-
Notifications
You must be signed in to change notification settings - Fork 39
/
train.py
84 lines (77 loc) · 3.26 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import argparse
from doclayout_yolo import YOLOv10
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--data', default=None, required=True, type=str)
parser.add_argument('--model', default=None, required=True, type=str)
parser.add_argument('--epoch', default=None, required=True, type=int)
parser.add_argument('--optimizer', default='auto', required=False, type=str)
parser.add_argument('--momentum', default=0.9, required=False, type=float)
parser.add_argument('--lr0', default=0.02, required=False, type=float)
parser.add_argument('--warmup-epochs', default=3.0, required=False, type=float)
parser.add_argument('--batch-size', default=16, required=False, type=int)
parser.add_argument('--image-size', default=None, required=True, type=int)
parser.add_argument('--mosaic', default=1.0, required=False, type=float)
parser.add_argument('--pretrain', default=None, required=False, type=str)
parser.add_argument('--val', default=1, required=False, type=int)
parser.add_argument('--val-period', default=1, required=False, type=int)
parser.add_argument('--plot', default=0, required=False, type=int)
parser.add_argument('--project', default=None, required=True, type=str)
parser.add_argument('--resume', action=argparse.BooleanOptionalAction)
parser.add_argument('--workers', default=4, required=False, type=int)
parser.add_argument('--device', default="0,1,2,3,4,5,6,7", required=False, type=str)
parser.add_argument('--save-period', default=10, required=False, type=int)
parser.add_argument('--patience', default=100, required=False, type=int)
args = parser.parse_args()
# using '.pt' will load pretrained model
if args.pretrain is not None:
if args.pretrain == 'coco':
model = f'yolov10{args.model}.pt'
pretrain_name = 'coco'
elif 'pt' in args.pretrain:
model = args.pretrain
if 'bestfit' in args.pretrain:
pretrain_name = 'bestfit_layout'
else:
pretrain_name = "unknown"
else:
raise BaseException("Wrong pretrained model specified!")
else:
model = f'yolov10{args.model}.yaml'
pretrain_name = 'None'
# Load a pre-trained model
model = YOLOv10(model)
# whether to val during training
if args.val:
val = True
else:
val = False
# whether to plot
if args.plot:
plot = True
else:
plot = False
# Train the model
name = f"yolov10{args.model}_{args.data}_epoch{args.epoch}_imgsz{args.image_size}_bs{args.batch_size}_pretrain_{pretrain_name}"
results = model.train(
data=f'{args.data}.yaml',
epochs=args.epoch,
warmup_epochs=args.warmup_epochs,
lr0=args.lr0,
optimizer=args.optimizer,
momentum=args.momentum,
imgsz=args.image_size,
mosaic=args.mosaic,
batch=args.batch_size,
device=args.device,
workers=args.workers,
plots=plot,
exist_ok=False,
val=val,
val_period=args.val_period,
resume=args.resume,
save_period=args.save_period,
patience=args.patience,
project=args.project,
name=name,
)