-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlogistic_cp.py
229 lines (180 loc) · 9.27 KB
/
logistic_cp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
from base import *
from hypergraph import *
from utils import *
from dataloader import *
def sigmoid(x):
return 1 / (1 + np.exp(-x))
class LogisticCP:
def __init__(self, thetas, order_min=2, order_max=2, alpha_theta=0):
self.thetas = - np.sort(-thetas)
assert(order_min <= order_max)
self.order_min = order_min
self.order_max = order_max
self.alpha_theta = alpha_theta
def sample(self, n):
G = Hypergraph()
for order in range(self.order_min, self.order_max + 1):
for edge in itertools.combinations(range(n), order):
edge = np.array(edge)
p_edge = sigmoid(self.thetas[edge].sum())
if np.random.unifomr() <= p_edge:
G.add_simplex_from_nodes(nodes=edge.tolist(), simplex_data = {})
return G, thetas
def plot_sample(self, n):
G, thetas = self.sample(n)
G = G.clique_decomposition()
plt.figure(figsize=(10, 10))
plt.imshow(A)
plt.title('Adjacency Matrix for G ~ logstic-CP($\mu$={}, $a$={}, $b$={})'.format(self.mu, self.alpha, self.beta))
plt.xlabel('Ranked Nodes by $\\theta(u)$')
plt.ylabel('Ranked Nodes by $\\theta(u)$')
plt.figure(figsize=(10, 10))
log_rank = np.log(1 + np.arange(A.shape[0]))
log_degree = np.log(1 + A.sum(0))
plt.plot(log_rank, log_degree)
plt.title('Degree Plot')
plt.xlabel('Node Rank by $\\theta(u)$ (log)')
plt.ylabel('Node Degree (log)')
plt.figure(figsize=(10, 10))
degree_ranks = np.argsort(-log_degree)
for i in range(A.shape[0]):
A[i, :] = A[i, degree_ranks]
for i in range(A.shape[1]):
A[:, i] = A[degree_ranks, i]
log_degree = log_degree[degree_ranks]
plt.imshow(A)
plt.title('Adjacency Matrix for G ~ logstic-CP($\mu$={}, $a$={}, $b$={})'.format(self.mu, self.alpha, self.beta))
plt.xlabel('Ranked Nodes by degree')
plt.ylabel('Ranked Nodes by degree')
plt.figure(figsize=(10, 10))
plt.plot(log_rank, log_degree)
p = np.polyfit(log_rank, log_degree, deg=1)
alpha_lasso = 0.1
r2 = np.corrcoef(log_rank, log_degree)[0, 1]
plt.plot(log_rank, log_degree, linewidth=1, label='Realized Degree $R^2 = {}$'.format(round(r2, 2)))
plt.plot(log_rank, p[1] + p[0] * log_rank, linewidth=2, label='Linear Regression')
plt.title('Degree Plot')
plt.xlabel('Node Rank by degree (log)')
plt.ylabel('Node Degree (log)')
plt.legend()
@staticmethod
def graph_log_likelihood(edge_set, n, M_neg, order_min, order_max, thetas, negative_samples):
log_likelihood_pos = 0
log_likelihood_neg = 0
for edge in edge_set:
edge_index = np.array(edge)
log_likelihood_pos += np.log(sigmoid(thetas[edge_index].sum()))
neg_edge_set = set([])
for _ in range(negative_samples):
while True:
order = np.random.choice(np.arange(order_min, order_max + 1), p=M_neg/M_neg.sum())
neg_edge = tuple(sorted(sample_combination(n=n, k=order)))
if neg_edge not in edge_set and neg_edge not in neg_edge_set:
neg_edge_index = np.array(neg_edge)
log_likelihood_neg += np.log(1 - sigmoid(thetas[neg_edge_index].sum()))
neg_edge_set.add(neg_edge)
break
return log_likelihood_pos + (M_neg.sum() / negative_samples) * log_likelihood_neg
@staticmethod
def graph_log_likelihood_jacobian(edge_set, n, M_neg, order_min, order_max, thetas, negative_samples):
log_likelihood_pos_jac = np.zeros(n)
log_likelihood_neg_jac = np.zeros(n)
for edge in edge_set:
edge_index = np.array(edge)
thetas_sum = thetas[edge_index].sum()
log_likelihood_pos_jac[edge_index] += (1 - sigmoid(thetas_sum))
neg_edge_set = set([])
for _ in range(negative_samples):
while True:
order = np.random.choice(np.arange(order_min, order_max + 1), p=M_neg/M_neg.sum())
neg_edge = tuple(sorted(sample_combination(n=n, k=order)))
if neg_edge not in edge_set and neg_edge not in neg_edge_set:
neg_edge_index = np.array(neg_edge)
thetas_sum = thetas[neg_edge_index].sum()
log_likelihood_neg_jac[neg_edge_index] += sigmoid(thetas_sum)
neg_edge_set.add(neg_edge)
break
return log_likelihood_pos_jac + (M_neg.sum() / negative_samples) * log_likelihood_neg_jac
def fit(self, G, negative_samples):
n = len(G)
edge_set = G.to_index(set)
M = G.num_simplices(separate=True)
binomial_coeffs = binomial_coefficients(n, self.order_max)
M_neg = binomial_coeffs[n, self.order_min:(1 + self.order_max)] - M
res = minimize(lambda x: - LogisticCP.graph_log_likelihood(edge_set, n, M_neg, self.order_min, self.order_max, x, negative_samples), self.thetas, jac=lambda x: - LogisticCP.graph_log_likelihood_jacobian(edge_set, n, M_neg, self.order_min, self.order_max, x, negative_samples), method='BFGS')
self.thetas = res.x
lp = - res.fun
return lp, self.thetas
def fit_torch(self, G, features, gold_ranks, negative_samples=-1, num_epochs=10, max_patience=5, ranks_col=0, early_stopping='log-posterior', lr=1e-6, learnable_ranks=True):
# Graph
n = len(G)
edge_set = G.to_index(set)
M = G.num_simplices(separate=True)
binomial_coeffs = binomial_coefficients(n, self.order_max)
M_neg = binomial_coeffs[n, self.order_min:(1 + self.order_max)] - M
# Features and model
feature_dim = features.shape[-1]
features = torch.from_numpy(features.astype(np.float32)).cuda()
if learnable_ranks:
thetas_model = nn.Sequential(nn.Linear(feature_dim, feature_dim), nn.ReLU(), nn.Linear(feature_dim, 1)).cuda()
optimizer = torch.optim.SGD(thetas_model.parameters(), lr=lr)
else:
thetas = nn.Parameter(data=torch.rand(n, 1), requires_grad=True)
optimizer = torch.optim.SGD(thetas, lr=lr)
torch_sigmoid = nn.Sigmoid()
# Training loop
pbar = tqdm(range(num_epochs))
log_posteriors = []
spearmans = []
max_log_posterior = - sys.maxsize
max_spearman = - sys.maxsize
opt_model = None
patience = 0
for i in range(num_epochs):
loss = torch.tensor(0.0).cuda()
if learnable_ranks:
thetas = thetas_model(features)
log_likelihood_pos = torch.tensor(0.0).cuda()
log_likelihood_neg = torch.tensor(0.0).cuda()
for edge in edge_set:
edge_index = torch.tensor(edge).long().cuda()
log_likelihood_pos += torch.log(torch_sigmoid(torch.sum(thetas[edge_index])))
neg_edge_set = set([])
for _ in range(negative_samples):
while True:
order = np.random.choice(np.arange(self.order_min, self.order_max + 1), p=M_neg/M_neg.sum())
neg_edge = tuple(sorted(sample_combination(n=n, k=order)))
if neg_edge not in edge_set and neg_edge not in neg_edge_set:
neg_edge_index = torch.tensor(neg_edge).long().cuda()
log_likelihood_neg += torch.log(1 - torch_sigmoid(torch.sum(thetas[neg_edge_index])))
neg_edge_set.add(neg_edge)
break
loss = - log_likelihood_pos - (M_neg.sum() / negative_samples) * log_likelihood_neg
loss += self.alpha_theta / 2 * torch.sum(thetas**2)
loss.backward()
optimizer.step()
optimizer.zero_grad()
log_posteriors.append(-loss.item())
spearmans.append(scipy.stats.spearmanr(gold_ranks, thetas.clone().detach().cpu().numpy()).correlation)
pbar.set_description('Loss: {}, Spearman: {}'.format(log_posteriors[-1], spearmans[-1]))
pbar.update()
# Early stopping
if not np.isnan(log_posteriors[-1]) and max_log_posterior <= log_posteriors[-1] and early_stopping == 'log-posterior':
max_log_posterior = log_posteriors[-1]
max_spearman = spearmans[-1]
opt_model = copy.deepcopy(thetas_model)
if not np.isnan(spearmans[-1]) and max_spearman <= spearmans[-1] and early_stopping == 'spearman':
max_log_posterior = log_posteriors[-1]
max_spearman = spearmans[-1]
opt_model = copy.deepcopy(thetas_model)
if i > 1:
if (log_posteriors[-1] < log_posteriors[-2] and early_stopping == 'log-posterior') or (spearmans[-1] > spearmans[-2] and early_stopping == 'spearman'):
patience += 1
else:
patience = 0
if patience == max_patience:
break
pbar.close()
thetas = opt_model(features)
self.thetas = thetas.detach().cpu().numpy()
return max_log_posterior, self.thetas