forked from mthom/scryer-prolog
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ordsets.pl
616 lines (490 loc) · 18.9 KB
/
ordsets.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
/* Author: Jan Wielemaker
E-mail: [email protected]
WWW: http://www.swi-prolog.org
Copyright (c) 2001-2014, University of Amsterdam
VU University Amsterdam
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
*/
:- module(ordsets,
[ is_ordset/1, % @Term
list_to_ord_set/2, % +List, -OrdSet
ord_add_element/3, % +Set, +Element, -NewSet
ord_del_element/3, % +Set, +Element, -NewSet
ord_selectchk/3, % +Item, ?Set1, ?Set2
ord_intersect/2, % +Set1, +Set2 (test non-empty)
ord_intersect/3, % +Set1, +Set2, -Intersection
ord_intersection/3, % +Set1, +Set2, -Intersection
ord_intersection/4, % +Set1, +Set2, -Intersection, -Diff
ord_disjoint/2, % +Set1, +Set2
ord_subtract/3, % +Set, +Delete, -Remaining
ord_union/2, % +SetOfOrdSets, -Set
ord_union/3, % +Set1, +Set2, -Union
ord_union/4, % +Set1, +Set2, -Union, -New
ord_subset/2, % +Sub, +Super (test Sub is in Super)
% Non-Quintus extensions
ord_empty/1, % ?Set
ord_memberchk/2, % +Element, +Set,
ord_symdiff/3, % +Set1, +Set2, ?Diff
% SICSTus extensions
ord_seteq/2, % +Set1, +Set2
ord_intersection/2 % +PowerSet, -Intersection
]).
:- use_module(library(lists)).
/** Ordered set manipulation
Ordered sets are lists with unique elements sorted to the standard order
of terms (see `sort/2`). Exploiting ordering, many of the set operations
can be expressed in order N rather than N^2 when dealing with unordered
sets that may contain duplicates. The library(ordsets) is available in a
number of Prolog implementations. Our predicates are designed to be
compatible with common practice in the Prolog community.
Some of these predicates match directly to corresponding list
operations. It is advised to use the versions from this library to make
clear you are operating on ordered sets. An exception is `member/2`. See
`ord_memberchk/2`.
The ordsets library is based on the standard order of terms. This
implies it can handle all Prolog terms, including variables. Note
however, that the ordering is not stable if a term inside the set is
further instantiated. Also note that variable ordering changes if
variables in the set are unified with each other or a variable in the
set is unified with a variable that is _older_ than the newest variable
in the set. In practice, this implies that it is allowed to use
member(X, OrdSet) on an ordered set that holds variables only if X is a
fresh variable. In other cases one should cease using it as an ordset
because the order it relies on may have been changed.
*/
%% is_ordset(@Term) is semidet.
%
% True if Term is an ordered set. All predicates in this library
% expect ordered sets as input arguments. Failing to fullfil this
% assumption results in undefined behaviour. Typically, ordered
% sets are created by predicates from this library, `sort/2` or
% `setof/3`.
is_ordset(Term) :-
'$skip_max_list'(_, _, Term, Tail), Tail == [], %% is_list(Term),
is_ordset2(Term).
is_ordset2([]).
is_ordset2([H|T]) :-
is_ordset3(T, H).
is_ordset3([], _).
is_ordset3([H2|T], H) :-
H2 @> H,
is_ordset3(T, H2).
%% ord_empty(?List) is semidet.
%
% True when List is the empty ordered set. Simply unifies list
% with the empty list. Not part of Quintus.
ord_empty([]).
%% ord_seteq(+Set1, +Set2) is semidet.
%
% True if Set1 and Set2 have the same elements. As both are
% canonical sorted lists, this is the same as `==/2`.
ord_seteq(Set1, Set2) :-
Set1 == Set2.
%% list_to_ord_set(+List, -OrdSet) is det.
%
% Transform a list into an ordered set. This is the same as
% sorting the list.
list_to_ord_set(List, Set) :-
sort(List, Set).
%% ord_intersect(+Set1, +Set2) is semidet.
%
% True if both ordered sets have a non-empty intersection.
ord_intersect([H1|T1], L2) :-
ord_intersect_(L2, H1, T1).
ord_intersect_([H2|T2], H1, T1) :-
compare(Order, H1, H2),
ord_intersect__(Order, H1, T1, H2, T2).
ord_intersect__(<, _H1, T1, H2, T2) :-
ord_intersect_(T1, H2, T2).
ord_intersect__(=, _H1, _T1, _H2, _T2).
ord_intersect__(>, H1, T1, _H2, T2) :-
ord_intersect_(T2, H1, T1).
%% ord_disjoint(+Set1, +Set2) is semidet.
%
% True if Set1 and Set2 have no common elements. This is the
% negation of `ord_intersect/2`.
ord_disjoint(Set1, Set2) :-
\+ ord_intersect(Set1, Set2).
%% ord_intersect(+Set1, +Set2, -Intersection)
%
% Intersection holds the common elements of Set1 and Set2.
%
% This predicate is *deprecated*. Use `ord_intersection/3`
ord_intersect(Set1, Set2, Intersection) :-
oset_int(Set1, Set2, Intersection).
%% ord_intersection(+PowerSet, -Intersection)
%
% Intersection of a powerset. True when Intersection is an ordered
% set holding all elements common to all sets in PowerSet.
ord_intersection(PowerSet, Intersection) :-
key_by_length(PowerSet, Pairs),
keysort(Pairs, [_-S|Sorted]),
l_int(Sorted, S, Intersection).
key_by_length([], []).
key_by_length([H|T0], [L-H|T]) :-
length(H, L),
key_by_length(T0, T).
l_int([], S, S).
l_int([_-H|T], S0, S) :-
ord_intersection(S0, H, S1),
l_int(T, S1, S).
%% ord_intersection(+Set1, +Set2, -Intersection) is det.
%
% Intersection holds the common elements of Set1 and Set2. Uses
% `ord_disjoint/2` if Intersection is bound to `[]` on entry.
ord_intersection(Set1, Set2, Intersection) :-
( Intersection == []
-> ord_disjoint(Set1, Set2)
; oset_int(Set1, Set2, Intersection)
).
%% ord_intersection(+Set1, +Set2, ?Intersection, ?Difference) is det.
%
% Intersection and difference between two ordered sets.
% Intersection is the intersection between Set1 and Set2, while
% Difference is defined by `ord_subtract(Set2, Set1, Difference)`.
ord_intersection([], L, [], L) :- !.
ord_intersection([_|_], [], [], []) :- !.
ord_intersection([H1|T1], [H2|T2], Intersection, Difference) :-
compare(Diff, H1, H2),
ord_intersection2(Diff, H1, T1, H2, T2, Intersection, Difference).
ord_intersection2(=, H1, T1, _H2, T2, [H1|T], Difference) :-
ord_intersection(T1, T2, T, Difference).
ord_intersection2(<, _, T1, H2, T2, Intersection, Difference) :-
ord_intersection(T1, [H2|T2], Intersection, Difference).
ord_intersection2(>, H1, T1, H2, T2, Intersection, [H2|HDiff]) :-
ord_intersection([H1|T1], T2, Intersection, HDiff).
%% ord_add_element(+Set1, +Element, ?Set2) is det.
%
% Insert an element into the set. This is the same as
% `ord_union(Set1, [Element], Set2)`.
ord_add_element(Set1, Element, Set2) :-
oset_addel(Set1, Element, Set2).
%% ord_del_element(+Set, +Element, -NewSet) is det.
%
% Delete an element from an ordered set. This is the same as
% `ord_subtract(Set, [Element], NewSet)`.
ord_del_element(Set, Element, NewSet) :-
oset_delel(Set, Element, NewSet).
%% ord_selectchk(+Item, ?Set1, ?Set2) is semidet.
%
% `selectchk/3`, specialised for ordered sets. Is true when
% select(Item, Set1, Set2) and Set1, Set2 are both sorted lists
% without duplicates. This implementation is only expected to work
% for Item ground and either Set1 or Set2 ground. The "chk" suffix
% is meant to remind you of `memberchk/2`, which also expects its
% first argument to be ground. `ord_selectchk(X, S, T) =>
% ord_memberchk(X, S) & \+ ord_memberchk(X, T).`
%
% Author: Richard O'Keefe
ord_selectchk(Item, [X|Set1], [X|Set2]) :-
X @< Item,
!,
ord_selectchk(Item, Set1, Set2).
ord_selectchk(Item, [Item|Set1], Set1) :-
( Set1 == []
-> true
; Set1 = [Y|_]
-> Item @< Y
).
%% ord_memberchk(+Element, +OrdSet) is semidet.
%
% True if Element is a member of OrdSet, compared using ==. Note
% that _enumerating_ elements of an ordered set can be done using
% `member/2`.
%
% Some Prolog implementations also provide `ord_member/2`, with the
% same semantics as `ord_memberchk/2`. We believe that having a
% semidet `ord_member/2` is unacceptably inconsistent with the \*\_chk
% convention. Portable code should use `ord_memberchk/2` or
% `member/2`.
%
% Author: Richard O'Keefe
ord_memberchk(Item, [X1,X2,X3,X4|Xs]) :-
!,
compare(R4, Item, X4),
( R4 = (>) -> ord_memberchk(Item, Xs)
; R4 = (<) ->
compare(R2, Item, X2),
( R2 = (>) -> Item == X3
; R2 = (<) -> Item == X1
;/* R2 = (=), Item == X2 */ true
)
;/* R4 = (=) */ true
).
ord_memberchk(Item, [X1,X2|Xs]) :-
!,
compare(R2, Item, X2),
( R2 = (>) -> ord_memberchk(Item, Xs)
; R2 = (<) -> Item == X1
;/* R2 = (=) */ true
).
ord_memberchk(Item, [X1]) :-
Item == X1.
%% ord_subset(+Sub, +Super) is semidet.
%
% Is true if all elements of Sub are in Super
ord_subset([], _).
ord_subset([H1|T1], [H2|T2]) :-
compare(Order, H1, H2),
ord_subset_(Order, H1, T1, T2).
ord_subset_(>, H1, T1, [H2|T2]) :-
compare(Order, H1, H2),
ord_subset_(Order, H1, T1, T2).
ord_subset_(=, _, T1, T2) :-
ord_subset(T1, T2).
%% ord_subtract(+InOSet, +NotInOSet, -Diff) is det.
%
% Diff is the set holding all elements of InOSet that are not in
% NotInOSet.
ord_subtract(InOSet, NotInOSet, Diff) :-
oset_diff(InOSet, NotInOSet, Diff).
%% ord_union(+SetOfSets, -Union) is det.
%
% True if Union is the union of all elements in the superset
% SetOfSets. Each member of SetOfSets must be an ordered set, the
% sets need not be ordered in any way.
ord_union([], []).
ord_union([Set|Sets], Union) :-
length([Set|Sets], NumberOfSets),
ord_union_all(NumberOfSets, [Set|Sets], Union, []).
ord_union_all(N, Sets0, Union, Sets) :-
( N =:= 1
-> Sets0 = [Union|Sets]
; N =:= 2
-> Sets0 = [Set1,Set2|Sets],
ord_union(Set1,Set2,Union)
; A is N>>1,
Z is N-A,
ord_union_all(A, Sets0, X, Sets1),
ord_union_all(Z, Sets1, Y, Sets),
ord_union(X, Y, Union)
).
%% ord_union(+Set1, +Set2, ?Union) is det.
%
% Union is the union of Set1 and Set2
ord_union(Set1, Set2, Union) :-
oset_union(Set1, Set2, Union).
%% ord_union(+Set1, +Set2, -Union, -New) is det.
%
% True iff `ord_union(Set1, Set2, Union)` and
% `ord_subtract(Set2, Set1, New)`.
ord_union([], Set2, Set2, Set2).
ord_union([H|T], Set2, Union, New) :-
ord_union_1(Set2, H, T, Union, New).
ord_union_1([], H, T, [H|T], []).
ord_union_1([H2|T2], H, T, Union, New) :-
compare(Order, H, H2),
ord_union(Order, H, T, H2, T2, Union, New).
ord_union(<, H, T, H2, T2, [H|Union], New) :-
ord_union_2(T, H2, T2, Union, New).
ord_union(>, H, T, H2, T2, [H2|Union], [H2|New]) :-
ord_union_1(T2, H, T, Union, New).
ord_union(=, H, T, _, T2, [H|Union], New) :-
ord_union(T, T2, Union, New).
ord_union_2([], H2, T2, [H2|T2], [H2|T2]).
ord_union_2([H|T], H2, T2, Union, New) :-
compare(Order, H, H2),
ord_union(Order, H, T, H2, T2, Union, New).
%% ord_symdiff(+Set1, +Set2, ?Difference) is det.
%
% Is true when Difference is the symmetric difference of Set1 and
% Set2. I.e., Difference contains all elements that are not in the
% intersection of Set1 and Set2. The semantics is the same as the
% sequence below (but the actual implementation requires only a
% single scan).
%
% ```
% ord_union(Set1, Set2, Union),
% ord_intersection(Set1, Set2, Intersection),
% ord_subtract(Union, Intersection, Difference).
% ```
%
% For example:
%
% ```
% ?- ord_symdiff([1,2], [2,3], X).
% X = [1,3].
% ```
ord_symdiff([], Set2, Set2).
ord_symdiff([H1|T1], Set2, Difference) :-
ord_symdiff(Set2, H1, T1, Difference).
ord_symdiff([], H1, T1, [H1|T1]).
ord_symdiff([H2|T2], H1, T1, Difference) :-
compare(Order, H1, H2),
ord_symdiff(Order, H1, T1, H2, T2, Difference).
ord_symdiff(<, H1, Set1, H2, T2, [H1|Difference]) :-
ord_symdiff(Set1, H2, T2, Difference).
ord_symdiff(=, _, T1, _, T2, Difference) :-
ord_symdiff(T1, T2, Difference).
ord_symdiff(>, H1, T1, H2, Set2, [H2|Difference]) :-
ord_symdiff(Set2, H1, T1, Difference).
/* The osets library on which ordsets depends.
Author: Jon Jagger
E-mail: [email protected]
Copyright (c) 1993-2011, Jon Jagger
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
*/
/* Ordered set manipulation
This library defines set operations on sets represented as ordered
lists.
@author Jon Jagger
@deprecated Use the de-facto library ordsets.pl
*/
%% oset_is(+OSet)
% check that OSet in correct format (standard order)
oset_is(-) :- !, fail. % var filter
oset_is([]).
oset_is([H|T]) :-
oset_is(T, H).
oset_is(-, _) :- !, fail. % var filter
oset_is([], _H).
oset_is([H|T], H0) :-
H0 @< H, % use standard order
oset_is(T, H).
%% oset_union(+OSet1, +OSet2, -Union).
oset_union([], Union, Union).
oset_union([H1|T1], L2, Union) :-
union2(L2, H1, T1, Union).
union2([], H1, T1, [H1|T1]).
union2([H2|T2], H1, T1, Union) :-
compare(Order, H1, H2),
union3(Order, H1, T1, H2, T2, Union).
union3(<, H1, T1, H2, T2, [H1|Union]) :-
union2(T1, H2, T2, Union).
union3(=, H1, T1, _H2, T2, [H1|Union]) :-
oset_union(T1, T2, Union).
union3(>, H1, T1, H2, T2, [H2|Union]) :-
union2(T2, H1, T1, Union).
%% oset_int(+OSet1, +OSet2, -Int)
% ordered set intersection
oset_int([], _Int, []).
oset_int([H1|T1], L2, Int) :-
isect2(L2, H1, T1, Int).
isect2([], _H1, _T1, []).
isect2([H2|T2], H1, T1, Int) :-
compare(Order, H1, H2),
isect3(Order, H1, T1, H2, T2, Int).
isect3(<, _H1, T1, H2, T2, Int) :-
isect2(T1, H2, T2, Int).
isect3(=, H1, T1, _H2, T2, [H1|Int]) :-
oset_int(T1, T2, Int).
isect3(>, H1, T1, _H2, T2, Int) :-
isect2(T2, H1, T1, Int).
%% oset_diff(+InOSet, +NotInOSet, -Diff)
% ordered set difference
oset_diff([], _Not, []).
oset_diff([H1|T1], L2, Diff) :-
diff21(L2, H1, T1, Diff).
diff21([], H1, T1, [H1|T1]).
diff21([H2|T2], H1, T1, Diff) :-
compare(Order, H1, H2),
diff3(Order, H1, T1, H2, T2, Diff).
diff12([], _H2, _T2, []).
diff12([H1|T1], H2, T2, Diff) :-
compare(Order, H1, H2),
diff3(Order, H1, T1, H2, T2, Diff).
diff3(<, H1, T1, H2, T2, [H1|Diff]) :-
diff12(T1, H2, T2, Diff).
diff3(=, _H1, T1, _H2, T2, Diff) :-
oset_diff(T1, T2, Diff).
diff3(>, H1, T1, _H2, T2, Diff) :-
diff21(T2, H1, T1, Diff).
%% oset_dunion(+SetofSets, -DUnion)
% distributed union
oset_dunion([], []).
oset_dunion([H|T], DUnion) :-
oset_dunion(T, H, DUnion).
oset_dunion([], DUnion, DUnion).
oset_dunion([H|T], DUnion0, DUnion) :-
oset_union(H, DUnion0, DUnion1),
oset_dunion(T, DUnion1, DUnion).
%% oset_dint(+SetofSets, -DInt)
% distributed intersection
oset_dint([], []).
oset_dint([H|T], DInt) :-
dint(T, H, DInt).
dint([], DInt, DInt).
dint([H|T], DInt0, DInt) :-
oset_int(H, DInt0, DInt1),
dint(T, DInt1, DInt).
%! oset_power(+Set, -PSet)
%
% True when PSet is the powerset of Set. That is, Pset is a set of
% all subsets of Set, where each subset is a proper ordered set.
oset_power(S, PSet) :-
reverse(S, R),
pset(R, [[]], PSet0),
sort(PSet0, PSet).
% The powerset of a set is the powerset of a set of one smaller,
% together with the set of one smaller where each subset is extended
% with the new element. Note that this produces the elements of the set
% in reverse order. Hence the reverse in oset_power/2.
pset([], PSet, PSet).
pset([H|T], PSet0, PSet) :-
happ(PSet0, H, PSet1),
pset(T, PSet1, PSet).
happ([], _, []).
happ([S|Ss], H, [[H|S],S|Rest]) :-
happ(Ss, H, Rest).
%% oset_addel(+Set, +El, -Add)
% ordered set element addition
oset_addel([], El, [El]).
oset_addel([H|T], El, Add) :-
compare(Order, H, El),
addel(Order, H, T, El, Add).
addel(<, H, T, El, [H|Add]) :-
oset_addel(T, El, Add).
addel(=, H, T, _El, [H|T]).
addel(>, H, T, El, [El,H|T]).
%% oset_delel(+Set, +El, -Del)
% ordered set element deletion
oset_delel([], _El, []).
oset_delel([H|T], El, Del) :-
compare(Order, H, El),
delel(Order, H, T, El, Del).
delel(<, H, T, El, [H|Del]) :-
oset_delel(T, El, Del).
delel(=, _H, T, _El, T).
delel(>, H, T, _El, [H|T]).