-
Notifications
You must be signed in to change notification settings - Fork 2
/
evaluate_MSA.py
83 lines (63 loc) · 2.48 KB
/
evaluate_MSA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
from model import SampleCNN, TripletNet
from msaf import config
from msaf.base import Features
import torch
import numpy as np
class Embedding(Features):
"""This class computes embeddings of an audio signal using a pre-trained SampleCNN model."""
def __init__(
self, file_struct, feat_type, sr=config.sample_rate, hop_length=config.hop_size
):
super().__init__(
file_struct=file_struct, sr=sr, hop_length=hop_length, feat_type=feat_type
)
self.model = TripletNet(
SampleCNN(
strides=[3, 3, 3, 3, 3, 3, 3, 3, 3], supervised=False, out_dim=128
)
)
self.model.eval()
@classmethod
def get_id(cls):
"""Identifier of these features."""
return "embedding"
def compute_features(self):
"""Compute the embeddings of the audio signal using the SampleCNN model."""
input_audio = self._audio
# Convert the NumPy array to a PyTorch tensor
input_audio_tensor = torch.from_numpy(input_audio)
# Add a new dimension at position 0 to make it a 2D tensor
input_torch_tensor = input_audio_tensor.unsqueeze(0)
print(input_torch_tensor.shape) # Output: torch.Size([1, N])
audio_embedding = self.model(input_torch_tensor).detach().numpy()
window_size = 128
hop_length = self.hop_length
num_frames = (len(audio_embedding) - window_size) // hop_length + 1
features = np.zeros((num_frames, window_size))
for i in range(num_frames):
start = i * hop_length
end = start + window_size
features[i, :] = audio_embedding[start:end]
return features
# Simple MSAF example
import msaf
# 1. Select audio file
audio_file = "/home/oriol_colome_font_epidemicsound_/Master-Thesis/Track No01.mp3"
# 2. Segment the file using the default MSAF parameters (this might take a few seconds)
boundaries, labels = msaf.process(audio_file, feature="embedding")
print("Estimated boundaries:", boundaries)
# 3. Save segments using the MIREX format
out_file = "segments.txt"
print("Saving output to %s" % out_file)
msaf.io.write_mirex(boundaries, labels, out_file)
# 4. Evaluate the results
try:
evals = msaf.eval.process(audio_file)
print(evals)
except msaf.exceptions.NoReferencesError:
file_struct = msaf.input_output.FileStruct(audio_file)
print(
"No references found in {}. No evaluation performed.".format(
file_struct.ref_file
)
)