-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy path5-case-studies.Rmd
executable file
·1006 lines (746 loc) · 26.4 KB
/
5-case-studies.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
---
title: |
| Introduction to Bayesian statistics with R
| 5. Case studies and GLMMs
author: "Olivier Gimenez"
date: "last updated: `r Sys.Date()`"
output:
beamer_presentation:
fig_caption: no
includes:
in_header: header.tex
latex_engine: pdflatex
slide_level: 2
theme: metropolis
ioslides_presentation: default
classoption: aspectratio=169
---
```{r setup, include = FALSE}
knitr::opts_chunk$set(cache = TRUE,
echo = TRUE,
message = FALSE,
warning = FALSE,
fig.height=6,
fig.width = 1.777777*6,
tidy = FALSE,
comment = NA,
highlight = TRUE,
prompt = FALSE,
crop = TRUE,
comment = "#>",
collapse = TRUE)
knitr::opts_knit$set(width = 60)
library(tidyverse)
library(reshape2)
theme_set(theme_light(base_size = 16))
make_latex_decorator <- function(output, otherwise) {
function() {
if (knitr:::is_latex_output()) output else otherwise
}
}
insert_pause <- make_latex_decorator(". . .", "\n")
insert_slide_break <- make_latex_decorator("----", "\n")
insert_inc_bullet <- make_latex_decorator("> *", "*")
insert_html_math <- make_latex_decorator("", "$$")
```
# What is a Generalized Linear Model (or GLM)?
## Survival of passengers on the Titanic ~ Class
Read `titanic_long.csv` dataset.
```{r read_titanic, collapse=T}
titanic <- read.csv("dat/titanic_long.csv")
head(titanic)
```
## Let's fit a linear model
```{r titanic_lm, echo=1}
titanic.lm <- lm(survived ~ class, data = titanic)
#library(broom)
#tidy(m5)
#layout(matrix(1:4, nrow=2))
#plot(m5)
```
## Clearly, the residuals are not normal!
```{r, echo=FALSE}
hist(resid(titanic.lm), xlab = 'residuals', main = '')
```
## Generalized linear models (GLMs)
* GLMs extend the linear model to scenarios that involve **non-normal error distributions**, hence the term \alert{generalized}
* The **mean response** is expressed as a **linear function of the predictors** using a **link function**, hence the term \alert{linear}
## Generalized Linear Models
1. **Response variable**
+ Bernoulli/Binomial: Binary variables 0/1
+ Poisson: Counts 0, 1, 2, ...
+ Normal: Real values
+ etc
2. **Predictors** (continuous or categorical)
3. **Link function**
+ Gaussian: identity
+ Binomial: logit
+ Poisson: log
+ Type in `?family`
## Bernoulli/Binomial distribution (logistic regression)
- Response variable: Yes/No (e.g. dead/alive, male/female, presence/absence)
- Link function: `logit`
$$
\begin{aligned}
\text{logit}(p) = \ln \left( \dfrac {p} {1-p}\right) \\
\end{aligned}
$$
- Then, if predictor is $x$
$$
\begin{aligned}
\text{Response} \sim \text{Distribution(Mean Response)} \\
Y_i \sim \text{Bernoulli}(p_i) \\
\text{logit}(p_i) = a + b \; x_i\\
p_i = \text{logit}^{-1}(a + b \; x_i) = \dfrac {e^{a+b \; x_i}} {1+e^{a+b \; x_i}} \\
\end{aligned}
$$
## Poisson distributoin (Poisson regression)
- Response variable: Counts (0, 1, 2, 3...)
- Link function: `log`
$$
\begin{aligned}
\text{Response} \sim \text{Distribution(Mean Response)} \\
Y_i \sim \text{Poisson}(\lambda_i) \\
\log(\lambda_i) = a + b \; x_i \\
\lambda_i = e^{a+b \; x_i} \\
\end{aligned}
$$
## Back to survival of Titanic passengers
How many passengers traveled in each class?
```{r,collapse=T}
tapply(titanic$survived, titanic$class, length)
```
## Back to survival of Titanic passengers
How many survived?
```{r,collapse=TRUE}
tapply(titanic$survived, titanic$class, sum)
```
## Back to survival of Titanic passengers
What proportion survived in each class?
```{r,collapse=TRUE}
as.numeric(tapply(titanic$survived, titanic$class, mean))
```
## Back to survival of Titanic passengers (package `dplyr`)
Arrange passenger survival according to class
```{r eval = FALSE}
library(dplyr)
summarise(group_by(titanic, class, survived), count = n())
```
## Back to survival of Titanic passengers (package `dplyr`)
Same manipulation using the pipe operator `%>%`
```{r eval = FALSE}
titanic %>%
group_by(class, survived) %>%
summarise(count = n())
```
## Back to survival of Titanic passengers (package `dplyr`)
Arrange passenger survival according to class
```{r, message=FALSE, collapse=TRUE, size='tinysize',echo=FALSE}
library(dplyr)
titanic %>%
dplyr::count(class, survived, sort = TRUE)
```
## Or graphically...
```{r, echo = FALSE, out.width="90%"}
titanic %>%
mutate(survived = as_factor(survived)) %>%
dplyr::count(class, survived) %>%
ggplot(aes(x = class, y = n, fill = survived)) +
geom_col()
```
## Fitting GLMs in R: `glm` function
```{r titanic_glm, echo=1}
titanic.glm <- glm(survived ~ class, data = titanic, family = binomial)
library(broom)
tidy(titanic.glm)
```
\alert{These estimates are on the logit scale!}
## Interpreting logistic regression outputs
Parameter estimates on the logit scale:
```{r tit_glm_coef, echo=FALSE,collapse=TRUE}
coef(titanic.glm)
```
\alert{We need to back-transform} using the inverse logit function:
```{r tit_glm_invlogit, collapse=TRUE}
plogis(coef(titanic.glm)[1]) # crew survival probability
```
Looking at the data, the proportion of crew who survived is:
```{r crew_surv,collapse=TRUE}
sum(titanic$survived[titanic$class == "crew"]) /
nrow(titanic[titanic$class == "crew", ])
```
## Probability of survival for 1st class passengers?
Needs to add intercept (baseline) to the parameter estimate:
```{r first_surv, collapse=TRUE}
plogis(coef(titanic.glm)[1] + coef(titanic.glm)[2])
```
Again this value matches the data:
```{r first_surv_data, collapse=TRUE}
sum(titanic$survived[titanic$class == "first"]) /
nrow(titanic[titanic$class == "first", ])
```
# Generalized linear *mixed* models (or GLMMs)
## What are random effects?
* \alert{Mixed models} include both fixed and random effects.
* Random effects are statistical parameters that attempt to \alert{explain noise caused by sub-populations} of the population you are trying to model.
* A random-effect model assumes that the dataset being analysed consists of \alert{a hierarchy of different populations} whose differences relate to that hierarchy.
* Measurement that come \alert{in groups}. E.g. classrooms within schools, chapters within books, populations within species, frogs within ponds.
* Sex or age are not clusters; if we were to sample again, we would take the same levels, e.g. male/female and young/old.
## Why do we need random effects?
* Model the clustering itself.
* Interested in variance components (environmental vs. genetic variance)
* Control for bias due to pseudoreplication (time, space, individual)
## GL\alert{M}M formulation
$$
\begin{aligned}
Y_{i{\color{red}{j}}} \sim \text{Distribution(Mean Response}_{i{\color{red}{j}}}\text{)} \\
\text{Mean Response}_{i{\color{red}{j}}} = \beta_{0\color{red}{j}} + \beta_1 \; x_{i1} + \ldots + \beta_P \; x_{iP}\\
\beta_{0{\color{red}{j}}} \sim \text{Normal}(\mu_{group},\sigma^2_{group})\\
\end{aligned}
$$
## Model fitting in R
* Linear Mixed Models (LMMs) and Generalized Linear Mixed Models (GLMMs)
```{r echo=TRUE, eval=FALSE}
library(lme4)
my_LMM <- lmer(y ~ x + (1 | group)) # LMM
my_GLMM <- glmer(y ~ x + (1 | group), family = Distribution) # GLMM
```
* `x` is the \alert{fixed} factor(s)
* `1` is the \alert{random} factor(s), here the intercept
* `group` is for the \alert{grouping} variable
# GLMM with Poisson response
## From Jason Matthiopoulos' book
```{r, out.width = '4cm',out.height='6cm',fig.align='center',echo=FALSE}
knitr::include_graphics('img/textbook-jason.jpg')
```
## Longitudinal study on coral reef
> A survey of a coral reef uses 10 predefined linear transects covered by divers once every week. The response variable of interest is the abundance of a particular species of anemone as a function of water temperature. Counts of anemones are recorded at 20 regular line segments along the transect. The following piece of code will generate a data set with realistic properties according to the above design. Make sure you understand what it is doing. You might want to explain the script to the colleague next to you. Also, to try and make sense of the code of others, it is always good to plot and/or run small sections of the code.
## Data generation
\scriptsize
```{r}
transects <- 10
data <- NULL
for (tr in 1:transects){
# random effect (intercept)
ref <- rnorm(1,0,.5)
# water temperature gradient
t <- runif(1, 18,22) + runif(1,-.2,0.2)*1:20
# Anemone gradient (expected response)
ans <- exp(ref -14 + 1.8 * t - 0.045 * t^2)
# actual counts on 20 segments of the current transect
an <- rpois(20, ans)
data <- rbind(data, cbind(rep(tr, 20), t, an))
}
```
## Our job
* Generate a data set using the anemone code.
* Using `NIMBLE` and `brms`, fit a GLMM with quadratic effect of temperature and a random intercept.
* Fit the same model to the same data in a Frequentist framework using function `lme4::glmer()`.
* Compare the estimates.
## Make sense of the code
* Always difficult to make sense of the code of others.
* Good to plot and/or run small sections of the code.
## Make sense of the code
```{r eval = FALSE}
# random effect (intercept)
ref <- rnorm(1,0,.5)
# water temperature gradient
t <- runif(1, 18,22) + runif(1,-.2,0.2)*1:20
plot(t,type='l')
```
## Make sense of the code
```{r echo = FALSE}
# random effect (intercept)
ref <- rnorm(1,0,.5)
# water temperature gradient
t <- runif(1, 18,22) + runif(1,-.2,0.2)*1:20
plot(t,type='l')
```
## Make sense of the code
```{r eval = FALSE}
# Anemone gradient (expected response)
ans <- exp(ref -14 + 1.8 * t - 0.045 * t^2)
plot(t,log(ans),type='l')
```
## Make sense of the code
```{r echo = FALSE}
ans <- exp(ref -14 + 1.8 * t - 0.045 * t^2)
plot(t,log(ans),type='l')
```
## Make sense of the code
```{r eval = FALSE}
data <- data.frame(Transect = data[,1],
Temperature = data[,2],
Anemones = data[,3])
plot(data$Temperature, data$Anemones)
```
## Make sense of the code
```{r echo = FALSE}
data <- data.frame(Transect = data[,1],
Temperature = data[,2],
Anemones = data[,3])
plot(data$Temperature, data$Anemones)
```
## Write down model
\begin{align*}
\text{Count}_i &\sim \text{Poisson(}\lambda_i) &\text{[likelihood]}\\
\text{log}(\lambda_i) &= a_{\text{TRANSECT[i]}} + b_1 \; \text{temp}_{i} + b_2 \; \text{temp}^2_{i} &\text{[linear model]} \\
a_j &\sim \text{Normal}(\bar{a}, \sigma) &\text{[prior for varying intercepts}] \\
\bar{a} &\sim \text{Normal}(0, 1.5) &\text{[prior for population mean}] \\
\sigma &\sim \text{Uniform}(0, 10) &\text{[prior for standard deviation}] \\
b_1, b_2 &\sim \text{Normal}(0, 1.5) &\text{[prior for slopes}] \\
\end{align*}
# NIMBLE
## Load package
```{r}
library(nimble)
```
## Standardize temperature covariate
\scriptsize
```{r}
boo <- data$Temperature
data$Temp <- (boo - mean(boo)) / sd(boo)
head(data)
```
## Model
\scriptsize
```{r}
model <- nimbleCode({
for (i in 1:n){
count[i] ~ dpois(lambda[i])
log(lambda[i]) <- intercept[transect[i]] + slope[1] * x[i] + slope[2] * pow(x[i],2)
}
for (j in 1:nbtransects){
intercept[j] ~ dnorm(mu.a, sd = sigma.a)
}
mu.a ~ dnorm(0, sd = 1.5)
sigma.a ~ dunif(0, 10)
slope[1] ~ dnorm(0, sd = 1.5)
slope[2] ~ dnorm(0, sd = 1.5)
})
```
## Data
```{r}
my.constants <- list(n = nrow(data),
nbtransects = transects)
my.data <- list(x = data$Temp,
count = data$Anemones,
transect = data$Transect)
```
## Initial values
```{r}
init1 <- list(intercept = rnorm(transects), slope = rnorm(2),
mu.a = rnorm(1), sigma.a = runif(1))
init2 <- list(intercept = rnorm(transects), slope = rnorm(2),
mu.a = rnorm(1), sigma.a = runif(1))
initial.values <- list(init1, init2)
```
## Parameters to monitor (and save)
```{r}
parameters.to.save <- c("slope", "mu.a", "sigma.a")
```
## Set up MCMC details
```{r}
n.iter <- 5000
n.burnin <- 1000
n.chains <- 2
```
## Run model
```{r, warning=FALSE, message=FALSE, eval = FALSE}
mcmc.output <- nimbleMCMC(code = model,
data = my.data,
constants = my.constants,
inits = initial.values,
monitors = parameters.to.save,
niter = n.iter,
nburnin = n.burnin,
nchains = n.chains)
```
```{r, cache = TRUE, echo = FALSE, warning = FALSE, message=FALSE}
mcmc.output <- nimbleMCMC(code = model,
data = my.data,
constants = my.constants,
inits = initial.values,
monitors = parameters.to.save,
niter = n.iter,
nburnin = n.burnin,
nchains = n.chains,
progressBar = FALSE)
```
## Post-process results
\scriptsize
```{r}
library(MCMCvis)
MCMCsummary(object = mcmc.output, round = 2)
```
## Get regression coefficients
Convert regression coefficients from scaled to non-scaled and compare to values used to generate data (from <https://stats.stackexchange.com/questions/361995/how-to-convert-coefficients-from-quadratic-function-from-scaled-to-not-scaled-co>)
Pull two chains together:
```{r}
samples <- rbind(mcmc.output$chain1,mcmc.output$chain2)
```
## Get regression coefficients
```{r}
sbzero <- samples[,'mu.a']
sbun <- samples[,'slope[1]']
sbdeux <- samples[,'slope[2]']
mu <- mean(boo)
sg <- sd(boo)
```
## Get regression coefficients
\tiny
```{r out.width="80%"}
bzero <- sbzero - sbun*mu/sg + sbdeux*mu^2/(sg^2)
hist(bzero)
abline(v = -14, col = "red", lwd = 2)
```
## Get regression coefficients
\tiny
```{r out.width="80%"}
bun <- sbdeux/sg - 2 * sbdeux * mu / (sg^2)
hist(bun)
abline(v = 1.8, col = "red", lwd = 2)
```
## Get regression coefficients
\tiny
```{r out.width="80%"}
bdeux <- sbdeux/(sg^2)
hist(bdeux)
abline(v = - 0.045, col = "red", lwd = 2)
```
# Frequentist approach
## `lme4` fit
\tiny
```{r}
library(lme4)
fit_lme4 <- glmer(Anemones ~ Temp + I(Temp^2) + (1 | Transect), data = data, family = poisson)
fit_lme4
```
## Visualize
```{r}
visreg::visreg(fit_lme4, xvar = 'Temp')
```
# brms
## Implementation
```{r eval = FALSE}
library(brms)
bayes.brms <- brm(Anemones ~ Temp + I(Temp^2) + (1 | Transect),
data = data,
family = poisson("log"),
chains = 2, # nb of chains
iter = 5000, # nb of iterations, including burnin
warmup = 1000, # burnin
thin = 1)
```
```{r message=FALSE, warning=FALSE, include=FALSE}
library(brms)
bayes.brms <- brm(Anemones ~ Temp + I(Temp^2) + (1 | Transect),
data = data,
family = poisson("log"),
chains = 2, # nb of chains
iter = 5000, # nb of iterations, including burnin
warmup = 1000, # burnin
thin = 1)
```
## Numerical summaries
\tiny
```{r}
summary(bayes.brms)
```
## Convergence
```{r out.width="80%"}
plot(bayes.brms)
```
## Quality of fit assessment
```{r out.width="80%"}
pp_check(bayes.brms, ndraws = 100, type = 'ecdf_overlay')
```
## Model comparison
+ What if we’d like to test the effect of temperature using WAIC?
+ We fit a model with no effect of temperature:
```{r eval = FALSE}
bayes.brms2 <- brm(Anemones ~ 1 + (1 | Transect),
data = data,
family = poisson("log"),
chains = 2, # nb of chains
iter = 5000, # nb of iterations, including burnin
warmup = 1000, # burnin
thin = 1)
```
```{r message=FALSE, warning=FALSE, include=FALSE}
bayes.brms2 <- brm(Anemones ~ 1 + (1 | Transect),
data = data,
family = poisson("log"),
chains = 2, # nb of chains
iter = 5000, # nb of iterations, including burnin
warmup = 1000, # burnin
thin = 1)
```
## Model comparison
Then we compare both models, by ranking them with their WAIC:
```{r warning=FALSE, message=FALSE}
waic1 <- waic(bayes.brms) # waic model w/ temperature
waic2 <- waic(bayes.brms2) # waic model wo/ temperature
data.frame(with_temp = waic1$waic,
without_temp = waic2$waic)
```
# GLMM with binomial response
## From a paper by Brice, Larsen and MacNulty (2021)
```{r, out.width="60%",fig.align='center',echo=FALSE}
knitr::include_graphics('img/aspen.png')
```
## Read in data
\scriptsize
```{r}
rawdat <- read_csv("dat/Aspen_Data.csv")
head(rawdat)
```
## Data collection (1)
>> We measured browsing and height of young aspen in 113 plots distributed randomly across the study area. Each plot was a 1 x 20 m belt transect located randomly within an aspen stand that was itself randomly selected from an inventory of stands with respect to high and low wolf-use areas. The inventory was a list of 992 grid cells (240 × 360 m) that contained at least one stand. A ‘stand’ was a group of tree-size aspen (more than 10 cm diameter at breast height) in which each tree was less than 30 m from every other tree. One hundred and thirteen grid cells were randomly selected from the inventory, one stand was randomly selected from each cell, and one plot was randomly established in each stand.
## Data collection (2)
>> We measured aspen at the end of the growing season (late July–September), focusing on plants less than 600 cm tall and more than 1 year old, which we termed ‘young aspen’. For each stand, we measured every young aspen within a plot (‘random stems’) and each of the five tallest young aspen within the stand (‘5T stems’). For all young aspen, we measured browsing status (browsed or unbrowsed) and height of the leader (tallest) stem. A leader was ‘browsed’ if its growth from the previous growing season had been eaten, which we identified by a sharp, pruned edge at the base of the current year's growth. Most plots were measured nearly every year since 1999 and our analysis focused on data from 10 years (2007–2014, 2016–2017) in which sampled stands included measurements of random and 5T stems.
## Data collection (3)
>> We combined measurements of 5T and random stems into one data set of all stems (N = 18,623) across all years (N = 10 years).
## Our job
* Read in the data and get familiar with it.
* Using `NIMBLE` and `brms`, fit a GLMM with 'Browsed' as the response variable. Consider year and type of stems (random or 5T stems) as explanatory variables. Use stand identity as a random effect on the intercept.
* Fit the same model to the same data in a Frequentist framework using function `lme4::glmer()`.
* Compare the estimates.
## Read in data
\scriptsize
```{r}
str(rawdat)
```
## Metadata
+ Plot: individual identifier for each of 113 plots distributed randomly across the study area. Each plot was a 1 × 20 m belt transect located randomly within an aspen stand
+ Year: year in which aspen was sampled
+ Tree: individual identifier for each stem within a plot
+ Browse: denotes the browsing status (browsed = 1,unbrowsed = 0) of the leader (tallest) stem. A leader was ‘browsed’ if its growth from the previous growing season had been eaten
+ Height: height (cm) of the leader stem of each individual aspen
+ Type: sampling method. Every young aspen within a plot is a "random" stem, and each of the five tallest young aspen within the stand is a "5T" stem.
## Format data
```{r}
dat <- rawdat %>%
transmute(y = Browse,
type = if_else(Type == "5T", 1, 0), # numeric
year = as.integer(Year) - 2006, # year starts at 1
id = as_factor(Plot)) # id is a factor
```
## Write down model
\begin{align*}
\text{Brwsed}_i &\sim \text{Bernoulli(}p_i) &\text{[likelihood]}\\
\text{logit}(p_i) &= a_{\text{ID[i]}} + b_1 \; \text{year}_{i} + b_2 \; \text{type}_{i} &\text{[linear model]} \\
a_j &\sim \text{Normal}(\bar{a}, \sigma) &\text{[prior for varying intercepts}] \\
\bar{a} &\sim \text{Normal}(0, 1.5) &\text{[prior for population mean}] \\
\sigma &\sim \text{Uniform}(0, 10) &\text{[prior for standard deviation}] \\
b_1, b_2 &\sim \text{Normal}(0, 1.5) &\text{[prior for slopes}] \\
\end{align*}
# NIMBLE
## Load package
```{r}
library(nimble)
```
## Model
\scriptsize
```{r}
model <- nimbleCode({
for (i in 1:n){
y[i] ~ dbern(p[i])
logit(p[i]) <- a[id[i]] + beta[1] * type[i] + beta[2] * year[i] + beta[3] * year[i] * type[i]
}
for (j in 1:nblevels){
a[j] ~ dnorm(mu.a, sd = sigma.a)
}
for (k in 1:3){
beta[k] ~ dnorm(0, sd = 1.5)
}
mu.a ~ dnorm(0, sd = 1.5)
sigma.a ~ dunif(0,10)
})
```
## Data
```{r}
my.constants <- list(id = as.numeric(as_factor(dat$id)),
n = length(dat$y),
nblevels = length(levels(as_factor(dat$id))))
my.data <- list(y = dat$y,
type = dat$type,
year = dat$year)
```
## Initial values
```{r}
init1 <- list(mu.a = -0.5, sigma.a = 0.1, beta = rnorm(3))
init2 <- list(mu.a = 0.5, sigma.a = 0.5, beta = rnorm(3))
initial.values <- list(init1, init2)
```
## Parameters to monitor (and save)
```{r}
parameters.to.save <- c("mu.a", "sigma.a", "beta")
```
## Set up MCMC details
```{r}
n.iter <- 5000
n.burnin <- 1000
n.chains <- 2
```
## Run model
```{r, warning=FALSE, message=FALSE, eval = FALSE}
mcmc.output <- nimbleMCMC(code = model,
data = my.data,
constants = my.constants,
inits = initial.values,
monitors = parameters.to.save,
niter = n.iter,
nburnin = n.burnin,
nchains = n.chains)
```
```{r, cache = TRUE, echo = FALSE, warning = FALSE, message=FALSE}
mcmc.output <- nimbleMCMC(code = model,
data = my.data,
constants = my.constants,
inits = initial.values,
monitors = parameters.to.save,
niter = n.iter,
nburnin = n.burnin,
nchains = n.chains,
progressBar = FALSE)
```
## Post-process results
\scriptsize
```{r}
library(MCMCvis)
MCMCsummary(object = mcmc.output, round = 2)
```
## Visualize (1)
\tiny
```{r}
# pool two chains together
samples <- rbind(mcmc.output$chain1, mcmc.output$chain2)
nsim <- nrow(samples)
# get values sampled in posterior distribution of regression parameters
beta1 <- samples[,'beta[1]']
beta2 <- samples[,'beta[2]']
beta3 <- samples[,'beta[3]']
intercept <- samples[,'mu.a']
# predict
logitp_5T <- matrix(NA, nrow = nsim, ncol = 11)
logitp_random <- matrix(NA, nrow = nsim, ncol = 11)
for (i in 1:nsim){ # loop over simulations
for (j in 1:11){ # loop over years
logitp_5T[i,j] <- intercept[i] + beta1[i] * 1 + beta2[i] * j + beta3[i] * 1 * j
logitp_random[i,j] <- intercept[i] + beta1[i] * 0 + beta2[i] * j + beta3[i] * 0 * j
}
}
# back-transorm
p_5T <- plogis(logitp_5T)
p_random <- plogis(logitp_random)
```
## Visualize (2)
\scriptsize
```{r}
# means and credible intervals
p_5T_mean <- apply(p_5T, 2, mean)
p_5T_inf <- apply(p_5T, 2, quantile, probs = 2.5/100)
p_5T_sup <- apply(p_5T, 2, quantile, probs = 97.5/100)
p_random_mean <- apply(p_random, 2, mean)
p_random_inf <- apply(p_random, 2, quantile, probs = 2.5/100)
p_random_sup <- apply(p_random, 2, quantile, probs = 97.5/100)
```
## Visualize (3)
\tiny
```{r eval = FALSE}
data.frame(year = c(1:11, 1:11),
type = factor(c(rep(1, 11), rep(0, 11))), # Convert type to a factor
p_mean = c(p_5T_mean,p_random_mean),
p_inf = c(p_5T_inf, p_random_inf),
p_sup = c(p_5T_sup, p_random_sup)) %>%
ggplot() +
geom_ribbon(aes(x = year,
ymin = p_inf,
ymax = p_sup,
group = type,
fill = type),
alpha = 0.3,
show.legend = F) +
geom_line(aes(x = year,
y = p_mean,
group = type,
color = type),
size=0.7) +
scale_color_manual(values = c("1" = "#CC2529", "0" = "#396AB1")) +
scale_fill_manual(values = c("1" = "#CC2529", "0" = "#396AB1")) +
xlab("Year")+
ylab("Browse probability")+
theme_light()
```
## Visualize (3)
```{r echo = FALSE, out.width="80%"}
data.frame(year = c(1:11, 1:11),
type = factor(c(rep(1, 11), rep(0, 11))), # Convert type to a factor
p_mean = c(p_5T_mean,p_random_mean),
p_inf = c(p_5T_inf, p_random_inf),
p_sup = c(p_5T_sup, p_random_sup)) %>%
ggplot() +
geom_ribbon(aes(x = year,
ymin = p_inf,
ymax = p_sup,
group = type,
fill = type),
alpha = 0.3,
show.legend = F) +
geom_line(aes(x = year,
y = p_mean,
group = type,
color = type),
size=0.7) +
scale_color_manual(values = c("1" = "#CC2529", "0" = "#396AB1")) +
scale_fill_manual(values = c("1" = "#CC2529", "0" = "#396AB1")) +
xlab("Year")+
ylab("Browse probability")+
theme_light()
```
# Frequentist approach
## `lme4` fit
\tiny
```{r}
library(lme4)
fit_lme4 <- glmer(y ~ type * year + (1|id), data = dat, family = "binomial")
fit_lme4
```
## Visualize
\scriptsize
```{r out.width="80%"}
visreg::visreg(fit = fit_lme4, xvar = "year",
by = "type", overlay = TRUE, scale = "response")
```
# brms
## Implementation
```{r eval = FALSE}
library(brms)
bayes.brms <- brm(y ~ type * year + (1|id),
data = dat,
family = bernoulli("logit"),
chains = 2, # nb of chains
iter = 5000, # nb of iterations, including burnin
warmup = 1000, # burnin
thin = 1)
```
```{r message=FALSE, warning=FALSE, include=FALSE}
library(brms)
bayes.brms <- brm(y ~ type * year + (1|id),
data = dat,
family = bernoulli("logit"),
chains = 2, # nb of chains
iter = 5000, # nb of iterations, including burnin
warmup = 1000, # burnin
thin = 1)
```
## Numerical summaries
\tiny
```{r}
summary(bayes.brms)
```