Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

CMMMU数据集支持 #398

Open
DietDietDiet opened this issue Aug 21, 2024 · 5 comments
Open

CMMMU数据集支持 #398

DietDietDiet opened this issue Aug 21, 2024 · 5 comments
Labels
Feature Request Extra attention is needed

Comments

@DietDietDiet
Copy link

hi,cmmmu官网上提到vlmevalkit已经支持了CMMMU,但支持的配置集中暂未列出改配置,请问下是什么情况呀

@kennymckormick
Copy link
Member

Hi, @DietDietDiet ,
CMMMU 应该是尚未在 VLMEvalKit 中支持,作者没有提过 PR

@DietDietDiet
Copy link
Author

@kennymckormick 这个官方可以支持一下吗

@kennymckormick kennymckormick added the Feature Request Extra attention is needed label Aug 27, 2024
@kennymckormick
Copy link
Member

Hi, @DietDietDiet
We have added this benchmark to our TODO list, but cannot guarantee a time at this moment. If you urgently need this benchmark, you can follow the MMMU example to create a PR and add this benchmark (we will help with merging very fast).

@kennymckormick kennymckormick pinned this issue Aug 28, 2024
@Shajiu
Copy link

Shajiu commented Nov 5, 2024

支持CMMMU评测:
大概步骤为加载数据集、拼接并构建调用LLM的指令、最麻烦的就是各种对结果的归一化。当前当前只能对【dev 、val】这两个数据进行评估了,因为test文件未开源答案。具体数据地址分别为:

第一步:数据获取:
dev: https://github.com/CMMMU-Benchmark/CMMMU/tree/main/cmmmu-data-dev
val : https://github.com/CMMMU-Benchmark/CMMMU/tree/main/cmmmu-data-val

第二步:拼接指令预测结果

PROMPT = {
    "task_instructions": [
        "请回答以下多项选择题,并选出正确选项。这些题目可能包括单选和多选题型。如果所提供的信息不足以确定一个明确的答案,那么请根据可用的数据和你的判断来选择最可能正确的选项。",
        "请回答以下判断题,并根据题目描述和所给的信息来判断问题中陈述的对错。如果信息不完整或不足以作出绝对判断,请运用你的逻辑推理和现有信息来做出最可能的判断。",
        "请回答以下填空题,并根据题目的要求和所提供的信息来给出最恰当的答案。如果信息不足以确切回答,那么请依据现有的数据和你的推理能力来填写最合理的答案。",
    ],
    "multi_choice_example_format": ["问题:{}\n选项:\n{}\n正确答案:\n"],
    "T/F_example_format": ["问题:{}\n正确答案:\n"],
    "short_ans_example_format": ["问题:{}\n正确答案:\n"],
}



def construct_prompt(sample):
    question = sample["question"]
    task_instructions = PROMPT["task_instructions"]

    if sample["type"] == "选择":
        formatted_options = ""
        start_chr = "A"
        for i in range(1, 5):
            formatted_options += f"({start_chr}) {sample[f'option{i}']}\n"
            start_chr = chr(ord(start_chr) + 1)

        current_example_template = PROMPT["multi_choice_example_format"][0]
        current_example = current_example_template.format(question, formatted_options)
        final_input_prompt = task_instructions[0] + "\n\n" + current_example

    elif sample["type"] == "判断":
        current_example_template = PROMPT["T/F_example_format"][0]
        current_example = current_example_template.format(question)
        final_input_prompt = task_instructions[1] + "\n\n" + current_example

    else:  # For fill in the blanks questions.
        current_example_template = PROMPT["short_ans_example_format"][0]
        current_example = current_example_template.format(question)
        final_input_prompt = task_instructions[2] + "\n\n" + current_example
    
   
    for i,img in enumerate(sample["img_list"]):
        final_input_prompt = final_input_prompt.replace(img, f"图片 {i}")
    return final_input_prompt

以上代码中函数construct_prompt(sample)需要传的sample为读取的每一行内容。

第三步: 获取到LLM返回的纯文本的结果后,需要通过如下进行归一化,这个的确比较麻烦。

import json
import os
import random
import re
from collections import Counter, defaultdict
from loguru import logger as eval_logger


def load_cmmmu(cmmmu_dir):
    """
    读取Json文件
    :param table_vqa_dir:
    :param split:
    :return:
    """
    dataset = [json.loads(value.strip()) for value in
               open(os.path.join(cmmmu_dir)).readlines()]
    if "answer" not in dataset[0]:
        return None
    else:
        return dataset

def cmmmu_process_results(doc, results):
    pred = results[0]
    if doc["type"] == "选择":
        index2ans, all_choices = get_multi_choice_info([doc[f"option{i}"] for i in range(1, 5)])
        parsed_pred = get_multi_choice_prediction(pred, all_choices, index2ans)
    elif doc["type"] == "判断":
        parsed_pred = get_TF_prediction(pred)
    else:
        parsed_pred = get_fill_blank_prediction(pred, doc["answer"])

    return {"cmmmu_acc": {"id": doc["id"], "subdomain": doc["subcategory"], "question_type": doc["type"], "answer": doc["answer"], "parsed_pred": parsed_pred}}

def get_multi_choice_info(options):
    start_chr = "A"
    all_choices = []
    index2ans = {}
    for i, option in enumerate(options):
        index2ans[chr(ord(start_chr) + i)] = option
        all_choices.append(chr(ord(start_chr) + i))

    return index2ans, all_choices

def get_multi_choice_prediction(response, all_choices, index2ans):
    for char in [",", ".", "!", "?", ";", ":", "'"]:
        response = response.strip(char)
    response = " " + response + " "  # add space to avoid partial match

    candidates = []

    for choice in all_choices:  # (A) (B) (C) (D)
        # Add the choice to candidates each time it appears in the response
        candidates.extend([choice for _ in range(response.count(f"({choice})"))])

    if len(candidates) == 0:
        for choice in all_choices:  # A B C D
            # Similarly, add the choice for each occurrence
            candidates.extend([choice for _ in range(response.count(f"{choice}"))])

    if len(candidates) == 0 and len(response.split()) >= 1:
        for index, ans in index2ans.items():
            # Add index for each occurrence of ans in response
            candidates.extend([index for _ in range(response.count(ans))])

    # if all above doesn't get candidates, check if the content is larger than 5 tokens and try to parse the example
    if len(candidates) == 0 and len(response.split()) >= 1:
        for index, ans in index2ans.items():
            if ans in response:
                candidates.append(index)
                index_ans = False  # it's content ans.

    if len(candidates) == 0:  # still not get answer, randomly choose one.
        return random.choice(all_choices)
        # return ''
    else:
        # Count the occurrence of each candidate
        candidate_counts = Counter(candidates)

        # Select the most frequent candidates
        max_count = max(candidate_counts.values())
        most_frequent_candidates = [c for c in all_choices if candidate_counts.get(c, 0) == max_count]

        # Combine the most frequent candidates in ABCD order
        return "".join(most_frequent_candidates)

def get_fill_blank_prediction(response, answer):
    """get the prediction from the generated response,
    return a list of predicted strings or numbers"""

    def get_key_subresponses(response):
        key_responses = []
        response = response.strip("。").strip()
        sub_responses = re.split(r"。|\n", response)
        indicators_of_keys = ["是", "为", "所以", "等于", "方案", "选择", "正确答案", "因此", "最后", "答案", "结果"]
        key_responses = []
        for index, resp in enumerate(sub_responses):
            # if last one, accept it's an equation (the entire response can be just one sentence with equation)
            if index == len(sub_responses) - 1:
                indicators_of_keys.extend(["="])
            shortest_key_response = None  # the shortest response that may contain the answer (tail part of the response)
            for indicator in indicators_of_keys:
                if indicator in resp:
                    if not shortest_key_response:
                        shortest_key_response = resp.split(indicator)[-1].strip()
                    else:
                        if len(resp.split(indicator)[-1].strip()) < len(shortest_key_response):
                            shortest_key_response = resp.split(indicator)[-1].strip()

            if shortest_key_response:
                # and it's not trivial
                if shortest_key_response.strip() not in [":", ",", ".", "!", "?", ";", ":", "'"]:
                    key_responses.append(shortest_key_response)
        if len(key_responses) == 0:  # did not found any
            return [response]
        return key_responses

    key_responses = get_key_subresponses(response)

    pred_list = key_responses.copy()  # keep the original string response
    for resp in key_responses:
        pred_list.extend(extract_numbers(resp))

    tmp_pred_list = []
    for i in range(len(pred_list)):
        tmp_pred_list.extend(normalize_str(pred_list[i], answer))
    pred_list = tmp_pred_list

    # remove duplicates
    pred_list = list(set(pred_list))

    return pred_list

def extract_numbers(string):
    # Pattern for numbers with Chinese commas
    pattern_commas = r"-?\d{1,3}(?:,\d{3})+"
    # Pattern for scientific notation
    pattern_scientific = r"-?\d+(?:\.\d+)?[eE][+-]?\d+"
    # Pattern for simple numbers without Chinese commas
    pattern_simple = r"-?(?:\d+\.\d+|\.\d+|\d+)(?![eE][+-]?\d+)(?!,\d)"

    # Extract numbers with Chinese commas
    numbers_with_commas = re.findall(pattern_commas, string)
    # Extract numbers in scientific notation
    numbers_scientific = re.findall(pattern_scientific, string)
    # Extract simple numbers without Chinese commas
    numbers_simple = re.findall(pattern_simple, string)

    # Combine all extracted numbers
    all_numbers = numbers_with_commas + numbers_scientific + numbers_simple
    return all_numbers


def normalize_str(string, answer):
    # check if characters in the string

    # if number, numerize it.
    if string == None:
        return [string]
    string = string.strip()

    is_number = check_is_number(string)

    if is_number:
        string = string.replace(",", "")
        string = float(string)
        # leave 2 decimal
        string = round(string, 2)
        return [string]
    else:  # it's likely to be a string
        if len(string) > len(answer) + 20 or count_letters(string) > count_letters(answer) + 2:
            return []
        return [string]

def check_is_number(string):
    try:
        float(string.replace(",", ""))
        return True
    except ValueError:
        # check if there's comma inside
        return False

def get_TF_prediction(response):
    """get the prediction from the generated response,
    return a list of predicted strings or numbers"""

    def get_key_subresponses(response):
        key_responses = []
        response = response.strip("。").strip()
        sub_responses = re.split(r"。|\n", response)
        indicators_of_keys = ["是", "为", "所以", "判断", "陈述", "说法", "表达", "答案", "结果"]
        key_responses = []
        for index, resp in enumerate(sub_responses):
            shortest_key_response = None  # the shortest response that may contain the answer (tail part of the response)
            for indicator in indicators_of_keys:
                if indicator in resp:
                    if not shortest_key_response:
                        shortest_key_response = resp.split(indicator)[-1].strip()
                    else:
                        if len(resp.split(indicator)[-1].strip()) < len(shortest_key_response):
                            shortest_key_response = resp.split(indicator)[-1].strip()

            if shortest_key_response:
                # and it's not trivial
                if shortest_key_response.strip() not in [":", ",", ".", "!", "?", ";", ":", "'"]:
                    key_responses.append(shortest_key_response)
        if len(key_responses) == 0:  # did not found any
            return [response]
        return key_responses

    key_responses = get_key_subresponses(response)

    pred_list = key_responses.copy()  # keep the original string response
    # remove duplicates
    pred_list = list(set(pred_list))

    return pred_list


def count_letters(string):
    return sum(c.isalpha() and "a" <= c <= "z" or "A" <= c <= "Z" for c in string)

这里:res=cmmmu_process_results(doc, results),doc为读取原始文件的每一行,results为["LLM返回的纯文本结果"]

第四步:然后就是量化

import json
import os
import random
import re
from collections import Counter, defaultdict
from loguru import logger as eval_logger
from normalization_cmmmu import normalize_str

DOMAIN_CAT2SUB_CAT = {
    "艺术与设计": ["艺术", "艺术理论", "设计", "音乐"],
    "商业": ["会计", "经济", "金融", "管理", "营销"],
    "科学": ["生物", "化学", "地理", "数学", "物理"],
    "健康与医学": ["基础医学", "临床医学", "诊断学与实验室医学", "制药", "公共卫生"],
    "人文社会科学": ["历史", "文献学", "社会学", "心理学"],
    "技术与工程": ["农业", "建筑学", "计算机科学", "电子学", "能源和电力", "材料", "机械工程"],
}

def calculate_ins_level_acc(results):
    correct_sum = 0
    entries_sum = 0
    for cat_results in results.values():
        correct_sum += cat_results["correct_num"]
        entries_sum += cat_results["entries_num"]
    if entries_sum == 0:
        return 0
    return correct_sum / entries_sum

def cmmmu_aggregate_results(results):
    evaluation_result = {}
    subset_to_eval_samples = defaultdict(list)
    for result in results:
        subset_to_eval_samples[result["subdomain"]].append(result)
    for subset, sub_eval_samples in subset_to_eval_samples.items():
        metric_dict = eval_cmmmu(sub_eval_samples)
        evaluation_result[subset] = metric_dict

    printable_results = {}
    for domain, in_domain_cats in DOMAIN_CAT2SUB_CAT.items():
        in_domain_cat_results = {}
        for cat_name in in_domain_cats:
            if cat_name in evaluation_result.keys():
                in_domain_cat_results[cat_name] = evaluation_result[cat_name]
            else:
                pass
        in_domain_ins_acc = calculate_ins_level_acc(in_domain_cat_results)
        in_domain_data_num = sum([cat_results["entries_num"] for cat_results in in_domain_cat_results.values()])
        printable_results["Overall-" + domain] = {
            "num": int(in_domain_data_num),
            "acc": round(in_domain_ins_acc, 3),
        }
        # add sub category
        for cat_name, cat_results in in_domain_cat_results.items():
            printable_results[cat_name] = {
                "num": int(cat_results["entries_num"]),
                "acc": round(cat_results["acc"], 3),
            }
    all_ins_acc = calculate_ins_level_acc(evaluation_result)
    printable_results["Overall"] = {
        "num": sum([cat_results["entries_num"] for cat_results in evaluation_result.values()]),
        "acc": round(all_ins_acc, 3),
    }
    print(printable_results)
    return printable_results["Overall"]["acc"]

def eval_cmmmu(entries):
    correct_cnt = 0
    for entry in entries:
        parsed_pred = entry.get("parsed_pred", "")
        correct = False
        if entry.get("question_type") == "选择":
            if parsed_pred == entry["answer"]:
                correct_cnt += 1
                correct = True

        elif entry.get("question_type") == "填空":
            norm_answers = normalize_str(entry["answer"], entry["answer"])

            for pred in parsed_pred:
                # already normalized
                if isinstance(pred, str):  # if it's a string, then find if ans in the pred_i
                    for norm_ans in norm_answers:
                        # only see if the string answer in the string pred
                        # print(norm_ans, pred)
                        if isinstance(norm_ans, str) and norm_ans in pred:
                            if not correct:
                                correct_cnt += 1
                                correct = True
                            break
                else:  # it's a number
                    if pred in norm_answers:
                        if not correct:
                            correct_cnt += 1
                            correct = True
                        break

        else:
            positive_keywords = ["正确", "对", "准确", "肯定", "对的"]
            negative_keywords = ["不对", "错误", "不正确", "不准确", "不合适", "否定", "错的", "错"]
            ambiguous_keywords = ["对错", "是否正确", "否正确", "或者", "是否", "正确性", "对不"]

            def judge_similarity(pred_list, positive_keywords, negative_keywords):
                positive_count = 0
                negative_count = 0

                for pred in pred_list:
                    if any(pos_word in pred for pos_word in positive_keywords):
                        positive_count += 1
                    elif any(neg_word in pred for neg_word in negative_keywords):
                        negative_count += 1

                if positive_count > negative_count:
                    return "对"
                elif negative_count > positive_count:
                    return "错"
                else:
                    return random.choice(["对", "错"])

            answer = entry["answer"]
            parsed_pred = [word for word in parsed_pred if not any(ambiguous in word for ambiguous in ambiguous_keywords)]
            result = judge_similarity(parsed_pred, positive_keywords, negative_keywords)
            if result == answer:
                correct_cnt += 1
                correct = True
        if correct:
            entry["judge"] = "正确"
        else:
            entry["judge"] = "错误"

    if len(entries) == 0:
        print("entries_num == 0, please check your file")
        results_count = {"correct_num": 0, "entries_num": 0, "acc": 0}
    else:
        results_count = {"correct_num": correct_cnt, "entries_num": len(entries), "acc": correct_cnt / len(entries)}

    return results_count

if __name__ == '__main__':
    tmp1={'id': 11999, 'subdomain': '营销', 'question_type': '选择', 'answer': 'B', 'parsed_pred': 'B'}
    tmp2={'id': 9262, 'subdomain': '营销', 'question_type': '选择', 'answer': 'B', 'parsed_pred': 'B'}
    results=list()
    results.append(tmp1)
    results.append(tmp2)

    res=cmmmu_aggregate_results(results)
    print(res)

@Shajiu
Copy link

Shajiu commented Nov 5, 2024

hi,cmmmu官网上提到vlmevalkit已经支持了CMMMU,但支持的配置集中暂未列出改配置,请问下是什么情况呀

我已经在这里实现了哈,你可以参考这个。

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Feature Request Extra attention is needed
Projects
None yet
Development

No branches or pull requests

3 participants