-
-
Notifications
You must be signed in to change notification settings - Fork 17
/
stats.py
560 lines (515 loc) · 22.7 KB
/
stats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
from anki.stats import CollectionStats
from .configuration import Config
from .utils import *
from .steps import steps_stats
def _line_now(i, a, b, bold=True):
colon = ":"
style = "style='padding: 5px'"
if bold:
i.append(
("<tr><td align=left %s>%s%s</td><td align=left><b>%s</b></td></tr>")
% (style, a, colon, b)
)
else:
i.append(
("<tr><td align=left %s>%s%s</td><td align=left>%s</td></tr>")
% (style, a, colon, b)
)
def _lineTbl_now(i):
return "<table>" + "".join(i) + "</table>"
def retention_stability_load(lim) -> tuple:
elapse_stability_ivl_list = mw.col.db.all(
f"""
SELECT
CASE WHEN odid==0
THEN {mw.col.sched.today} - (due - ivl)
ELSE {mw.col.sched.today} - (odue - ivl)
END
,json_extract(data, '$.s')
,ivl
,(SELECT COUNT(*) FROM cards c2 WHERE c1.nid = c2.nid AND queue != -1)
,nid
FROM cards c1
WHERE queue != 0 AND queue != -1
AND data != ''
AND json_extract(data, '$.s') IS NOT NULL
"""
+ lim
)
# x[0]: elapsed days
# x[1]: stability
# x[2]: interval
# x[3]: same nid count
# x[4]: nid
elapse_stability_ivl_list = filter(
lambda x: x[1] is not None, elapse_stability_ivl_list
)
retention_stability_load_list = list(
map(
lambda x: (
power_forgetting_curve(max(x[0], 0), x[1]),
x[1],
1 / max(1, x[2]),
x[3],
x[4],
),
elapse_stability_ivl_list,
)
)
card_cnt = len(retention_stability_load_list)
note_cnt = len(set(x[4] for x in retention_stability_load_list))
if card_cnt == 0:
return 0, 0, 0, 0, 0, 0, 0, 0
recall_sum = sum(item[0] for item in retention_stability_load_list)
stability_sum = sum(item[1] for item in retention_stability_load_list)
load_sum = sum(item[2] for item in retention_stability_load_list)
estimated_total_knowledge_notes = sum(
item[0] / item[3] for item in retention_stability_load_list
)
time_sum = mw.col.db.scalar(
f"""
SELECT SUM(time)/1000
FROM revlog
WHERE cid IN (
SELECT id
FROM cards
WHERE queue != 0 AND queue != -1
AND data != ''
AND json_extract(data, '$.s') IS NOT NULL
{lim}
)
"""
)
return (
recall_sum / card_cnt,
stability_sum / card_cnt,
load_sum,
card_cnt,
round(recall_sum),
estimated_total_knowledge_notes,
note_cnt,
time_sum,
)
def todayStats_new(self):
if not mw.col.get_config("fsrs"):
tooltip(FSRS_ENABLE_WARNING)
return todayStats_old(self)
return (
todayStats_old(self)
+ get_true_retention(self)
+ get_fsrs_stats(self)
+ get_retention_graph(self)
+ get_steps_stats(self)
)
def get_steps_stats(self: CollectionStats):
config = Config()
config.load()
if not config.show_steps_stats:
return ""
lim = self._revlogLimit()
results = steps_stats(lim)
title = CollectionStats._title(
self,
"Steps Stats",
"Statistics for different first ratings during (re)learning steps",
)
html = """
<style>
td.trl { border: 1px solid; text-align: left; padding: 5px }
td.trr { border: 1px solid; text-align: right; padding: 5px }
td.trc { border: 1px solid; text-align: center; padding: 5px }
span.again { color: #f00 }
span.hard { color: #ff8c00 }
span.good { color: #008000 }
</style>
<table style="border-collapse: collapse;" cellspacing="0" cellpadding="2">
<tr>
<td class="trl" rowspan=2><b>First Rating</b></td>
<td class="trc" colspan=7><b>Delay And Retention Distribution</b></td>
<td class="trc" colspan=3><b>Summary</b></td>
</tr>
<tr>
<td class="trc"><b><span>R̄</span><sub>1</sub></b></td>
<td class="trc"><b>T<sub>25%</sub></b></td>
<td class="trc"><b><span>R̄</span><sub>2</sub></b></td>
<td class="trc"><b>T<sub>50%</sub></b></td>
<td class="trc"><b><span>R̄</span><sub>3</sub></b></td>
<td class="trc"><b>T<sub>75%</sub></b></td>
<td class="trc"><b><span>R̄</span><sub>4</sub></b></td>
<td class="trc"><b><span>R̄</span></b></td>
<td class="trc"><b>Stability</b></td>
<td class="trc"><b>Reviews</b></td>
</tr>"""
ratings = {1: "again", 2: "hard", 3: "good", 0: "lapse"}
for rating, style in ratings.items():
stats = results["stats"].get(rating, {})
if not stats:
html += f"""
<tr>
<td class="trl"><span class="{style}"><b>{style.title()}</b></span></td>
<td class="trr">N/A</td>
<td class="trr">N/A</td>
<td class="trr">N/A</td>
<td class="trr">N/A</td>
<td class="trr">N/A</td>
<td class="trr">N/A</td>
<td class="trr">N/A</td>
<td class="trr">N/A</td>
<td class="trr">N/A</td>
<td class="trr">N/A</td>
</tr>"""
continue
html += f"""
<tr>
<td class="trl"><span class="{style}"><b>{style.title()}</b></span></td>
<td class="trr">{stats['r1']}</td>
<td class="trr">{format_time(stats['delay_q1'])}</td>
<td class="trr">{stats['r2']}</td>
<td class="trr">{format_time(stats['delay_q2'])}</td>
<td class="trr">{stats['r3']}</td>
<td class="trr">{format_time(stats['delay_q3'])}</td>
<td class="trr">{stats['r4']}</td>
<td class="trr">{stats['retention']}</td>
<td class="trr">{format_time(results['stability'][rating])}</td>
<td class="trr">{stats['count']}</td>
</tr>"""
html += "</table>"
html += (
"<table style='text-align: left'><tr><td style='padding: 5px'>"
+ "<summary>Interpretation</summary><ul>"
"<li>This table shows <b>the average time you wait before rating each card the next time</b> (Time Delay) based on your <b>first rating of the day for each card in the deck</b> (Again or Hard or Good or Lapse).</li>"
+ "<li>It also shows <b>how well you remember a card after each subsequent rating (after its first rating) on average.</b></li>"
+ "<li>The subsequent ratings after the first ratings of all cards in the deck are gathered and sorted by ascending order of the Time Delay (not shown on the table) and are then grouped into 4 groups (Time Delay 1<2<3<4).</li>"
+ "<li>The 4 groups are further split and assigned to whatever the first rating of the cards was (Again or Hard or Good or Lapse). Therefore, each First Rating has 4 groups of subsequent ratings (Groups 1,2,3,4).</li>"
+ "<li>Average Retention rates (R̅₁, R̅₂, R̅₃, R̅₄) for each group of subsequent ratings and the Average Overall Retention (R̅) for the first ratings are shown. Based on this, the average stability for cards after the first rating of the day (Again or Hard or Good or Lapse) is calculated.</li>"
+ "<li>T<sub>X%</sub> means that X% of the cards in this deck with a first rating (Again or Hard or Good or Lapse) are delayed by this amount of time or less till the next rating.</li>"
+ "</ul>"
"</td></tr></table>"
)
return self._section(title + html)
def get_fsrs_stats(self: CollectionStats):
lim = self._limit()
if lim:
lim = " AND did IN %s" % lim
(
retention,
stability,
load,
card_cnt,
estimated_total_knowledge,
estimated_total_knowledge_notes,
note_cnt,
time_sum,
) = retention_stability_load(lim)
i = []
_line_now(i, "Average predicted retention", f"{retention * 100: .2f}%")
_line_now(i, "Average stability", f"{round(stability)} days")
if int_version() < 241000:
_line_now(i, "Daily Load", f"{round(load)} reviews/day")
i.append(
"<tr><td align=left style='padding: 5px'><b>Retention by Cards:</b></td></tr>"
)
_line_now(i, "Total Count", f"{card_cnt} cards")
_line_now(
i,
"Estimated total knowledge",
f"{estimated_total_knowledge} cards ({retention * 100:.2f}%)",
)
_line_now(i, "Total Time", f"{time_sum/3600:.1f} hours")
if time_sum > 0:
_line_now(
i,
"Knowledge acquisition rate",
f"{estimated_total_knowledge / (time_sum/3600):.1f} cards/hour",
)
i.append(
"<tr><td align=left style='padding: 5px'><b>Retention by Notes:</b></td></tr>"
)
_line_now(i, "Total Count", f"{note_cnt} notes")
_line_now(
i,
"Estimated total knowledge",
f"{round(estimated_total_knowledge_notes)} notes ({(estimated_total_knowledge_notes / max(note_cnt, 1)) * 100:.2f}%)",
)
title = CollectionStats._title(
self,
"FSRS Stats",
"Only calculated for cards with FSRS memory states",
)
stats_data = _lineTbl_now(i)
interpretation = (
"<p>Note: Unless you have a huge backlog, the average predicted retention will be higher than your desired retention. For details, read the interpretation section.</p>"
+ "<details><summary>Interpretation</summary><ul>"
+ "<li><b>Average predicted retention</b>: the average probability of recalling a card today. Desired retention is the retention when the card is due. Average retention is the current retention of all cards, including those that are not yet due. These two values are different because most cards are not usually due. <b>The average predicted retention is calculated using FSRS formulas and depends on your parameters.</b> True retention is a measured value, not an algorithmic prediction. So, it doesn't change after changing the FSRS parameters.</li>"
+ "<li><b>Stability</b>: the time required for the retention to fall from 100% to 90%.</li>"
+ "<li><b>Load</b>: an estimate of the average number of cards to be reviewed daily (assuming review at the scheduled time without advancing or postponing). Load = 1/I<sub>1</sub> + 1/I<sub>2</sub> + 1/I<sub>3</sub> +...+ 1/I<sub>n</sub>, where I<sub>n</sub> is the current interval of the n-th card.</li>"
+ "<li><b>Count</b>: the number of cards with FSRS memory states, excluding cards in the (re)learning stage.</li> "
+ "<li><b>Estimated total knowledge</b>: the number of cards the user is expected to know today, calculated as the product of average predicted retention and count.</li>"
+ "<li><b>Total time</b>: the amount of time spent doing reviews in Anki. This does not include time spent on making and editing cards, as well as time spent on reviewing suspended and deleted cards.</li>"
+ "<li><b>Knowledge acquisition rate</b>: the number of cards memorized per hour of actively doing reviews in Anki, calculated as the ratio of total knowledge and total time. Larger values indicate efficient learning. This metric can be used to compare different learners. If your collection is very young, this number may initially be very low or very high.</li>"
+ "</ul></details>"
)
return self._section(
title
+ stats_data
+ "<table style='text-align: left'><tr><td style='padding: 5px'>"
+ interpretation
+ "</td></tr></table>"
)
def get_retention_graph(self: CollectionStats):
config = Config()
config.load()
start, days, chunk = self.get_start_end_chunk()
lims = []
if days is not None:
lims.append(
"id > %d" % ((self.col.sched.day_cutoff - (days * chunk * 86400)) * 1000)
)
lim = self._revlogLimit()
if lim:
lims.append(lim)
if lims:
lim = "AND " + " AND ".join(lims)
query = f"""SELECT
CAST((id/1000.0 - {mw.col.sched.day_cutoff}) / 86400.0 as int)/{chunk} AS day,
COUNT(CASE WHEN lastIvl < {config.mature_ivl} AND lastIvl > {config.mature_ivl} * -86400 THEN id ELSE NULL END) AS review_cnt_young,
COUNT(CASE WHEN lastIvl >= {config.mature_ivl} OR lastIvl <= {config.mature_ivl} * -86400 THEN id ELSE NULL END) AS review_cnt_mature,
(COUNT(CASE WHEN ease > 1 AND lastIvl < {config.mature_ivl} AND lastIvl > {config.mature_ivl} * -86400 THEN id ELSE NULL END) + 0.0001) / (COUNT(CASE WHEN lastIvl < {config.mature_ivl} AND lastIvl > {config.mature_ivl} * -86400 THEN id ELSE NULL END) + 0.0001),
(COUNT(CASE WHEN ease > 1 AND (lastIvl >= {config.mature_ivl} OR lastIvl <= {config.mature_ivl} * -86400) THEN id ELSE NULL END) + 0.0001) / (COUNT(CASE WHEN lastIvl >= {config.mature_ivl} OR lastIvl <= {config.mature_ivl} * -86400 THEN id ELSE NULL END) + 0.0001)
FROM revlog
WHERE ease >= 1
AND (type != 3 or factor != 0)
AND (type = 1 OR lastIvl <= -86400 OR lastIvl >= 1)
{lim}
GROUP BY day
"""
offset_retention_review_cnt = mw.col.db.all(query)
data, _ = self._splitRepData(
offset_retention_review_cnt,
(
(1, "#7c7", "Review Count (young)"),
(2, "#070", "Review Count (mature)"),
(3, "#ffd268", "Retention Rate (young)"),
(4, "#e49a60", "Retention Rate (mature)"),
),
)
if not data:
return ""
tmp = -2
new_data = []
for item in filter(lambda x: x["label"] is not None, data):
if item["label"].startswith("Retention"):
item["lines"] = {"show": True}
item["bars"] = {"show": False}
item["yaxis"] = 2
item["stack"] = tmp
tmp -= 1
else:
item["lines"] = {"show": False}
item["bars"] = {"show": True}
item["yaxis"] = 1
item["stack"] = -1
new_data.append(item)
del tmp
data = new_data
recall_min = min(min(item[3], item[4]) for item in offset_retention_review_cnt)
recall_min = math.floor(recall_min * 10) / 10
recall_max = max(max(item[3], item[4]) for item in offset_retention_review_cnt)
recall_max = math.ceil(recall_max * 10) / 10
step = round((recall_max - recall_min) / 5, 2)
ticks = [
[recall_min + step * i, str(round(recall_min + step * i, 2))]
for i in range(0, 6)
]
conf = dict(
xaxis=dict(tickDecimals=0, max=0.5),
yaxes=[
dict(position="left", min=0),
dict(
position="right",
min=recall_min,
max=recall_max,
ticks=ticks,
),
],
)
if days is not None:
conf["xaxis"]["min"] = -days + 0.5
def plot(id: str, data, ylabel: str, ylabel2: str) -> str:
return self._graph(
id, data=data, conf=conf, xunit=chunk, ylabel=ylabel, ylabel2=ylabel2
)
txt1 = self._title("Retention Graph", "Retention rate and review count over time")
txt1 += plot("retention", data, ylabel="Review Count", ylabel2="Retention Rate")
return self._section(txt1)
def init_stats():
config = Config()
config.load()
if config.fsrs_stats:
global todayStats_old
todayStats_old = CollectionStats.todayStats
CollectionStats.todayStats = todayStats_new
# code modified from https://ankiweb.net/shared/info/1779060522
def get_true_retention(self: CollectionStats):
if self._revlogLimit():
lim = " AND " + self._revlogLimit()
else:
lim = ""
pastDay = stats_list(lim, (mw.col.sched.day_cutoff - 86400) * 1000)
pastYesterday = stats_list(lim, (mw.col.sched.day_cutoff - 86400 * 2) * 1000)
pastYesterday[0] -= pastDay[0]
pastYesterday[1] -= pastDay[1]
pastYesterday[2] = retentionAsString(
pastYesterday[0], pastYesterday[0] + pastYesterday[1]
)
pastYesterday[3] -= pastDay[3]
pastYesterday[4] -= pastDay[4]
pastYesterday[5] = retentionAsString(
pastYesterday[3], pastYesterday[3] + pastYesterday[4]
)
pastYesterday[6] = pastYesterday[0] + pastYesterday[3]
pastYesterday[7] = pastYesterday[1] + pastYesterday[4]
pastYesterday[8] = retentionAsString(
pastYesterday[6], pastYesterday[6] + pastYesterday[7]
)
pastYesterday[9] -= pastDay[9]
pastYesterday[10] -= pastDay[10]
pastWeek = stats_list(lim, (mw.col.sched.day_cutoff - 86400 * 7) * 1000)
if self.type == 0:
period = 31
pname = "Month"
elif self.type == 1:
period = 365
pname = "Year"
elif self.type == 2:
period = 36500
pname = "Deck life"
pastPeriod = stats_list(lim, (mw.col.sched.day_cutoff - 86400 * period) * 1000)
true_retention_part = CollectionStats._title(
self,
"True Retention",
"<p>The True Retention is the pass rate calculated only on cards with intervals greater than or equal to one day. It is a better indicator of the learning quality than the Again rate.</p>",
)
config = Config()
config.load()
true_retention_part += """
<style>
td.trl { border: 1px solid; text-align: left; padding: 5px }
td.trr { border: 1px solid; text-align: right; padding: 5px }
td.trc { border: 1px solid; text-align: center; padding: 5px }
span.young { color: #77cc77 }
span.mature { color: #00aa00 }
span.total { color: #55aa55 }
span.relearn { color: #c35617 }
</style>"""
true_retention_part += f"""
<table style="border-collapse: collapse;" cellspacing="0" cellpadding="2">
<tr>
<td class="trl" rowspan=3><b>Past</b></td>
<td class="trc" colspan=9><b>Reviews on Cards</b></td>
<td class="trc" colspan=2 valign=middle><b>Cards</b></td>
</tr>
<tr>
<td class="trc" colspan=3><span class="young"><b>Young (ivl < {config.mature_ivl} d)</b></span></td>
<td class="trc" colspan=3><span class="mature"><b>Mature (ivl ≥ {config.mature_ivl} d)</b></span></td>
<td class="trc" colspan=3><span class="total"><b>Total</b></span></td>
<td class="trc" rowspan=2><span class="young"><b>Learned</b></span></td>
<td class="trc" rowspan=2><span class="relearn"><b>Relearned</b></span></td>
</tr>
<tr>
<td class="trc"><span class="young">Pass</span></td>
<td class="trc"><span class="young">Fail</span></td>
<td class="trc"><span class="young">Retention</span></td>
<td class="trc"><span class="mature">Pass</span></td>
<td class="trc"><span class="mature">Fail</span></td>
<td class="trc"><span class="mature">Retention</span></td>
<td class="trc"><span class="total">Pass</span></td>
<td class="trc"><span class="total">Fail</span></td>
<td class="trc"><span class="total">Retention</span></td>
</tr>"""
true_retention_part += stats_row("Day", pastDay)
true_retention_part += stats_row("Yesterday", pastYesterday)
true_retention_part += stats_row("Week", pastWeek)
true_retention_part += stats_row(pname, pastPeriod)
true_retention_part += "</table>"
true_retention_part += f"<p>By default, mature cards are defined as the cards with an interval of 21 days or longer. This cutoff can be adjusted in the add-on config.</p>"
return self._section(true_retention_part)
def retentionAsString(n, d):
return "%0.1f%%" % ((n * 100) / d) if d else "N/A"
def stats_list(lim, span):
config = Config()
config.load()
yflunked, ypassed, mflunked, mpassed, learned, relearned = mw.col.db.first(
"""
select
sum(case when lastIvl < %(i)d and ease = 1 and (type = 1 OR lastIvl <= -86400 OR lastIvl >= 1) then 1 else 0 end), /* flunked young */
sum(case when lastIvl < %(i)d and ease > 1 and (type = 1 OR lastIvl <= -86400 OR lastIvl >= 1) then 1 else 0 end), /* passed young */
sum(case when lastIvl >= %(i)d and ease = 1 and (type = 1 OR lastIvl <= -86400 OR lastIvl >= 1) then 1 else 0 end), /* flunked mature */
sum(case when lastIvl >= %(i)d and ease > 1 and (type = 1 OR lastIvl <= -86400 OR lastIvl >= 1) then 1 else 0 end), /* passed mature */
count(DISTINCT case when type = 0 and (ivl >= 1 OR ivl <= -86400) and cid NOT in ( SELECT id FROM cards WHERE type = 0) then cid else NULL end), /* learned */
sum(case when type = 2 and (ivl >= 1 OR ivl <= -86400) and (lastIvl > -86400 and lastIvl <= 0) then 1 else 0 end) + sum(case when type = 0 and (lastIvl <= -86400 OR lastIvl >= 1) and ease = 1 then 1 else 0 end)/* relearned */
from revlog where id > ? and ease >= 1 and (type != 3 or factor != 0)"""
% dict(i=config.mature_ivl)
+ lim,
span,
)
yflunked, mflunked = yflunked or 0, mflunked or 0
ypassed, mpassed = ypassed or 0, mpassed or 0
learned, relearned = learned or 0, relearned or 0
return [
ypassed,
yflunked,
retentionAsString(ypassed, float(ypassed + yflunked)),
mpassed,
mflunked,
retentionAsString(mpassed, float(mpassed + mflunked)),
ypassed + mpassed,
yflunked + mflunked,
retentionAsString(
ypassed + mpassed, float(ypassed + mpassed + yflunked + mflunked)
),
learned,
relearned,
]
def stats_row(name, values):
return (
"""
<tr>
<td class="trl">"""
+ name
+ """</td>
<td class="trr"><span class="young">"""
+ str(values[0])
+ """</span></td>
<td class="trr"><span class="young">"""
+ str(values[1])
+ """</span></td>
<td class="trr"><span class="young">"""
+ values[2]
+ """</span></td>
<td class="trr"><span class="mature">"""
+ str(values[3])
+ """</span></td>
<td class="trr"><span class="mature">"""
+ str(values[4])
+ """</span></td>
<td class="trr"><span class="mature">"""
+ values[5]
+ """</span></td>
<td class="trr"><span class="total">"""
+ str(values[6])
+ """</span></td>
<td class="trr"><span class="total">"""
+ str(values[7])
+ """</span></td>
<td class="trr"><span class="total">"""
+ values[8]
+ """</span></td>
<td class="trr"><span class="young">"""
+ str(values[9])
+ """</span></td>
<td class="trr"><span class="relearn">"""
+ str(values[10])
+ """</span></td>
</tr>"""
)