-
-
Notifications
You must be signed in to change notification settings - Fork 1.4k
/
pool.go
433 lines (361 loc) · 10.9 KB
/
pool.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
// MIT License
// Copyright (c) 2018 Andy Pan
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
package ants
import (
"context"
"sync"
"sync/atomic"
"time"
syncx "github.com/panjf2000/ants/v2/internal/sync"
)
type poolCommon struct {
// capacity of the pool, a negative value means that the capacity of pool is limitless, an infinite pool is used to
// avoid potential issue of endless blocking caused by nested usage of a pool: submitting a task to pool
// which submits a new task to the same pool.
capacity int32
// running is the number of the currently running goroutines.
running int32
// lock for protecting the worker queue.
lock sync.Locker
// workers is a slice that store the available workers.
workers workerQueue
// state is used to notice the pool to closed itself.
state int32
// cond for waiting to get an idle worker.
cond *sync.Cond
// done is used to indicate that all workers are done.
allDone chan struct{}
// once is used to make sure the pool is closed just once.
once *sync.Once
// workerCache speeds up the obtainment of a usable worker in function:retrieveWorker.
workerCache sync.Pool
// waiting is the number of goroutines already been blocked on pool.Submit(), protected by pool.lock
waiting int32
purgeDone int32
purgeCtx context.Context
stopPurge context.CancelFunc
ticktockDone int32
ticktockCtx context.Context
stopTicktock context.CancelFunc
now atomic.Value
options *Options
}
// Pool accepts the tasks and process them concurrently,
// it limits the total of goroutines to a given number by recycling goroutines.
type Pool struct {
poolCommon
}
// purgeStaleWorkers clears stale workers periodically, it runs in an individual goroutine, as a scavenger.
func (p *Pool) purgeStaleWorkers() {
ticker := time.NewTicker(p.options.ExpiryDuration)
defer func() {
ticker.Stop()
atomic.StoreInt32(&p.purgeDone, 1)
}()
purgeCtx := p.purgeCtx // copy to the local variable to avoid race from Reboot()
for {
select {
case <-purgeCtx.Done():
return
case <-ticker.C:
}
if p.IsClosed() {
break
}
var isDormant bool
p.lock.Lock()
staleWorkers := p.workers.refresh(p.options.ExpiryDuration)
n := p.Running()
isDormant = n == 0 || n == len(staleWorkers)
p.lock.Unlock()
// Clean up the stale workers.
for i := range staleWorkers {
staleWorkers[i].finish()
staleWorkers[i] = nil
}
// There might be a situation where all workers have been cleaned up (no worker is running),
// while some invokers still are stuck in p.cond.Wait(), then we need to awake those invokers.
if isDormant && p.Waiting() > 0 {
p.cond.Broadcast()
}
}
}
// ticktock is a goroutine that updates the current time in the pool regularly.
func (p *Pool) ticktock() {
ticker := time.NewTicker(nowTimeUpdateInterval)
defer func() {
ticker.Stop()
atomic.StoreInt32(&p.ticktockDone, 1)
}()
ticktockCtx := p.ticktockCtx // copy to the local variable to avoid race from Reboot()
for {
select {
case <-ticktockCtx.Done():
return
case <-ticker.C:
}
if p.IsClosed() {
break
}
p.now.Store(time.Now())
}
}
func (p *Pool) goPurge() {
if p.options.DisablePurge {
return
}
// Start a goroutine to clean up expired workers periodically.
p.purgeCtx, p.stopPurge = context.WithCancel(context.Background())
go p.purgeStaleWorkers()
}
func (p *Pool) goTicktock() {
p.now.Store(time.Now())
p.ticktockCtx, p.stopTicktock = context.WithCancel(context.Background())
go p.ticktock()
}
func (p *Pool) nowTime() time.Time {
return p.now.Load().(time.Time)
}
// NewPool instantiates a Pool with customized options.
func NewPool(size int, options ...Option) (*Pool, error) {
if size <= 0 {
size = -1
}
opts := loadOptions(options...)
if !opts.DisablePurge {
if expiry := opts.ExpiryDuration; expiry < 0 {
return nil, ErrInvalidPoolExpiry
} else if expiry == 0 {
opts.ExpiryDuration = DefaultCleanIntervalTime
}
}
if opts.Logger == nil {
opts.Logger = defaultLogger
}
p := &Pool{poolCommon: poolCommon{
capacity: int32(size),
allDone: make(chan struct{}),
lock: syncx.NewSpinLock(),
once: &sync.Once{},
options: opts,
}}
p.workerCache.New = func() interface{} {
return &goWorker{
pool: p,
task: make(chan func(), workerChanCap),
}
}
if p.options.PreAlloc {
if size == -1 {
return nil, ErrInvalidPreAllocSize
}
p.workers = newWorkerQueue(queueTypeLoopQueue, size)
} else {
p.workers = newWorkerQueue(queueTypeStack, 0)
}
p.cond = sync.NewCond(p.lock)
p.goPurge()
p.goTicktock()
return p, nil
}
// Submit submits a task to this pool.
//
// Note that you are allowed to call Pool.Submit() from the current Pool.Submit(),
// but what calls for special attention is that you will get blocked with the last
// Pool.Submit() call once the current Pool runs out of its capacity, and to avoid this,
// you should instantiate a Pool with ants.WithNonblocking(true).
func (p *Pool) Submit(task func()) error {
if p.IsClosed() {
return ErrPoolClosed
}
w, err := p.retrieveWorker()
if w != nil {
w.inputFunc(task)
}
return err
}
// Running returns the number of workers currently running.
func (p *Pool) Running() int {
return int(atomic.LoadInt32(&p.running))
}
// Free returns the number of available workers, -1 indicates this pool is unlimited.
func (p *Pool) Free() int {
c := p.Cap()
if c < 0 {
return -1
}
return c - p.Running()
}
// Waiting returns the number of tasks waiting to be executed.
func (p *Pool) Waiting() int {
return int(atomic.LoadInt32(&p.waiting))
}
// Cap returns the capacity of this pool.
func (p *Pool) Cap() int {
return int(atomic.LoadInt32(&p.capacity))
}
// Tune changes the capacity of this pool, note that it is noneffective to the infinite or pre-allocation pool.
func (p *Pool) Tune(size int) {
capacity := p.Cap()
if capacity == -1 || size <= 0 || size == capacity || p.options.PreAlloc {
return
}
atomic.StoreInt32(&p.capacity, int32(size))
if size > capacity {
if size-capacity == 1 {
p.cond.Signal()
return
}
p.cond.Broadcast()
}
}
// IsClosed indicates whether the pool is closed.
func (p *Pool) IsClosed() bool {
return atomic.LoadInt32(&p.state) == CLOSED
}
// Release closes this pool and releases the worker queue.
func (p *Pool) Release() {
if !atomic.CompareAndSwapInt32(&p.state, OPENED, CLOSED) {
return
}
if p.stopPurge != nil {
p.stopPurge()
p.stopPurge = nil
}
if p.stopTicktock != nil {
p.stopTicktock()
p.stopTicktock = nil
}
p.lock.Lock()
p.workers.reset()
p.lock.Unlock()
// There might be some callers waiting in retrieveWorker(), so we need to wake them up to prevent
// those callers blocking infinitely.
p.cond.Broadcast()
}
// ReleaseTimeout is like Release but with a timeout, it waits all workers to exit before timing out.
func (p *Pool) ReleaseTimeout(timeout time.Duration) error {
if p.IsClosed() || (!p.options.DisablePurge && p.stopPurge == nil) || p.stopTicktock == nil {
return ErrPoolClosed
}
p.Release()
var purgeCh <-chan struct{}
if !p.options.DisablePurge {
purgeCh = p.purgeCtx.Done()
} else {
purgeCh = p.allDone
}
if p.Running() == 0 {
p.once.Do(func() {
close(p.allDone)
})
}
timer := time.NewTimer(timeout)
defer timer.Stop()
for {
select {
case <-timer.C:
return ErrTimeout
case <-p.allDone:
<-purgeCh
<-p.ticktockCtx.Done()
if p.Running() == 0 &&
(p.options.DisablePurge || atomic.LoadInt32(&p.purgeDone) == 1) &&
atomic.LoadInt32(&p.ticktockDone) == 1 {
return nil
}
}
}
}
// Reboot reboots a closed pool, it does nothing if the pool is not closed.
// If you intend to reboot a closed pool, use ReleaseTimeout() instead of
// Release() to ensure that all workers are stopped and resource are released
// before rebooting, otherwise you may run into data race.
func (p *Pool) Reboot() {
if atomic.CompareAndSwapInt32(&p.state, CLOSED, OPENED) {
atomic.StoreInt32(&p.purgeDone, 0)
p.goPurge()
atomic.StoreInt32(&p.ticktockDone, 0)
p.goTicktock()
p.allDone = make(chan struct{})
p.once = &sync.Once{}
}
}
func (p *Pool) addRunning(delta int) int {
return int(atomic.AddInt32(&p.running, int32(delta)))
}
func (p *Pool) addWaiting(delta int) {
atomic.AddInt32(&p.waiting, int32(delta))
}
// retrieveWorker returns an available worker to run the tasks.
func (p *Pool) retrieveWorker() (w worker, err error) {
p.lock.Lock()
retry:
// First try to fetch the worker from the queue.
if w = p.workers.detach(); w != nil {
p.lock.Unlock()
return
}
// If the worker queue is empty, and we don't run out of the pool capacity,
// then just spawn a new worker goroutine.
if capacity := p.Cap(); capacity == -1 || capacity > p.Running() {
p.lock.Unlock()
w = p.workerCache.Get().(*goWorker)
w.run()
return
}
// Bail out early if it's in nonblocking mode or the number of pending callers reaches the maximum limit value.
if p.options.Nonblocking || (p.options.MaxBlockingTasks != 0 && p.Waiting() >= p.options.MaxBlockingTasks) {
p.lock.Unlock()
return nil, ErrPoolOverload
}
// Otherwise, we'll have to keep them blocked and wait for at least one worker to be put back into pool.
p.addWaiting(1)
p.cond.Wait() // block and wait for an available worker
p.addWaiting(-1)
if p.IsClosed() {
p.lock.Unlock()
return nil, ErrPoolClosed
}
goto retry
}
// revertWorker puts a worker back into free pool, recycling the goroutines.
func (p *Pool) revertWorker(worker *goWorker) bool {
if capacity := p.Cap(); (capacity > 0 && p.Running() > capacity) || p.IsClosed() {
p.cond.Broadcast()
return false
}
worker.lastUsed = p.nowTime()
p.lock.Lock()
// To avoid memory leaks, add a double check in the lock scope.
// Issue: https://github.com/panjf2000/ants/issues/113
if p.IsClosed() {
p.lock.Unlock()
return false
}
if err := p.workers.insert(worker); err != nil {
p.lock.Unlock()
return false
}
// Notify the invoker stuck in 'retrieveWorker()' of there is an available worker in the worker queue.
p.cond.Signal()
p.lock.Unlock()
return true
}