-
-
Notifications
You must be signed in to change notification settings - Fork 18.4k
/
Copy pathtest_complex.py
199 lines (163 loc) · 5.92 KB
/
test_complex.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import numpy as np
import pytest
import pandas as pd
from pandas import (
DataFrame,
Series,
)
import pandas._testing as tm
from pandas.tests.io.pytables.common import ensure_clean_store
from pandas.io.pytables import read_hdf
# pytestmark = pytest.mark.xfail(
# using_string_dtype(), reason="TODO(infer_string)", strict=False
# )
def test_complex_fixed(tmp_path, setup_path):
df = DataFrame(
np.random.default_rng(2).random((4, 5)).astype(np.complex64),
index=list("abcd"),
columns=list("ABCDE"),
)
path = tmp_path / setup_path
df.to_hdf(path, key="df")
reread = read_hdf(path, "df")
tm.assert_frame_equal(df, reread)
df = DataFrame(
np.random.default_rng(2).random((4, 5)).astype(np.complex128),
index=list("abcd"),
columns=list("ABCDE"),
)
path = tmp_path / setup_path
df.to_hdf(path, key="df")
reread = read_hdf(path, "df")
tm.assert_frame_equal(df, reread)
def test_complex_table(tmp_path, setup_path):
df = DataFrame(
np.random.default_rng(2).random((4, 5)).astype(np.complex64),
index=list("abcd"),
columns=list("ABCDE"),
)
path = tmp_path / setup_path
df.to_hdf(path, key="df", format="table")
reread = read_hdf(path, key="df")
tm.assert_frame_equal(df, reread)
df = DataFrame(
np.random.default_rng(2).random((4, 5)).astype(np.complex128),
index=list("abcd"),
columns=list("ABCDE"),
)
path = tmp_path / setup_path
df.to_hdf(path, key="df", format="table", mode="w")
reread = read_hdf(path, "df")
tm.assert_frame_equal(df, reread)
def test_complex_mixed_fixed(tmp_path, setup_path):
complex64 = np.array(
[1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j], dtype=np.complex64
)
complex128 = np.array(
[1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j], dtype=np.complex128
)
df = DataFrame(
{
"A": [1, 2, 3, 4],
"B": ["a", "b", "c", "d"],
"C": complex64,
"D": complex128,
"E": [1.0, 2.0, 3.0, 4.0],
},
index=list("abcd"),
)
path = tmp_path / setup_path
df.to_hdf(path, key="df")
reread = read_hdf(path, "df")
tm.assert_frame_equal(df, reread)
def test_complex_mixed_table(tmp_path, setup_path):
complex64 = np.array(
[1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j], dtype=np.complex64
)
complex128 = np.array(
[1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j], dtype=np.complex128
)
df = DataFrame(
{
"A": [1, 2, 3, 4],
"B": ["a", "b", "c", "d"],
"C": complex64,
"D": complex128,
"E": [1.0, 2.0, 3.0, 4.0],
},
index=list("abcd"),
)
with ensure_clean_store(setup_path) as store:
store.append("df", df, data_columns=["A", "B"])
result = store.select("df", where="A>2")
tm.assert_frame_equal(df.loc[df.A > 2], result)
path = tmp_path / setup_path
df.to_hdf(path, key="df", format="table")
reread = read_hdf(path, "df")
tm.assert_frame_equal(df, reread)
def test_complex_across_dimensions_fixed(tmp_path, setup_path):
complex128 = np.array([1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j])
s = Series(complex128, index=list("abcd"))
df = DataFrame({"A": s, "B": s})
objs = [s, df]
comps = [tm.assert_series_equal, tm.assert_frame_equal]
for obj, comp in zip(objs, comps):
path = tmp_path / setup_path
obj.to_hdf(path, key="obj", format="fixed")
reread = read_hdf(path, "obj")
comp(obj, reread)
def test_complex_across_dimensions(tmp_path, setup_path):
complex128 = np.array([1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j])
s = Series(complex128, index=list("abcd"))
df = DataFrame({"A": s, "B": s})
path = tmp_path / setup_path
df.to_hdf(path, key="obj", format="table")
reread = read_hdf(path, "obj")
tm.assert_frame_equal(df, reread)
def test_complex_indexing_error(setup_path):
complex128 = np.array(
[1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j], dtype=np.complex128
)
df = DataFrame(
{"A": [1, 2, 3, 4], "B": ["a", "b", "c", "d"], "C": complex128},
index=list("abcd"),
)
msg = (
"Columns containing complex values can be stored "
"but cannot be indexed when using table format. "
"Either use fixed format, set index=False, "
"or do not include the columns containing complex "
"values to data_columns when initializing the table."
)
with ensure_clean_store(setup_path) as store:
with pytest.raises(TypeError, match=msg):
store.append("df", df, data_columns=["C"])
def test_complex_series_error(tmp_path, setup_path):
complex128 = np.array([1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j, 1.0 + 1.0j])
s = Series(complex128, index=list("abcd"))
msg = (
"Columns containing complex values can be stored "
"but cannot be indexed when using table format. "
"Either use fixed format, set index=False, "
"or do not include the columns containing complex "
"values to data_columns when initializing the table."
)
path = tmp_path / setup_path
with pytest.raises(TypeError, match=msg):
s.to_hdf(path, key="obj", format="t")
path = tmp_path / setup_path
s.to_hdf(path, key="obj", format="t", index=False)
reread = read_hdf(path, "obj")
tm.assert_series_equal(s, reread)
def test_complex_append(setup_path):
df = DataFrame(
{
"a": np.random.default_rng(2).standard_normal(100).astype(np.complex128),
"b": np.random.default_rng(2).standard_normal(100),
}
)
with ensure_clean_store(setup_path) as store:
store.append("df", df, data_columns=["b"])
store.append("df", df)
result = store.select("df")
tm.assert_frame_equal(pd.concat([df, df], axis=0), result)