forked from zhangxiaoyu11/XOmiVAE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathshapExplainerHelper.py
181 lines (153 loc) · 8.2 KB
/
shapExplainerHelper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import torch
import numpy as np
from scipy import stats
import pandas as pd
def dataPrepForDeepShap(sample_ids, label_arrays, exprdf, number_of_samples, label_id,device):
sample_id_with_chosen_labels = sample_ids[np.nonzero(label_arrays == label_id)]
chosen_expr = exprdf[sample_id_with_chosen_labels]
chosen_expr_feature_labels = chosen_expr.iloc[:, 0:5].index
chosen_expr_feature_labels_list = chosen_expr_feature_labels.values.tolist()
# find in gencode and replace with gene acronym
chosen_expr_tensor = chosen_expr.iloc[:, 0:number_of_samples].values
chosen_expr_tensor = chosen_expr_tensor.astype(dtype='float32')
chosen_expr_tensor = torch.Tensor(chosen_expr_tensor)
chosen_expr_tensor = chosen_expr_tensor.to(device)
chosen_expr_tensor = torch.transpose(chosen_expr_tensor, 0, 1)
return chosen_expr_feature_labels_list, chosen_expr_tensor, sample_id_with_chosen_labels
def sampleSameAmount(label_array, label_dig, no_labels, gender, phenotype):
countlabel = 0
target_array = np.zeros(label_array.shape)
for x in range(0, len(label_array)):
if label_array[x] == label_dig and countlabel < no_labels and phenotype['Gender'].iloc[x] == gender:
countlabel += 1
target_array[x] = 1
else:
target_array[x] = 0
target_array = target_array.astype(bool)
print("end count")
print(countlabel)
return target_array
def booleanConditional(sampleOne, sampleTwo, sampleThree, sampleFour, sampleFive):
condition = np.logical_or.reduce(sampleOne, sampleTwo,sampleThree,sampleFour,sampleFive)
return condition
def saveMostStatisticallySignificantIndex(conditionOne, conditionTwo, fileNameOne, fileNameTwo, z):
female_z = z[conditionOne]
male_z = z[conditionTwo]
statistics = stats.ttest_ind(female_z, male_z, axis=0, equal_var=False, nan_policy='propagate')
stat_lowest_index = np.argmin(statistics.pvalue)
female_z_column = female_z[:, stat_lowest_index]
male_z_column = male_z[:, stat_lowest_index]
file_path_one = 'data/' + fileNameOne + '.csv'
file_path_two = 'data/' + fileNameTwo + '.csv'
np.savetxt(file_path_one, female_z_column)
np.savetxt(file_path_two, male_z_column)
def randomTrainingSample(expr,sampleSize):
randomTrainingSampleexpr = expr.sample(n=sampleSize, axis=1)
return randomTrainingSampleexpr
def pathwayComparison(sample_id, pathway):
pathways = pd.read_csv('data/PathwayAnalysis.csv', sep=',', header=0, index_col=0)
relevantpathways = pathways.loc[sample_id]
logicalMutant = relevantpathways[pathway] == 1
logicalNonMutant = relevantpathways[pathway] == 0
return logicalMutant,logicalNonMutant
def multipleSampling(label_array,phenotype, tumour_id_one, tumour_id_two, tumour_id_three, tumour_id_four, tumour_id_five,sample_number):
female_thirteen = sampleSameAmount(label_array, tumour_id_one, sample_number, "Female", phenotype)
female_eighteen = sampleSameAmount(label_array, tumour_id_two, sample_number, "Female", phenotype)
female_four = sampleSameAmount(label_array, tumour_id_three, sample_number, "Female", phenotype)
female_five = sampleSameAmount(label_array, tumour_id_four, sample_number, "Female", phenotype)
female_six = sampleSameAmount(label_array, tumour_id_five, sample_number, "Female", phenotype)
male_thirteen = sampleSameAmount(label_array, tumour_id_one, sample_number, "Male", phenotype)
male_eighteen = sampleSameAmount(label_array, tumour_id_two, sample_number, "Male", phenotype)
male_four = sampleSameAmount(label_array, tumour_id_three, sample_number, "Male", phenotype)
#changed as only 25 to sample from
male_five = sampleSameAmount(label_array, tumour_id_four, 25, "Male", phenotype)
male_six = sampleSameAmount(label_array, tumour_id_five, sample_number, "Male", phenotype)
maleCondition = booleanConditional(male_thirteen, male_eighteen, male_four, male_five, male_six)
femaleCondition = booleanConditional(female_thirteen, female_eighteen, female_four, female_five,female_six)
return femaleCondition, maleCondition
def splitExprandSample(condition, sampleSize, expr):
expr_df_T = expr.T
split_expr = expr_df_T[condition].T
split_expr = split_expr.sample(n=sampleSize, axis=1)
return split_expr
def splitForGenders(sample_id):
phenotype = pd.read_csv('DataSources/GDC-PANCAN.basic_phenotype.tsv', sep='\t', header=0, index_col=0)
phenotype = phenotype.T
phenotype = phenotype[sample_id].T
female = phenotype['Gender'] == "Female"
male = phenotype['Gender'] == "Male"
return female, male
def printConditionalSelection(conditional,label_array):
malecounts = label_array[conditional]
unique, counts = np.unique(malecounts.iloc[:, 0], return_counts=True)
print("male sample id counts")
print(np.asarray((unique, counts)).T)
#when not using ranked output i.e. not explaining the outputs (therefore exlaining the z dimension or mu)
def saveShapValues(shap_vals, gene, chrom, ranked_output=True):
# if not using ranked outputs (i.e. wanting to explain just the top predicted label... then use vals = np.abs(shap_vals).mean(0)
# if passing in shap_value[0] as ranked_outputs then again need to use shap_vals[0] here
#if want to understand the positive and negative SHAP values then change absolute SHAP value here to separating between positive and negative values
if ranked_output==True:
vals = np.abs(shap_vals[0]).mean(0)
else:
vals = np.abs(shap_vals).mean(0)
feature_importance = pd.DataFrame(list(zip(gene, chrom, vals)),
columns=['gene', 'chrom', 'feature_importance_vals'])
feature_importance.sort_values(by=['feature_importance_vals'], ascending=False, inplace=True)
feature_importance.to_csv('data/shapValues.csv')
return feature_importance
def getGenes(expr_df):
# get genes and chromosomes
gencode_ids = pd.read_csv('DataSources/gencodev22annotationgeneCOPY.tsv', sep='\t', header=0, index_col=0)
new = expr_df.merge(gencode_ids, left_index=True, right_index=True, how='left')
print("new")
print(new)
genes = new.iloc[:, -5]
chrom = new.iloc[:, -4]
ensg = new.index
return genes, chrom, ensg
def getTopShapValues(shap_vals, numberOfTopFeatures, expr_df, ranked_output=True, cancerType="TCGA-BRCA",absolute=True):
gene, chrom, ensg = getGenes(expr_df)
if absolute:
if ranked_output==True:
print("here absolute and ranked")
shap_value=shap_vals[0]
vals = np.abs(shap_value[0]).mean(0)
else:
vals = np.abs(shap_vals).mean(0)
else:
print("should not print here")
if ranked_output==True:
shap_value=shap_vals[0]
vals = shap_value[0].mean(0)
else:
print("should not print here")
vals = shap_vals.mean(0)
#feature_importance = pd.DataFrame(list(zip(gene, chrom, ensg, vals)),columns=['gene', 'chrom', 'id', 'feature_importance_vals'])
feature_importance = pd.DataFrame(list(zip(gene, chrom, ensg, vals)),
columns=['gene', 'chrom', 'id', 'feature_importance_vals'])
feature_importance.sort_values(by=['feature_importance_vals'], ascending=False, inplace=True)
#plotGenes(cancerType,feature_importance)
mostImp_shap_values = feature_importance.head(numberOfTopFeatures)
print(mostImp_shap_values)
feature_importance.to_csv(cancerType +"_feature_imp_secondtry")
"""
print(mostImp_shap_values)
print("least importance absolute values")
feature_importance.sort_values(by=['feature_importance_vals'], ascending=True, inplace=True)
leastImp_shap_values = feature_importance.head(numberOfTopFeatures)
print(leastImp_shap_values)
"""
return mostImp_shap_values
def plotGenes(cancertype,shap_values):
import matplotlib.pyplot as plt
import seaborn as sns
shap_values = shap_values.head(10)
fig, axs = plt.subplots(ncols=1)
sns.set_style("white")
fig.tight_layout(pad=6.0)
sns.barplot(x="feature_importance_vals", y="gene", data=shap_values, color="skyblue", ax=axs)
axs.set(xlabel="Mean |SHAP value| ", ylabel="Gene")
axs.set_title(cancertype, pad=15)
plt.savefig(cancertype+".png", dpi=1500)
#plt.show()