-
Notifications
You must be signed in to change notification settings - Fork 552
/
Copy pathyolov6_s_syncbn_fast_8xb32-400e_coco.py
280 lines (260 loc) · 8.89 KB
/
yolov6_s_syncbn_fast_8xb32-400e_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
_base_ = ['../_base_/default_runtime.py', '../_base_/det_p5_tta.py']
# ======================= Frequently modified parameters =====================
# -----data related-----
data_root = 'data/coco/' # Root path of data
# Path of train annotation file
train_ann_file = 'annotations/instances_train2017.json'
train_data_prefix = 'train2017/' # Prefix of train image path
# Path of val annotation file
val_ann_file = 'annotations/instances_val2017.json'
val_data_prefix = 'val2017/' # Prefix of val image path
num_classes = 80 # Number of classes for classification
# Batch size of a single GPU during training
train_batch_size_per_gpu = 32
# Worker to pre-fetch data for each single GPU during training
train_num_workers = 8
# persistent_workers must be False if num_workers is 0
persistent_workers = True
# -----train val related-----
# Base learning rate for optim_wrapper
base_lr = 0.01
max_epochs = 400 # Maximum training epochs
num_last_epochs = 15 # Last epoch number to switch training pipeline
# ======================= Possible modified parameters =======================
# -----data related-----
img_scale = (640, 640) # width, height
# Dataset type, this will be used to define the dataset
dataset_type = 'YOLOv5CocoDataset'
# Batch size of a single GPU during validation
val_batch_size_per_gpu = 1
# Worker to pre-fetch data for each single GPU during validation
val_num_workers = 2
# Config of batch shapes. Only on val.
# It means not used if batch_shapes_cfg is None.
batch_shapes_cfg = dict(
type='BatchShapePolicy',
batch_size=val_batch_size_per_gpu,
img_size=img_scale[0],
size_divisor=32,
extra_pad_ratio=0.5)
# -----model related-----
# The scaling factor that controls the depth of the network structure
deepen_factor = 0.33
# The scaling factor that controls the width of the network structure
widen_factor = 0.5
# -----train val related-----
affine_scale = 0.5 # YOLOv5RandomAffine scaling ratio
lr_factor = 0.01 # Learning rate scaling factor
weight_decay = 0.0005
# Save model checkpoint and validation intervals
save_epoch_intervals = 10
# The maximum checkpoints to keep.
max_keep_ckpts = 3
# Single-scale training is recommended to
# be turned on, which can speed up training.
env_cfg = dict(cudnn_benchmark=True)
# ============================== Unmodified in most cases ===================
model = dict(
type='YOLODetector',
data_preprocessor=dict(
type='YOLOv5DetDataPreprocessor',
mean=[0., 0., 0.],
std=[255., 255., 255.],
bgr_to_rgb=True),
backbone=dict(
type='YOLOv6EfficientRep',
deepen_factor=deepen_factor,
widen_factor=widen_factor,
norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
act_cfg=dict(type='ReLU', inplace=True)),
neck=dict(
type='YOLOv6RepPAFPN',
deepen_factor=deepen_factor,
widen_factor=widen_factor,
in_channels=[256, 512, 1024],
out_channels=[128, 256, 512],
num_csp_blocks=12,
norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
act_cfg=dict(type='ReLU', inplace=True),
),
bbox_head=dict(
type='YOLOv6Head',
head_module=dict(
type='YOLOv6HeadModule',
num_classes=num_classes,
in_channels=[128, 256, 512],
widen_factor=widen_factor,
norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
act_cfg=dict(type='SiLU', inplace=True),
featmap_strides=[8, 16, 32]),
loss_bbox=dict(
type='IoULoss',
iou_mode='giou',
bbox_format='xyxy',
reduction='mean',
loss_weight=2.5,
return_iou=False)),
train_cfg=dict(
initial_epoch=4,
initial_assigner=dict(
type='BatchATSSAssigner',
num_classes=num_classes,
topk=9,
iou_calculator=dict(type='mmdet.BboxOverlaps2D')),
assigner=dict(
type='BatchTaskAlignedAssigner',
num_classes=num_classes,
topk=13,
alpha=1,
beta=6),
),
test_cfg=dict(
multi_label=True,
nms_pre=30000,
score_thr=0.001,
nms=dict(type='nms', iou_threshold=0.65),
max_per_img=300))
# The training pipeline of YOLOv6 is basically the same as YOLOv5.
# The difference is that Mosaic and RandomAffine will be closed in the last 15 epochs. # noqa
pre_transform = [
dict(type='LoadImageFromFile', backend_args=_base_.backend_args),
dict(type='LoadAnnotations', with_bbox=True)
]
train_pipeline = [
*pre_transform,
dict(
type='Mosaic',
img_scale=img_scale,
pad_val=114.0,
pre_transform=pre_transform),
dict(
type='YOLOv5RandomAffine',
max_rotate_degree=0.0,
max_translate_ratio=0.1,
scaling_ratio_range=(1 - affine_scale, 1 + affine_scale),
# img_scale is (width, height)
border=(-img_scale[0] // 2, -img_scale[1] // 2),
border_val=(114, 114, 114),
max_shear_degree=0.0),
dict(type='YOLOv5HSVRandomAug'),
dict(type='mmdet.RandomFlip', prob=0.5),
dict(
type='mmdet.PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'flip',
'flip_direction'))
]
train_pipeline_stage2 = [
*pre_transform,
dict(type='YOLOv5KeepRatioResize', scale=img_scale),
dict(
type='LetterResize',
scale=img_scale,
allow_scale_up=True,
pad_val=dict(img=114)),
dict(
type='YOLOv5RandomAffine',
max_rotate_degree=0.0,
max_translate_ratio=0.1,
scaling_ratio_range=(1 - affine_scale, 1 + affine_scale),
max_shear_degree=0.0,
),
dict(type='YOLOv5HSVRandomAug'),
dict(type='mmdet.RandomFlip', prob=0.5),
dict(
type='mmdet.PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'flip',
'flip_direction'))
]
train_dataloader = dict(
batch_size=train_batch_size_per_gpu,
num_workers=train_num_workers,
collate_fn=dict(type='yolov5_collate'),
persistent_workers=persistent_workers,
pin_memory=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file=train_ann_file,
data_prefix=dict(img=train_data_prefix),
filter_cfg=dict(filter_empty_gt=False, min_size=32),
pipeline=train_pipeline))
test_pipeline = [
dict(type='LoadImageFromFile', backend_args=_base_.backend_args),
dict(type='YOLOv5KeepRatioResize', scale=img_scale),
dict(
type='LetterResize',
scale=img_scale,
allow_scale_up=False,
pad_val=dict(img=114)),
dict(type='LoadAnnotations', with_bbox=True, _scope_='mmdet'),
dict(
type='mmdet.PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
'scale_factor', 'pad_param'))
]
val_dataloader = dict(
batch_size=val_batch_size_per_gpu,
num_workers=val_num_workers,
persistent_workers=persistent_workers,
pin_memory=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
test_mode=True,
data_prefix=dict(img=val_data_prefix),
ann_file=val_ann_file,
pipeline=test_pipeline,
batch_shapes_cfg=batch_shapes_cfg))
test_dataloader = val_dataloader
# Optimizer and learning rate scheduler of YOLOv6 are basically the same as YOLOv5. # noqa
# The difference is that the scheduler_type of YOLOv6 is cosine.
optim_wrapper = dict(
type='OptimWrapper',
optimizer=dict(
type='SGD',
lr=base_lr,
momentum=0.937,
weight_decay=weight_decay,
nesterov=True,
batch_size_per_gpu=train_batch_size_per_gpu),
constructor='YOLOv5OptimizerConstructor')
default_hooks = dict(
param_scheduler=dict(
type='YOLOv5ParamSchedulerHook',
scheduler_type='cosine',
lr_factor=lr_factor,
max_epochs=max_epochs),
checkpoint=dict(
type='CheckpointHook',
interval=save_epoch_intervals,
max_keep_ckpts=max_keep_ckpts,
save_best='auto'))
custom_hooks = [
dict(
type='EMAHook',
ema_type='ExpMomentumEMA',
momentum=0.0001,
update_buffers=True,
strict_load=False,
priority=49),
dict(
type='mmdet.PipelineSwitchHook',
switch_epoch=max_epochs - num_last_epochs,
switch_pipeline=train_pipeline_stage2)
]
val_evaluator = dict(
type='mmdet.CocoMetric',
proposal_nums=(100, 1, 10),
ann_file=data_root + val_ann_file,
metric='bbox')
test_evaluator = val_evaluator
train_cfg = dict(
type='EpochBasedTrainLoop',
max_epochs=max_epochs,
val_interval=save_epoch_intervals,
dynamic_intervals=[(max_epochs - num_last_epochs, 1)])
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')