Skip to content
This repository was archived by the owner on Apr 4, 2025. It is now read-only.

Commit 624557a

Browse files
authored
Add readme files (#3)
* Added export scripts (CSV, Excel, DAT) and their documentation in PDF format * Added README files for previously added scripts
1 parent b50e211 commit 624557a

File tree

3 files changed

+170
-0
lines changed

3 files changed

+170
-0
lines changed

ompp_export_csv.md

+54
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,54 @@
1+
# ompp_export_csv.py
2+
3+
## Introduction
4+
`ompp_export_csv.py` is a Python script designed to export all output tables from an OpenM++ SQLite scenario database into a series of CSV files. This allows users to analyze or share the scenario data in a common, lightweight format outside the SQLite environment.
5+
6+
## Features
7+
- Reads all output tables from a given SQLite database.
8+
- Exports the contents of each table into a corresponding CSV file.
9+
- Ensures a clean, textual representation of model output data, making it easy to integrate with spreadsheets or other analysis tools.
10+
11+
## Prerequisites
12+
To use `ompp_export_csv.py`, you need:
13+
- A valid SQLite database file produced by an OpenM++ model run.
14+
- Python 3.x installed on your system.
15+
- The `common.py` module and any other dependencies located in the same directory as `ompp_export_csv.py`.
16+
17+
## Usage
18+
Run the script from the command line as follows:
19+
20+
```bash
21+
python ompp_export_csv.py <source-sqlite> <destination-folder>
22+
```
23+
24+
### Arguments
25+
- `<source-sqlite>`: The path to the SQLite database file containing the scenario's model outputs.
26+
- `<destination-folder>`: The path to a directory where the CSV files will be created.
27+
28+
### Notes on the Destination Folder
29+
**Important:** The output directory you provide must not already exist.
30+
31+
The script requires a non-existing directory so it can create a fresh location where CSV files are placed. If the directory already exists, the script will refuse to run to prevent accidental overwriting of existing files.
32+
33+
## Examples
34+
35+
### Example 1
36+
Suppose you have a scenario database named `Scenario.sqlite` and you want to export the tables into a new directory called `results`. Run:
37+
38+
```bash
39+
python ompp_export_csv.py Scenario.sqlite results
40+
```
41+
42+
If `results` does not exist yet, the script will create it and place all extracted CSV files inside.
43+
44+
### Example 2
45+
If the directory `results` already exists, you will see an error message:
46+
47+
```plaintext
48+
ERROR =====> ompp_export_csv: Output directory for csv files 'results' must not already exist
49+
```
50+
51+
In this case, choose a different directory name or remove/rename the existing one.
52+
53+
## Error Handling
54+
If the script cannot find the specified SQLite database, or if the database is empty, it will log an error and exit. Similarly, if the output directory already exists, it will not proceed, helping to ensure that no existing data is accidentally overwritten.

ompp_export_dat.md

+62
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,62 @@
1+
# ompp_export_dat.py
2+
3+
## Introduction
4+
`ompp_export_dat.py` is a Python utility script to export model output data from an OMPP-compatible SQLite database into `.dat` files.
5+
6+
By processing the contents of a given SQLite database, `ompp_export_dat.py` creates a series of `.dat` files, one for each table found in the database.
7+
8+
## Usage
9+
To run the script, invoke the Python interpreter with `ompp_export_dat.py`, followed by two arguments: the input SQLite database file and the output directory where the `.dat` files will be generated.
10+
11+
### Example Syntax
12+
```bash
13+
python ompp_export_dat.py <input-sqlite-file> <output-directory>
14+
```
15+
16+
### Arguments
17+
- `<input-sqlite-file>`: The path to the SQLite database that contains OMPP model output tables.
18+
- `<output-directory>`: The path to the directory where the script will write the generated `.dat` files.
19+
20+
## Example
21+
Below is an example invocation of the script on a Windows system. This example uses the RiskPaths model output database and exports data to the user's desktop folder `ompp_exportDAT`.
22+
23+
```bash
24+
C:\OpenM\openm\libopenm\common> python ompp_export_dat.py C:\OpenM\models\RiskPaths\ompp\bin\RiskPaths.sqlite C:\Users\parsaba\Desktop\ompp_exportDAT
25+
```
26+
27+
As the script runs, it displays informational messages for each processed table and confirms where the `.dat` file is written:
28+
29+
```plaintext
30+
ompp_export_dat: Processing table 'T01_LifeExpectancy'
31+
write_to_dat_file: Data written to 'C:\Users\parsaba\Desktop\ompp_exportDAT\T01_LifeExpectancy.dat'
32+
33+
ompp_export_dat: Processing table 'T02_TotalPopulationByYear'
34+
write_to_dat_file: Data written to 'C:\Users\parsaba\Desktop\ompp_exportDAT\T02_TotalPopulationByYear.dat'
35+
36+
ompp_export_dat: Processing table 'T03_FertilityByAge'
37+
write_to_dat_file: Data written to 'C:\Users\parsaba\Desktop\ompp_exportDAT\T03_FertilityByAge.dat'
38+
39+
ompp_export_dat: Processing table 'T04_FertilityRatesByAgeGroup'
40+
write_to_dat_file: Data written to 'C:\Users\parsaba\Desktop\ompp_exportDAT\T04_FertilityRatesByAgeGroup.dat'
41+
42+
ompp_export_dat: Processing table 'T05_CohortFertility'
43+
write_to_dat_file: Data written to 'C:\Users\parsaba\Desktop\ompp_exportDAT\T05_CohortFertility.dat'
44+
45+
ompp_export_dat: Processing table 'T06_BirthsByUnion'
46+
write_to_dat_file: Data written to 'C:\Users\parsaba\Desktop\ompp_exportDAT\T06_BirthsByUnion.dat'
47+
48+
ompp_export_dat: Processing table 'T07_FirstUnionFormation'
49+
write_to_dat_file: Data written to 'C:\Users\parsaba\Desktop\ompp_exportDAT\T07_FirstUnionFormation.dat'
50+
51+
ompp_export_dat: Successfully exported 'C:\OpenM\models\RiskPaths\ompp\bin\RiskPaths.sqlite' to 'C:\Users\parsaba\Desktop\ompp_exportDAT'
52+
53+
ompp_export_dat: Database connection closed.
54+
```
55+
56+
This output confirms that each table has been processed and that the corresponding `.dat` files have been created successfully.
57+
58+
## File Contents
59+
Within each generated `.dat` file, the script includes a header line with the table name and columns, followed by rows of data. These rows are space-separated by default.
60+
61+
## Error Handling
62+
If the input database does not exist or the output directory is invalid, the script logs an error message and stops. Database connectivity issues or unexpected runtime errors are also reported to help you diagnose and fix problems quickly.

ompp_export_excel.md

+54
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,54 @@
1+
# ompp_export_excel.py
2+
3+
## Introduction
4+
`ompp_export_excel.py` is a Python utility script to export model output data from an OMPP-compatible SQLite database into Excel files.
5+
6+
By processing the contents of a given SQLite database, `ompp_export_excel.py` creates either a single Excel file with all tables as sheets or multiple Excel files, one for each table, based on the output settings.
7+
8+
## Usage
9+
To run the script, invoke the Python interpreter with `ompp_export_excel.py`, followed by two arguments: the input SQLite database file and the output path where the Excel files will be generated.
10+
11+
### Example Syntax
12+
```bash
13+
python ompp_export_excel.py <input-sqlite-file> <output-path>
14+
```
15+
16+
### Arguments
17+
- `<input-sqlite-file>`: The path to the SQLite database that contains OMPP model output tables.
18+
- `<output-path>`: The path to the directory or file where the script will write the Excel output. If a directory is provided, multiple Excel files are generated (one per table). If a file path is provided, a single Excel file with multiple sheets is created.
19+
20+
## Example
21+
Below is an example of the script run. This example uses the RiskPaths model output database and exports data to the user's desktop folder `excelFiles`.
22+
23+
```bash
24+
C:\OpenM\openm\libopenm\common> python ompp_export_excel.py C:\OpenM\models\RiskPaths\ompp\bin\RiskPaths.sqlite C:\Users\parsaba\Desktop\excelFiles\
25+
```
26+
27+
As the script runs, it displays informational messages for each processed table and confirms where the Excel files are written:
28+
29+
```plaintext
30+
ompp_export_excel: Processing table 'T01_LifeExpectancy'
31+
write_to_excel_file: Data written to 'C:\Users\parsaba\Desktop\excelFiles\T01_LifeExpectancy.xlsx'
32+
33+
ompp_export_excel: Processing table 'T02_TotalPopulationByYear'
34+
write_to_excel_file: Data written to 'C:\Users\parsaba\Desktop\excelFiles\T02_TotalPopulationByYear.xlsx'
35+
36+
ompp_export_excel: Successfully exported 'C:\OpenM\models\RiskPaths\ompp\bin\RiskPaths.sqlite' to 'C:\Users\parsaba\Desktop\excelFiles\'
37+
38+
ompp_export_excel: Database connection closed.
39+
```
40+
41+
This output confirms that each table has been processed and that the corresponding Excel files have been created successfully.
42+
43+
## File Contents
44+
Each generated Excel file contains the full contents of a single table from the SQLite database. If exporting to a single Excel file, each table is written to a separate sheet, with sheet names truncated to 31 characters if necessary.
45+
46+
## Error Handling
47+
If the input database does not exist or the output path is invalid, the script logs an error message and stops. Common errors include:
48+
49+
- **Database file not found**: The specified SQLite database file does not exist.
50+
- **Permission denied**: The script lacks write permissions for the output path.
51+
- **Unexpected runtime errors**: These are logged to help diagnose and fix problems quickly.
52+
53+
## Warnings
54+
When exporting tables with long names, a warning is logged if the sheet name exceeds 31 characters. This limitation is due to Excel's constraints on sheet names.

0 commit comments

Comments
 (0)