|
| 1 | +package crypto |
| 2 | + |
| 3 | +import "C" |
| 4 | +import ( |
| 5 | + "crypto/rand" |
| 6 | + "fmt" |
| 7 | + "github.com/onflow/flow-go/crypto/bn254" |
| 8 | + bn256cf "github.com/onflow/flow-go/crypto/bn254/cloudflare" |
| 9 | + "github.com/onflow/flow-go/crypto/hash" |
| 10 | + "golang.org/x/crypto/sha3" |
| 11 | + "math/big" |
| 12 | +) |
| 13 | + |
| 14 | +var ( |
| 15 | + Big0 = big.NewInt(0) |
| 16 | + Big1 = big.NewInt(1) |
| 17 | + Big2 = big.NewInt(2) |
| 18 | + Big3 = big.NewInt(3) |
| 19 | + Big4 = big.NewInt(4) |
| 20 | +) |
| 21 | + |
| 22 | +const ( |
| 23 | + PubKeyLenBLSBN256 = 128 |
| 24 | + |
| 25 | + SignatureLengthBLSBN256 = 64 |
| 26 | + |
| 27 | + KeyGenSeedMaxLenBLSBN256 = 2048 // large enough constant accepted by the implementation |
| 28 | + |
| 29 | +) |
| 30 | + |
| 31 | +var G2, _ = BuildG2( |
| 32 | + BigFromBase10("11559732032986387107991004021392285783925812861821192530917403151452391805634"), |
| 33 | + BigFromBase10("10857046999023057135944570762232829481370756359578518086990519993285655852781"), |
| 34 | + BigFromBase10("4082367875863433681332203403145435568316851327593401208105741076214120093531"), |
| 35 | + BigFromBase10("8495653923123431417604973247489272438418190587263600148770280649306958101930")) |
| 36 | + |
| 37 | +// P is a prime over which we form a basic field: 36u⁴+36u³+24u²+6u+1. |
| 38 | +var P = BigFromBase10("21888242871839275222246405745257275088696311157297823662689037894645226208583") |
| 39 | + |
| 40 | +func BigFromBase10(s string) *big.Int { |
| 41 | + n, _ := new(big.Int).SetString(s, 10) |
| 42 | + return n |
| 43 | +} |
| 44 | + |
| 45 | +// BuildG1 create G1 point from big.Int(s) |
| 46 | +func BuildG1(x, y *big.Int) (*bn254.G1, error) { |
| 47 | + // Each value is a 256-bit number. |
| 48 | + const numBytes = 256 / 8 |
| 49 | + xBytes := new(big.Int).Mod(x, P).Bytes() |
| 50 | + yBytes := new(big.Int).Mod(y, P).Bytes() |
| 51 | + m := make([]byte, numBytes*2) |
| 52 | + copy(m[1*numBytes-len(xBytes):], xBytes) |
| 53 | + copy(m[2*numBytes-len(yBytes):], yBytes) |
| 54 | + point := new(bn254.G1) |
| 55 | + if _, err := point.Unmarshal(m); err != nil { |
| 56 | + return nil, err |
| 57 | + } |
| 58 | + return point, nil |
| 59 | +} |
| 60 | + |
| 61 | +// BuildG2 create G2 point from big.Int(s) |
| 62 | +func BuildG2(xx, xy, yx, yy *big.Int) (*bn254.G2, error) { |
| 63 | + // Each value is a 256-bit number. |
| 64 | + const numBytes = 256 / 8 |
| 65 | + xxBytes := new(big.Int).Mod(xx, P).Bytes() |
| 66 | + xyBytes := new(big.Int).Mod(xy, P).Bytes() |
| 67 | + yxBytes := new(big.Int).Mod(yx, P).Bytes() |
| 68 | + yyBytes := new(big.Int).Mod(yy, P).Bytes() |
| 69 | + |
| 70 | + m := make([]byte, numBytes*4) |
| 71 | + copy(m[1*numBytes-len(xxBytes):], xxBytes) |
| 72 | + copy(m[2*numBytes-len(xyBytes):], xyBytes) |
| 73 | + copy(m[3*numBytes-len(yxBytes):], yxBytes) |
| 74 | + copy(m[4*numBytes-len(yyBytes):], yyBytes) |
| 75 | + point := new(bn254.G2) |
| 76 | + if _, err := point.Unmarshal(m); err != nil { |
| 77 | + return nil, err |
| 78 | + } |
| 79 | + return point, nil |
| 80 | +} |
| 81 | + |
| 82 | +// blsBLS12381Algo, embeds SignAlgo |
| 83 | +type blsBN256Algo struct { |
| 84 | + // the signing algo and parameters |
| 85 | + algo SigningAlgorithm |
| 86 | +} |
| 87 | + |
| 88 | +// BLS context on the BLS 12-381 curve |
| 89 | +var blsBN256Instance *blsBN256Algo |
| 90 | + |
| 91 | +// prKeyBLSBLS12381 is the private key of BLS using BLS12_381, it implements PrivateKey |
| 92 | +type prKeyBLSBN256 struct { |
| 93 | + pk *pubKeyBLSBN256 |
| 94 | + s *big.Int |
| 95 | + point *bn254.G1 |
| 96 | +} |
| 97 | + |
| 98 | +// newPrKeyBLSBLS12381 creates a new BLS private key with the given scalar. |
| 99 | +// If no scalar is provided, the function allocates an |
| 100 | +// empty scalar. |
| 101 | +func newPrKeyBLSBN256(s *big.Int) *prKeyBLSBN256 { |
| 102 | + if s == nil { |
| 103 | + k, p, _ := bn256cf.RandomG1(rand.Reader) |
| 104 | + return &prKeyBLSBN256{s: k, point: p} |
| 105 | + } |
| 106 | + |
| 107 | + return &prKeyBLSBN256{s: s, point: new(bn254.G1).ScalarBaseMult(s)} |
| 108 | +} |
| 109 | + |
| 110 | +// Algorithm returns the Signing Algorithm |
| 111 | +func (sk *prKeyBLSBN256) Algorithm() SigningAlgorithm { |
| 112 | + return BLSBN256 |
| 113 | +} |
| 114 | + |
| 115 | +// Size returns the private key length in bytes |
| 116 | +func (sk *prKeyBLSBN256) Size() int { |
| 117 | + return PubKeyLenBLSBN256 |
| 118 | +} |
| 119 | + |
| 120 | +// computePublicKey generates the public key corresponding to |
| 121 | +// the input private key. The function makes sure the public key |
| 122 | +// is valid in G2. |
| 123 | +func (sk *prKeyBLSBN256) computePublicKey() { |
| 124 | + pk := new(bn254.G2).ScalarBaseMult(sk.s) |
| 125 | + |
| 126 | + sk.pk = &pubKeyBLSBN256{point: pk} |
| 127 | +} |
| 128 | + |
| 129 | +// PublicKey returns the public key corresponding to the private key |
| 130 | +func (sk *prKeyBLSBN256) PublicKey() PublicKey { |
| 131 | + if sk.pk != nil { |
| 132 | + return sk.pk |
| 133 | + } |
| 134 | + |
| 135 | + sk.computePublicKey() |
| 136 | + return sk.pk |
| 137 | +} |
| 138 | + |
| 139 | +// BigToBytes convert big int to byte array |
| 140 | +// `minLen` is the minimum length of the array |
| 141 | +func BigToBytes(bi *big.Int, minLen int) []byte { |
| 142 | + b := bi.Bytes() |
| 143 | + if minLen <= len(b) { |
| 144 | + return b |
| 145 | + } |
| 146 | + m := make([]byte, minLen) |
| 147 | + copy(m[minLen-len(b):], b) |
| 148 | + return m |
| 149 | +} |
| 150 | + |
| 151 | +// Encode returns a byte encoding of the private key. |
| 152 | +// The encoding is a raw encoding in big endian padded to the group order |
| 153 | +func (sk *prKeyBLSBN256) Encode() []byte { |
| 154 | + return BigToBytes(sk.s, 32) |
| 155 | +} |
| 156 | + |
| 157 | +// Equals checks is two public keys are equal. |
| 158 | +func (sk *prKeyBLSBN256) Equals(other PrivateKey) bool { |
| 159 | + otherBLS, ok := other.(*prKeyBLSBN256) |
| 160 | + if !ok { |
| 161 | + return false |
| 162 | + } |
| 163 | + |
| 164 | + return otherBLS.String() == sk.String() |
| 165 | +} |
| 166 | + |
| 167 | +func (sk *prKeyBLSBN256) Sign(data []byte, hasher hash.Hasher) (Signature, error) { |
| 168 | + m := hasher.ComputeHash(data) |
| 169 | + hm := HashToG1(m) |
| 170 | + g1 := new(bn254.G1) |
| 171 | + g1.ScalarMult(hm, sk.s) |
| 172 | + return g1.Marshal(), nil |
| 173 | +} |
| 174 | + |
| 175 | +// String returns the hex string representation of the key. |
| 176 | +func (sk *prKeyBLSBN256) String() string { |
| 177 | + return fmt.Sprintf("%#x", sk.Encode()) |
| 178 | +} |
| 179 | + |
| 180 | +// pubKeyBLSBN256 is the public key of BLS using BN256, |
| 181 | +// it implements PublicKey. |
| 182 | +type pubKeyBLSBN256 struct { |
| 183 | + // public key G2 point |
| 184 | + point *bn254.G2 |
| 185 | +} |
| 186 | + |
| 187 | +// Algorithm returns the Signing Algorithm |
| 188 | +func (pk *pubKeyBLSBN256) Algorithm() SigningAlgorithm { |
| 189 | + return BLSBN256 |
| 190 | +} |
| 191 | + |
| 192 | +// Size returns the public key lengh in bytes |
| 193 | +func (pk *pubKeyBLSBN256) Size() int { |
| 194 | + return PubKeyLenBLSBN256 |
| 195 | +} |
| 196 | + |
| 197 | +// Encode returns a byte encoding of the public key. |
| 198 | +// Since we use a compressed encoding by default, this delegates to EncodeCompressed |
| 199 | +func (pk *pubKeyBLSBN256) Encode() []byte { |
| 200 | + dest := make([]byte, PubKeyLenBLSBN256) |
| 201 | + _, _ = pk.point.Unmarshal(dest) |
| 202 | + return dest |
| 203 | +} |
| 204 | + |
| 205 | +// Equals checks is two public keys are equal |
| 206 | +func (pk *pubKeyBLSBN256) Equals(other PublicKey) bool { |
| 207 | + otherBLS, ok := other.(*pubKeyBLSBN256) |
| 208 | + if !ok { |
| 209 | + return false |
| 210 | + } |
| 211 | + return pk.point.String() == otherBLS.point.String() |
| 212 | +} |
| 213 | + |
| 214 | +// String returns the hex string representation of the key. |
| 215 | +func (pk *pubKeyBLSBN256) String() string { |
| 216 | + return fmt.Sprintf("%#x", pk.Encode()) |
| 217 | +} |
| 218 | + |
| 219 | +func (pk *pubKeyBLSBN256) EncodeCompressed() []byte { |
| 220 | + return pk.Encode() |
| 221 | +} |
| 222 | + |
| 223 | +func (pk *pubKeyBLSBN256) Verify(s Signature, data []byte, hasher hash.Hasher) (bool, error) { |
| 224 | + // hash the input to 128 bytes |
| 225 | + h := hasher.ComputeHash(data) |
| 226 | + |
| 227 | + hm := new(bn254.G1).Neg(HashToG1(h)) |
| 228 | + a := make([]*bn254.G1, 2) |
| 229 | + b := make([]*bn254.G2, 2) |
| 230 | + |
| 231 | + sig := new(bn254.G1) |
| 232 | + if _, err := sig.Unmarshal(s); err != nil { |
| 233 | + return false, err |
| 234 | + } |
| 235 | + |
| 236 | + a[0], b[0] = hm, pk.point |
| 237 | + a[1], b[1] = sig, G2 |
| 238 | + return bn254.PairingCheck(a, b), nil |
| 239 | +} |
| 240 | + |
| 241 | +func Keccak256(m []byte) []byte { |
| 242 | + sha := sha3.NewLegacyKeccak256() |
| 243 | + sha.Write(m) |
| 244 | + return sha.Sum(nil) |
| 245 | +} |
| 246 | + |
| 247 | +func g1XToYSquared(x *big.Int) *big.Int { |
| 248 | + result := new(big.Int) |
| 249 | + result.Exp(x, Big3, P) |
| 250 | + result.Add(result, Big3) |
| 251 | + return result |
| 252 | +} |
| 253 | + |
| 254 | +// Currently implementing first method from |
| 255 | +// http://mathworld.wolfram.com/QuadraticResidue.html |
| 256 | +// Experimentally, this seems to always return the canonical square root, |
| 257 | +// however I haven't seen a proof of this. |
| 258 | +func calcQuadRes(ySqr *big.Int, q *big.Int) *big.Int { |
| 259 | + resMod4 := new(big.Int).Mod(q, Big4) |
| 260 | + if resMod4.Cmp(Big3) == 0 { |
| 261 | + k := new(big.Int).Sub(q, Big3) |
| 262 | + k.Div(k, Big4) |
| 263 | + exp := new(big.Int).Add(k, Big1) |
| 264 | + result := new(big.Int) |
| 265 | + result.Exp(ySqr, exp, q) |
| 266 | + return result |
| 267 | + } |
| 268 | + // TODO: ADD CODE TO CALC QUADRATIC RESIDUE IN OTHER CASES |
| 269 | + return Big0 |
| 270 | +} |
| 271 | + |
| 272 | +// HashToG1 try and increment hashing data to a G1 point |
| 273 | +func HashToG1(m []byte) *bn254.G1 { |
| 274 | + px := new(big.Int) |
| 275 | + py := new(big.Int) |
| 276 | + |
| 277 | + h := m |
| 278 | + //h := Keccak256(m) |
| 279 | + bf := append([]byte{0}, h...) |
| 280 | + for { |
| 281 | + h = Keccak256(bf) |
| 282 | + px.SetBytes(h[:32]) |
| 283 | + px.Mod(px, P) |
| 284 | + ySqr := g1XToYSquared(px) |
| 285 | + root := calcQuadRes(ySqr, P) |
| 286 | + rootSqr := new(big.Int).Exp(root, Big2, P) |
| 287 | + if rootSqr.Cmp(ySqr) == 0 { |
| 288 | + py = root |
| 289 | + bf[0] = byte(255) |
| 290 | + signY := Keccak256(bf)[31] % 2 |
| 291 | + if signY == 1 { |
| 292 | + py.Sub(P, py) |
| 293 | + } |
| 294 | + break |
| 295 | + } |
| 296 | + bf[0]++ |
| 297 | + } |
| 298 | + p, err := BuildG1(px, py) |
| 299 | + if err != nil { |
| 300 | + panic(err) |
| 301 | + } |
| 302 | + return p |
| 303 | +} |
| 304 | + |
| 305 | +func (a *blsBN256Algo) decodePublicKey(publicKeyBytes []byte) (PublicKey, error) { |
| 306 | + p := new(bn254.G2) |
| 307 | + if _, err := p.Unmarshal(publicKeyBytes); err != nil { |
| 308 | + return nil, err |
| 309 | + } |
| 310 | + return &pubKeyBLSBN256{point: p}, nil |
| 311 | +} |
| 312 | + |
| 313 | +// generatePrivateKey generates a private key for BLS on BLS12-381 curve. |
| 314 | +// The minimum size of the input seed is 48 bytes. |
| 315 | +// |
| 316 | +// It is recommended to use a secure crypto RNG to generate the seed. |
| 317 | +// The seed must have enough entropy and should be sampled uniformly at random. |
| 318 | +// |
| 319 | +// The generated private key (resp. its corresponding public key) are guaranteed |
| 320 | +// not to be equal to the identity element of Z_r (resp. G2). |
| 321 | +func (a *blsBN256Algo) generatePrivateKey(seed []byte) (PrivateKey, error) { |
| 322 | + if len(seed) == 0 { |
| 323 | + return newPrKeyBLSBN256(nil), nil |
| 324 | + } |
| 325 | + |
| 326 | + if len(seed) > KeyGenSeedMaxLenBLSBN256 { |
| 327 | + return nil, invalidInputsErrorf("seed byte length should be between %d and %d", |
| 328 | + 0, KeyGenSeedMaxLenECDSA) |
| 329 | + } |
| 330 | + |
| 331 | + k := new(big.Int).SetBytes(seed) |
| 332 | + |
| 333 | + sk := newPrKeyBLSBN256(k) |
| 334 | + |
| 335 | + return sk, nil |
| 336 | +} |
| 337 | + |
| 338 | +func (a *blsBN256Algo) decodePrivateKey(privateKeyBytes []byte) (PrivateKey, error) { |
| 339 | + return a.generatePrivateKey(privateKeyBytes) |
| 340 | +} |
| 341 | + |
| 342 | +func (a *blsBN256Algo) decodePublicKeyCompressed(publicKeyBytes []byte) (PublicKey, error) { |
| 343 | + return a.decodePublicKey(publicKeyBytes) |
| 344 | +} |
0 commit comments