ,\n",
+ " 1.5218233 , 0.70048505],\n",
+ " [3.4529986 , 3.2999609 , 3.3121378 , ..., 1.5646741 ,\n",
+ " 1.2130255 , 0.73205155]],\n",
+ "\n",
+ " [[3.1328826 , 3.0453231 , 2.9196193 , ..., 3.700325 ,\n",
+ " 3.607527 , 3.5463533 ],\n",
+ " [3.071093 , 2.9829714 , 2.869524 , ..., 3.5565448 ,\n",
+ " 3.4684966 , 3.411651 ],\n",
+ " [3.0149822 , 2.911807 , 2.8310108 , ..., 3.557833 ,\n",
+ " 3.5028908 , 3.4427629 ],\n",
+ "...\n",
+ " [3.318586 , 3.3295693 , 3.4088414 , ..., 1.3535202 ,\n",
+ " 1.2800612 , 0.26038703],\n",
+ " [3.3008704 , 3.2764325 , 3.3642638 , ..., 1.302999 ,\n",
+ " 1.0568532 , 0.4285178 ],\n",
+ " [3.3194451 , 3.2793016 , 3.3533967 , ..., 1.2299657 ,\n",
+ " 0.95508343, 0.48199362]],\n",
+ "\n",
+ " [[4.4130855 , 4.289184 , 4.115464 , ..., 4.889172 ,\n",
+ " 4.8617992 , 4.837564 ],\n",
+ " [4.2613797 , 4.13846 , 3.911567 , ..., 4.7677455 ,\n",
+ " 4.741466 , 4.70947 ],\n",
+ " [4.1221275 , 4.034758 , 3.828573 , ..., 4.606384 ,\n",
+ " 4.582491 , 4.5394053 ],\n",
+ " ...,\n",
+ " [3.7673588 , 3.7397146 , 3.7397308 , ..., 1.3979769 ,\n",
+ " 1.0822419 , 0.4879582 ],\n",
+ " [3.7191296 , 3.636174 , 3.6390371 , ..., 1.2724975 ,\n",
+ " 0.9374617 , 0.6769296 ],\n",
+ " [3.6706882 , 3.5708761 , 3.569404 , ..., 1.2560664 ,\n",
+ " 0.9222854 , 0.75015724]]], shape=(3, 177, 241), dtype=float32) CHL_cmes-land
(time, lat, lon)
uint8
2 2 2 2 2 2 2 2 ... 2 2 2 2 2 2 2 2
array([[[2, 2, 2, ..., 2, 2, 2],\n",
+ " [2, 0, 0, ..., 0, 0, 2],\n",
+ " [2, 0, 0, ..., 0, 0, 2],\n",
+ " ...,\n",
+ " [2, 2, 2, ..., 2, 2, 2],\n",
+ " [2, 2, 2, ..., 2, 2, 2],\n",
+ " [2, 2, 2, ..., 2, 2, 2]],\n",
+ "\n",
+ " [[2, 2, 2, ..., 2, 2, 2],\n",
+ " [2, 0, 0, ..., 0, 0, 2],\n",
+ " [2, 0, 0, ..., 0, 0, 2],\n",
+ " ...,\n",
+ " [2, 2, 2, ..., 2, 2, 2],\n",
+ " [2, 2, 2, ..., 2, 2, 2],\n",
+ " [2, 2, 2, ..., 2, 2, 2]],\n",
+ "\n",
+ " [[2, 2, 2, ..., 2, 2, 2],\n",
+ " [2, 0, 0, ..., 0, 0, 2],\n",
+ " [2, 0, 0, ..., 0, 0, 2],\n",
+ " ...,\n",
+ " [2, 2, 2, ..., 2, 2, 2],\n",
+ " [2, 2, 2, ..., 2, 2, 2],\n",
+ " [2, 2, 2, ..., 2, 2, 2]]], shape=(3, 177, 241), dtype=uint8) topo
(time, lat, lon)
float64
-2.658e+03 -2.95e+03 ... 2.786e+03
colorBarMaximum : 8000.0 colorBarMinimum : -8000.0 colorBarPalette : Topography grid_mapping : GDAL_Geographics ioos_category : Location long_name : Topography standard_name : altitude units : meters array([[[-2658., -2950., -3186., ..., -4438., -3285., -3727.],\n",
+ " [-2485., -2815., -3090., ..., -4672., -5028., -4680.],\n",
+ " [-2268., -2762., -2922., ..., -4937., -5166., -4983.],\n",
+ " ...,\n",
+ " [ 340., 312., 290., ..., 4439., 4363., 3235.],\n",
+ " [ 350., 312., 311., ..., 3193., 3800., 2354.],\n",
+ " [ 349., 307., 292., ..., 4056., 4074., 2786.]],\n",
+ "\n",
+ " [[-2658., -2950., -3186., ..., -4438., -3285., -3727.],\n",
+ " [-2485., -2815., -3090., ..., -4672., -5028., -4680.],\n",
+ " [-2268., -2762., -2922., ..., -4937., -5166., -4983.],\n",
+ " ...,\n",
+ " [ 340., 312., 290., ..., 4439., 4363., 3235.],\n",
+ " [ 350., 312., 311., ..., 3193., 3800., 2354.],\n",
+ " [ 349., 307., 292., ..., 4056., 4074., 2786.]],\n",
+ "\n",
+ " [[-2658., -2950., -3186., ..., -4438., -3285., -3727.],\n",
+ " [-2485., -2815., -3090., ..., -4672., -5028., -4680.],\n",
+ " [-2268., -2762., -2922., ..., -4937., -5166., -4983.],\n",
+ " ...,\n",
+ " [ 340., 312., 290., ..., 4439., 4363., 3235.],\n",
+ " [ 350., 312., 311., ..., 3193., 3800., 2354.],\n",
+ " [ 349., 307., 292., ..., 4056., 4074., 2786.]]],\n",
+ " shape=(3, 177, 241)) Indexes: (3)
PandasIndex
PandasIndex(Index([ -12.0, -11.75, -11.5, -11.25, -11.0, -10.75, -10.5, -10.25, -10.0,\n",
+ " -9.75,\n",
+ " ...\n",
+ " 29.75, 30.0, 30.25, 30.5, 30.75, 31.0, 31.25, 31.5, 31.75,\n",
+ " 32.0],\n",
+ " dtype='float32', name='lat', length=177)) PandasIndex
PandasIndex(Index([ 42.0, 42.25, 42.5, 42.75, 43.0, 43.25, 43.5, 43.75, 44.0,\n",
+ " 44.25,\n",
+ " ...\n",
+ " 99.75, 100.0, 100.25, 100.5, 100.75, 101.0, 101.25, 101.5, 101.75,\n",
+ " 102.0],\n",
+ " dtype='float32', name='lon', length=241)) PandasIndex
PandasIndex(DatetimeIndex(['2020-01-01', '2020-02-01', '2020-03-01'], dtype='datetime64[ns]', name='time', freq='MS')) Attributes: (92)
Conventions : CF-1.8, ACDD-1.3 DPM_reference : GC-UD-ACRI-PUG IODD_reference : GC-UD-ACRI-PUG acknowledgement : The Licensees will ensure that original CMEMS products - or value added products or derivative works developed from CMEMS Products including publications and pictures - shall credit CMEMS by explicitly making mention of the originator (CMEMS) in the following manner: <Generated using CMEMS Products, production centre ACRI-ST> citation : The Licensees will ensure that original CMEMS products - or value added products or derivative works developed from CMEMS Products including publications and pictures - shall credit CMEMS by explicitly making mention of the originator (CMEMS) in the following manner: <Generated using CMEMS Products, production centre ACRI-ST> cmems_product_id : OCEANCOLOUR_GLO_BGC_L3_MY_009_103 cmems_production_unit : OC-ACRI-NICE-FR comment : average contact : servicedesk.cmems@acri-st.fr copernicusmarine_version : 1.3.1 creation_date : 2024-04-25 UTC creation_time : 00:47:33 UTC creator_email : servicedesk.cmems@acri-st.fr creator_name : ACRI creator_url : http://marine.copernicus.eu date_created : 2024-04-25T00:47:33Z distribution_statement : See CMEMS Data License duration_time : PT107179S earth_radius : 6378.137 easternmost_longitude : 180.0 easternmost_valid_longitude : 180.00001525878906 file_quality_index : 0 geospatial_bounds : POLYGON ((90.000000 -180.000000, 90.000000 180.000000, -90.000000 180.000000, -90.000000 -180.000000, 90.000000 -180.000000)) geospatial_bounds_crs : EPSG:4326 geospatial_bounds_vertical_crs : EPSG:5829 geospatial_lat_max : 89.97916412353516 geospatial_lat_min : -89.97917175292969 geospatial_lon_max : 179.9791717529297 geospatial_lon_min : -179.9791717529297 geospatial_vertical_max : 0 geospatial_vertical_min : 0 geospatial_vertical_positive : up grid_mapping : Equirectangular grid_resolution : 4.638312339782715 history : Created using software developed at ACRI-ST id : 20240417_cmems_obs-oc_glo_bgc-plankton_myint_l3-multi-4km_P1D institution : ACRI keywords : EARTH SCIENCE > OCEANS > OCEAN CHEMISTRY > CHLOROPHYLL, EARTH SCIENCE > BIOLOGICAL CLASSIFICATION > PROTISTS > PLANKTON > PHYTOPLANKTON keywords_vocabulary : NASA Global Change Master Directory (GCMD) Science Keywords lat_step : 0.0416666679084301 license : See CMEMS Data License lon_step : 0.0416666679084301 naming_authority : CMEMS nb_bins : 37324800 nb_equ_bins : 8640 nb_grid_bins : 37324800 nb_valid_bins : 9704694 netcdf_version_id : 4.3.3.1 of Jul 8 2016 18:15:50 $ northernmost_latitude : 90.0 northernmost_valid_latitude : 82.70833587646484 overall_quality : mode=myint parameter : Chlorophyll-a concentration,Phytoplankton Functional Types parameter_code : CHL,DIATO,DINO,HAPTO,GREEN,PROKAR,PROCHLO,MICRO,NANO,PICO pct_bins : 100.0 pct_valid_bins : 26.000659079218106 period_duration_day : P1D period_end_day : 20240417 period_start_day : 20240417 platform : Aqua,Suomi-NPP,Sentinel-3a,JPSS-1 (NOAA-20),Sentinel-3b processing_level : L3 product_level : 3 product_name : 20240417_cmems_obs-oc_glo_bgc-plankton_myint_l3-multi-4km_P1D product_type : day project : CMEMS publication : Gohin, F., Druon, J. N., Lampert, L. (2002). A five channel chlorophyll concentration algorithm applied to SeaWiFS data processed by SeaDAS in coastal waters. International journal of remote sensing, 23(8), 1639-1661 + Hu, C., Lee, Z., Franz, B. (2012). Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on three-band reflectance difference. Journal of Geophysical Research, 117(C1). doi: 10.1029/2011jc007395 + Xi H, Losa S N, Mangin A, Garnesson P, Bretagnon M, Demaria J, Soppa M A, Hembise Fanton d Andon O, Bracher A (2021) Global chlorophyll a concentrations of phytoplankton functional types with detailed uncertainty assessment using multi-sensor ocean color and sea surface temperature satellite products, JGR, in review. publisher_email : servicedesk.cmems@mercator-ocean.eu publisher_name : CMEMS publisher_url : http://marine.copernicus.eu references : http://www.globcolour.info GlobColour has been originally funded by ESA with data from ESA, NASA, NOAA and GeoEye. This version has received funding from the European Community s Seventh Framework Programme ([FP7/2007-2013]) under grant agreement n. 282723 [OSS2015 project]. registration : 5 sensor : Moderate Resolution Imaging Spectroradiometer,Visible Infrared Imaging Radiometer Suite,Ocean and Land Colour Instrument sensor_name : MODISA,VIIRSN,OLCIa,VIIRSJ1,OLCIb sensor_name_list : MOD,VIR,OLA,VJ1,OLB site_name : GLO software_name : globcolour_l3_reproject software_version : 2022.2 source : surface observation southernmost_latitude : -90.0 southernmost_valid_latitude : -66.33333587646484 standard_name_vocabulary : NetCDF Climate and Forecast (CF) Metadata Convention start_date : 2024-04-16 UTC start_time : 21:12:05 UTC stop_date : 2024-04-18 UTC stop_time : 02:58:23 UTC summary : CMEMS product: cmems_obs-oc_glo_bgc-plankton_my_l3-multi-4km_P1D, generated by ACRI-ST time_coverage_duration : PT107179S time_coverage_end : 2024-04-18T02:58:23Z time_coverage_resolution : P1D time_coverage_start : 2024-04-16T21:12:05Z title : cmems_obs-oc_glo_bgc-plankton_my_l3-multi-4km_P1D westernmost_longitude : -180.0 westernmost_valid_longitude : -180.0 "
+ ],
+ "text/plain": [
+ " Size: 14MB\n",
+ "Dimensions: (time: 3, lat: 177, lon: 241)\n",
+ "Coordinates:\n",
+ " * lat (lat) float32 708B -12.0 -11.75 ... 31.75 32.0\n",
+ " * lon (lon) float32 964B 42.0 42.25 ... 101.8 102.0\n",
+ " * time (time) datetime64[ns] 24B 2020-01-01 ... 20...\n",
+ "Data variables: (12/27)\n",
+ " CHL (time, lat, lon) float32 512kB nan nan ... nan\n",
+ " CHL_cmes-cloud (time, lat, lon) float64 1MB 2.0 2.0 ... 2.0\n",
+ " CHL_cmes-gapfree (time, lat, lon) float32 512kB nan nan ... nan\n",
+ " CHL_cmes-level3 (time, lat, lon) float32 512kB nan nan ... nan\n",
+ " CHL_cmes_flags-gapfree (time, lat, lon) float32 512kB nan nan ... nan\n",
+ " CHL_cmes_flags-level3 (time, lat, lon) float32 512kB nan nan ... nan\n",
+ " ... ...\n",
+ " v_wind (time, lat, lon) float32 512kB -3.804 ... 0...\n",
+ " vg_curr (time, lat, lon) float32 512kB -0.1609 ... nan\n",
+ " wind_dir (time, lat, lon) float32 512kB -65.01 ... 6...\n",
+ " wind_speed (time, lat, lon) float32 512kB 4.731 ... 0....\n",
+ " CHL_cmes-land (time, lat, lon) uint8 128kB 2 2 2 2 ... 2 2 2\n",
+ " topo (time, lat, lon) float64 1MB -2.658e+03 ......\n",
+ "Attributes: (12/92)\n",
+ " Conventions: CF-1.8, ACDD-1.3\n",
+ " DPM_reference: GC-UD-ACRI-PUG\n",
+ " IODD_reference: GC-UD-ACRI-PUG\n",
+ " acknowledgement: The Licensees will ensure that original ...\n",
+ " citation: The Licensees will ensure that original ...\n",
+ " cmems_product_id: OCEANCOLOUR_GLO_BGC_L3_MY_009_103\n",
+ " ... ...\n",
+ " time_coverage_end: 2024-04-18T02:58:23Z\n",
+ " time_coverage_resolution: P1D\n",
+ " time_coverage_start: 2024-04-16T21:12:05Z\n",
+ " title: cmems_obs-oc_glo_bgc-plankton_my_l3-mult...\n",
+ " westernmost_longitude: -180.0\n",
+ " westernmost_valid_longitude: -180.0"
+ ]
+ },
+ "execution_count": 10,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "chl_data"
+ ]
}
],
"metadata": {
"kernelspec": {
- "display_name": "Python 3 (ipykernel)",
+ "display_name": "Python (Pixi)",
"language": "python",
- "name": "python3"
+ "name": "pixi-kernel-python3"
},
"language_info": {
"codemirror_mode": {
diff --git a/contributor_folders/finn/testing_marimo.ipynb b/contributor_folders/finn/testing_marimo.ipynb
deleted file mode 100644
index 8b13789..0000000
--- a/contributor_folders/finn/testing_marimo.ipynb
+++ /dev/null
@@ -1 +0,0 @@
-