This repository was archived by the owner on Apr 4, 2025. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathcommon.py
307 lines (259 loc) · 11 KB
/
common.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import os
import sys
import sqlite3
import csv
import re
import pandas as pd
from openpyxl import Workbook
def run_sqlite_script(db, sql_script):
try:
conn = sqlite3.connect(db)
cursor = conn.cursor()
with open(sql_script, 'r') as script_file:
script_content = script_file.read()
cursor.executescript(script_content)
conn.commit()
return True
except Exception as e:
logmsg(error(), "run_sqlite_script", f"Failed to run the script on '{db}': {e}")
return False
finally:
if 'conn' in locals():
conn.close()
def write_to_dat_file(table_name, columns, data, output_file):
try:
with open(output_file, 'w') as outfile:
outfile.write(f"# Data for table: {table_name}\n")
outfile.write(f"# Columns: {', '.join(columns)}\n")
for row in data:
formatted_row = " ".join(map(str, row))
outfile.write(f"{formatted_row}\n")
logmsg(info(), "write_to_dat_file", f"Data written to '{output_file}'")
except Exception as e:
logmsg(error(), "write_to_dat_file", f"Failed to write data to '{output_file}': {e}")
def export_to_excel(input_db, output_excel):
"""Export all tables from an SQLite database to an Excel file."""
try:
# Check if the database file exists
if not os.path.exists(input_db):
logmsg(error(), "Database Error", f"Input database '{input_db}' not found.")
return False
conn = sqlite3.connect(input_db)
logmsg(info(), "Database", f"Connected to database '{input_db}'.")
with pd.ExcelWriter(output_excel, engine='openpyxl') as writer:
cursor = conn.cursor()
cursor.execute("SELECT name FROM sqlite_master WHERE type='table';")
tables = [row[0] for row in cursor.fetchall()]
for table_name in tables:
logmsg(info(), "Database", f"Exporting table '{table_name}' to Excel sheet.")
table_data = pd.read_sql_query(f"SELECT * FROM {table_name}", conn)
table_data.to_excel(writer, sheet_name=table_name, index=False)
logmsg(info(), "Excel Export", f"Successfully exported database '{input_db}' to Excel file '{output_excel}'.")
return True
except Exception as e:
logmsg(error(), "Excel Export Error", f"Failed to export '{input_db}' to '{output_excel}': {str(e)}")
return False
finally:
if 'conn' in locals():
conn.close()
logmsg(info(), "Database", "Database connection closed.")
def warning():
return " warning => "
def change():
return "DIFFERS ===> "
def error():
return "ERROR =====> "
def info():
return " "
def diagnostic():
return "diagnostic "
def logmsg(prefix, *args):
message = args[-1]
prefixes = [prefix]
for part in args[:-1]:
if part == '':
continue
part = re.sub(r'( *)$', r':\1 ', part)
prefixes.append(part)
full_prefix = ''.join(prefixes)
for line in message.split('\n'):
print(f"{full_prefix}{line}")
def apply_transform(value, round_prec):
transformed_value = value * 1.12345678987654321
if round_prec > 0:
transformed_value = float(f"{transformed_value:.15g}")
transformed_value = float(f"{transformed_value:.{round_prec}g}")
return transformed_value
def ompp_tables_to_csv(db, dir, round_prec=0, zero_fuzz=1e-15, do_original=0, do_transformed=0):
rounding_on = False
if round_prec > 0:
rounding_on = True
dir = dir.replace('\\', '/')
dir_original = f"{dir}/original"
dir_transformed = f"{dir}/transformed"
outdirs = [dir]
if do_original:
outdirs.append(dir_original)
if do_transformed:
outdirs.append(dir_transformed)
for fldr in outdirs:
if not os.path.isdir(fldr):
try:
os.makedirs(fldr)
except Exception as e:
logmsg(error(), f"unable to create directory {fldr}")
return 1
try:
conn = sqlite3.connect(db)
cursor = conn.cursor()
except sqlite3.Error as e:
logmsg(error(), f"Cannot connect to database {db}: {e}")
return 1
try:
cursor.execute("Select table_name, table_rank From table_dic Order By table_name;")
tables_data = cursor.fetchall()
except sqlite3.Error as e:
logmsg(error(), f"Failed to retrieve table list: {e}")
conn.close()
return 1
tables = []
ranks = {}
for col1, col2 in tables_data:
tables.append(col1)
ranks[col1] = col2
for table in tables:
rank = ranks[table]
order_clause = "Order By " + ','.join([f"Dim{dim}" for dim in range(rank+1)])
select_query = f"Select * From {table} {order_clause};"
try:
cursor.execute(select_query)
rows = cursor.fetchall()
columns = [description[0] for description in cursor.description]
except sqlite3.Error as e:
logmsg(error(), f"Failed to retrieve data from table {table}: {e}")
conn.close()
return 1
if len(rows) == 0:
continue
out_csv = f"{dir}/{table}.csv"
out_csv_original = f"{dir_original}/{table}.csv" if do_original else None
out_csv_transformed = f"{dir_transformed}/{table}.csv" if do_transformed else None
try:
with open(out_csv, 'w', newline='') as outfile:
writer = csv.writer(outfile)
writer.writerow(columns)
if do_original:
out_original = open(out_csv_original, 'w', newline='')
writer_original = csv.writer(out_original)
writer_original.writerow(columns)
if do_transformed:
out_transformed = open(out_csv_transformed, 'w', newline='')
writer_transformed = csv.writer(out_transformed)
writer_transformed.writerow(columns)
for row in rows:
row = list(row)
if len(row) == 0:
continue
if row[-1] is not None and row[-1] != '':
value = row[-1]
try:
original_value = float(value)
except ValueError:
original_value = value
value = value
transformed_value = value
else:
if abs(original_value) <= zero_fuzz:
value = 0.0
else:
value = original_value
if rounding_on:
value = float(f"{value:.15g}")
value = float(f"{value:.{round_prec}g}")
if do_transformed:
transformed_value = apply_transform(value, round_prec)
else:
transformed_value = value
value_str = f"{value:.15g}"
value_str = re.sub(r'e([-+])0(\d\d)', r'e\1\2', value_str)
if do_original:
original_value_str = f"{original_value:.15g}"
original_value_str = re.sub(r'e([-+])0(\d\d)', r'e\1\2', original_value_str)
if do_transformed:
transformed_value_str = f"{transformed_value:.15g}"
transformed_value_str = re.sub(r'e([-+])0(\d\d)', r'e\1\2', transformed_value_str)
row_out = row[:-1] + [value_str]
writer.writerow(row_out)
if do_original:
row_original = row[:-1] + [original_value_str]
writer_original.writerow(row_original)
if do_transformed:
row_transformed = row[:-1] + [transformed_value_str]
writer_transformed.writerow(row_transformed)
else:
writer.writerow(row)
if do_original:
writer_original.writerow(row)
if do_transformed:
writer_transformed.writerow(row)
if do_original:
out_original.close()
if do_transformed:
out_transformed.close()
except Exception as e:
logmsg(error(), f"Error processing table {table}: {e}")
conn.close()
return 1
conn.close()
return 0
def read_parameters_from_csv(csv_file):
parameters = {}
with open(csv_file, 'r', newline='') as infile:
reader = csv.DictReader(infile)
fieldnames = reader.fieldnames
required_fields = {'name', 'type', 'value'}
if not required_fields.issubset(set(fieldnames)):
raise ValueError("CSV file must contain 'name', 'type', and 'value' columns")
is_array = 'index' in fieldnames
for row in reader:
name = row['name']
param_type = row['type']
value = row['value']
index = row.get('index')
if name not in parameters:
parameters[name] = {'type': param_type, 'values': [], 'indices': [] if is_array else None}
if is_array:
if index is None:
raise ValueError(f"Missing 'index' for parameter '{name}'")
parameters[name]['indices'].append(int(index))
parameters[name]['values'].append(value)
else:
parameters[name]['values'] = value
return parameters
def write_parameters_to_dat(parameters, dat_file):
"""
Writes parameters to a DAT file.
Parameters is a dictionary as returned by read_parameters_from_csv.
"""
with open(dat_file, 'w') as outfile:
for name, param in parameters.items():
param_type = param['type']
values = param['values']
indices = param['indices']
if indices is None:
outfile.write(f"{param_type} {name} = {values};\n")
else:
max_index = max(indices)
array_size = max_index + 1
sorted_values = [None] * array_size
for idx, val in zip(indices, values):
sorted_values[idx] = val
outfile.write(f"{param_type} {name}[{array_size}] = {{\n")
for i, val in enumerate(sorted_values):
outfile.write(f" {val}")
if i < array_size -1:
outfile.write(",\n")
else:
outfile.write("\n")
outfile.write("};\n")
return