-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.cpp
50 lines (45 loc) · 1.74 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
#include <iostream>
#include <cassert>
#include "net.hpp"
using namespace std;
int main() {
// int train_data[3][16] = {
// {1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1},
// {0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0},
// {1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1}
// };
// int train_label[3][3] = {
// {1, -1, -1},
// {-1, 1, -1},
// {-1, -1, 1}
// };
vector<vector<double> > train_data = {
{1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1},
{0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0},
{1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1}
};
vector<vector<double> > train_label = {
{1, -1, -1},
{-1, 1, -1},
{-1, -1, 1}
};
const int layers_num = 2;
Net *net = new Net(layers_num);
vector<int> layers_dim = {16, 16, 3}; // the last one is the output dimension
vector<WeightFiller> layers_filler = {Gaussian_filler, Gaussian_filler};
// vector<WeightFiller> layers_filler = {Uniform_filler, Uniform_filler};
vector<double> layers_lr = {0.1, 0.1};
vector<vector<double> > layers_filler_range = {{-1,1}, {-1,1}};
vector<ActivateFunction> layers_activation = {Tanh, Tanh};
// vector<OptimizeAlgorithm> layers_opt_algorithm = {Adagrad, Adagrad};
vector<OptimizeAlgorithm> layers_opt_algorithm = {Standard, Standard};
net->InitNet(layers_dim, layers_filler, layers_lr, layers_filler_range, layers_activation, layers_opt_algorithm);
int max_iter = 100000000;
int batch_size = 3;
string model_name = "model_15.txt";
string log_name = "log_15.txt";
net->train(train_data, train_label, max_iter, -1, batch_size, log_name);
net->SaveModel(model_name);
delete net;
return 0;
}