Skip to content

BUG: PyArrow-backed datetime index missing numpy-like attributes #63527

@mattharrison

Description

@mattharrison

Pandas version checks

  • I have checked that this issue has not already been reported.

  • I have confirmed this bug exists on the latest version of pandas.

  • I have confirmed this bug exists on the main branch of pandas.

Reproducible Example

import pandas as pd
import io

data = '''agency_cd,site_no,datetime,tz_cd,144166_00060,144166_00060_cd,144167_00065,144167_00065_cd
USGS,9333500,2001-05-07 01:00:00,MDT,71.0,A:[91],,
USGS,9333500,2001-05-07 01:15:00,MDT,71.0,A:[91],,
USGS,9333500,2001-05-07 01:30:00,MDT,71.0,A:[91],,
USGS,9333500,2001-05-07 01:45:00,MDT,70.0,A:[91],,
USGS,9333500,2001-05-07 02:00:00,MDT,70.0,A:[91],,
USGS,9333500,2001-05-08 02:15:00,MDT,69.0,A:[91],,
USGS,9333500,2001-05-08 02:30:00,MDT,70.0,A:[91],,
USGS,9333500,2001-05-08 02:45:00,MDT,70.0,A:[91],,
USGS,9333500,2001-05-08 03:00:00,MDT,70.0,A:[91],,'''

df = pd.read_csv(io.StringIO(data), dtype_backend='pyarrow', engine='pyarrow')

def to_denver_time(df_, time_col, tz_col):
    return (df_
     .assign(**{tz_col: df_[tz_col].replace('MDT', 'MST7MDT')})
     .groupby(tz_col)
     [time_col]
     .transform(lambda s: pd.to_datetime(s)
         .dt.tz_localize(s.name, ambiguous=True)
         .dt.tz_convert('America/Denver'))
     .astype('timestamp[ns, America/Denver][pyarrow]')
    )

def tweak_river(df_):
    return (df_
     .assign(datetime=to_denver_time(df_, 'datetime', 'tz_cd'))
     .rename(columns={'144166_00060': 'cfs'})
     .loc[:, ['datetime', 'cfs']]
     .set_index('datetime')
    )

dd = tweak_river(df)
def convert_to_numpy_datetime64(df):
    df2 = df.copy()
    df2.index = df2.index.astype('datetime64[ns, America/Denver]')
    return df2.sort_index()
np_idx = (dd
.pipe(convert_to_numpy_datetime64)
.index)
pa_idx = dd.index
missing_attrs = set(dir(np_idx)) - set(dir(pa_idx))
missing_attrs

Issue Description

In the past with numpy backed dates in the index I could do something like

(df
.groupby(df.index.month)
.some_col
.describe()
)

to get summary stats for some_col by calendar month.

With pyarrow date types in the index the .month attribute and many others are missing.

Expected Behavior

Consistency between np and pyarrow time index

Installed Versions

Details

INSTALLED VERSIONS

commit : 7242759
python : 3.11.13
python-bits : 64
OS : Darwin
OS-release : 24.6.0
Version : Darwin Kernel Version 24.6.0: Mon Jul 14 11:30:40 PDT 2025; root:xnu-11417.140.69~1/RELEASE_ARM64_T6041
machine : arm64
processor : arm
byteorder : little
LC_ALL : None
LANG : None
LOCALE : en_US.UTF-8

pandas : 3.0.0rc1
numpy : 2.4.0
dateutil : 2.9.0.post0
pip : 25.3
Cython : 3.2.2
sphinx : None
IPython : 9.8.0
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : 4.14.3
bottleneck : None
fastparquet : None
fsspec : None
html5lib : None
hypothesis : None
gcsfs : None
jinja2 : 3.1.6
lxml.etree : 6.0.2
matplotlib : 3.10.7
numba : None
numexpr : None
odfpy : None
openpyxl : 3.1.5
psycopg2 : None
pymysql : None
pyarrow : 22.0.0
pyiceberg : None
pyreadstat : None
pytest : 9.0.2
python-calamine : None
pytz : 2025.2
pyxlsb : None
s3fs : None
scipy : 1.16.3
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlsxwriter : None
zstandard : None
qtpy : None
pyqt5 : None

Metadata

Metadata

Assignees

No one assigned

    Labels

    Arrowpyarrow functionalityBugIndexingRelated to indexing on series/frames, not to indexes themselves

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions