-
Notifications
You must be signed in to change notification settings - Fork 2
/
eval.py
166 lines (135 loc) · 4.63 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import os
import msaf
import numpy as np
from tqdm import tqdm
import mir_eval
import pandas as pd
from features import Embeddiogram
from msaf.base import features_registry
import wandb
from train import PROJECT_NAME
# All available features
features_registry["embeddiogram"] = Embeddiogram
AUDIO_DIR = "./datasets/SALAMI/audio"
ANNOTATIONS_DIR = "./datasets/SALAMI/references"
FEATURE = "tempogram"
BOUNDARIES_ID = msaf.config.default_bound_id
LABELS_ID = msaf.config.default_label_id
EVAL_WINDOW = 0.5 # The maximum allowed deviation for a correct boundary (in seconds)
run = wandb.init(
project=PROJECT_NAME, job_type="eval", config={"eval_window": EVAL_WINDOW}
)
def get_audio_and_annot_files(audio_dir, annotations_dir):
audio_files_dict = {
os.path.splitext(f)[0]: os.path.join(audio_dir, f)
for f in os.listdir(audio_dir)
if f.endswith(".mp3")
}
annot_files_dict = {
os.path.splitext(os.path.basename(f))[0]: os.path.join(annotations_dir, f)
for f in os.listdir(annotations_dir)
if f.endswith(".jams")
}
valid_pairs = [
(audio_files_dict[key], annot_files_dict[key])
for key in audio_files_dict
if key in annot_files_dict
]
return zip(*valid_pairs)
def get_config(feature, boundaries_id, labels_id):
return msaf.io.get_configuration(
feature,
annot_beats=False,
framesync=False,
boundaries_id=boundaries_id,
labels_id=labels_id,
)
def process_audio_file(audio_file_path, annot_file_path, feature_name):
try:
annot_intervals, annot_labels = msaf.io.read_references(audio_file_path)
except FileNotFoundError as e:
print(f"Error: {e}")
return None
boundaries, labels = msaf.process(
in_path=audio_file_path,
feature=feature_name,
plot=False,
)
return boundaries, labels, annot_intervals, annot_labels
def evaluate_segmentation(
boundaries, labels, annot_intervals, annot_labels, eval_window
):
# Evaluate boundary detection
p, r, f = mir_eval.segment.detection(
reference_intervals=annot_intervals,
estimated_intervals=boundaries,
window=eval_window,
)
ref_est, est_ref = mir_eval.segment.deviation(
reference_intervals=annot_intervals, estimated_intervals=boundaries
)
# Evaluate segmentation
scores = mir_eval.segment.evaluate(
ref_intervals=annot_intervals,
ref_labels=annot_labels,
est_intervals=boundaries,
est_labels=labels,
)
dict_1 = {
"boundary_precision": p,
"boundary_recall": r,
"boundary_f_score": f,
"reference_to_estimated": ref_est,
"estimated_to_reference": est_ref,
}
return {**dict_1, **scores}
def boundaries_to_intervals(boundaries):
intervals = np.zeros((len(boundaries) - 1, 2))
intervals[:, 0] = boundaries[:-1]
intervals[:, 1] = boundaries[1:]
return intervals
def main():
audio_files, annot_files = get_audio_and_annot_files(AUDIO_DIR, ANNOTATIONS_DIR)
evaluations = []
total_files = len(audio_files)
save_interval = (
total_files // 10
) # Save the CSV file after every 10% of the total iterations
for i, (audio_file, annot_file) in enumerate(
tqdm(zip(audio_files, annot_files), total=total_files), start=1
):
print(f"Pair {i}:")
print(f"Audio file: {audio_file}")
print(f"Annotation file: {annot_file}")
try:
results = process_audio_file(
audio_file_path=audio_file,
annot_file_path=annot_file,
feature_name=FEATURE,
)
# Convert boundaries to intervals
estimated_intervals = boundaries_to_intervals(results[0])
reference_intervals = boundaries_to_intervals(results[2])
# Evaluate segmentation
evaluation_results = evaluate_segmentation(
estimated_intervals,
results[1],
reference_intervals,
results[3],
EVAL_WINDOW,
)
print(evaluation_results)
evaluations.append(evaluation_results)
except Exception as e:
print(f"Error processing file {audio_file}: {e}")
continue
if i % save_interval == 0:
df = pd.DataFrame(evaluations)
print(df.mean())
df.to_csv(
f"evaluation_results_{FEATURE}_{BOUNDARIES_ID}_{LABELS_ID}.csv",
index=False,
mode="w",
) # Overwrite the CSV file with each update
if __name__ == "__main__":
main()