-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_models.py
160 lines (146 loc) · 5.58 KB
/
run_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import torch
from torchsummary import summary
import argparse
import numpy as np
from codebase.models.BBBTimeSeriesPredModel import BBBTimeSeriesPredModel
from codebase.models.BBBTimeSeriesPredModel_FF import BBBTimeSeriesPredModel_FF
from codebase.train import train
import codebase.utils as ut
import data.data_utils as data_ut
parser = argparse.ArgumentParser()
# Data
parser.add_argument('--dataset_name', type=str, default='highd')
parser.add_argument('--batch_size', type=int, default=30)
parser.add_argument('--n_input_steps', type=int, default=50)
parser.add_argument('--n_pred_steps', type=int, default=20)
parser.add_argument('--input_feat_dim', type=int, default=4)
parser.add_argument('--pred_feat_dim', type=int, default=2)
# Network
parser.add_argument('--hidden_feat_dim', type=int, default=100)
# Model
parser.add_argument('--cell', type=str, default='LSTM')
parser.add_argument('--constant_var', action='store_true')
parser.add_argument('--BBB', action='store_true')
parser.add_argument('--sharpen', action='store_true')
parser.add_argument('--likelihood_cost_form', type=str, default='gaussian')
parser.add_argument('--nlayers', type=int, default=1)
parser.add_argument('--dropout', type=float, default=0)
parser.add_argument('--pi', type=float, default=0.25)
parser.add_argument('--logstd1', type=int, default=-1)
parser.add_argument('--logstd2', type=int, default=-6)
# Train
parser.add_argument('--dev_mode', action='store_true')
parser.add_argument('--training', action='store_true')
parser.add_argument('--clip_grad', type=int, default=5)
parser.add_argument('--lr', type=float, default=1e-3)
parser.add_argument('--run', type=int, default=0)
parser.add_argument('--iter_max', type=int, default=400000)
parser.add_argument('--iter_plot', type=int, default=2000)
parser.add_argument('--iter_save', type=int, default=2000)
args = parser.parse_args()
std1 = np.exp(args.logstd1)
std2 = np.exp(args.logstd2)
# # automatic
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
gpu = False if device == torch.device('cpu') else True
# Enforced settings:
if not args.BBB:
args.sharpen = False
layout = [
('model={:s}', args.cell),
('BBB={:s}', str(args.BBB)),
('data={:s}', args.dataset_name),
('nlayers={:d}', args.nlayers),
('nhid={:d}', args.hidden_feat_dim),
('const_var={}', args.constant_var),
('dropout={:.1f}', args.dropout),
('clipgrad={}', str(args.clip_grad)),
('loss={:s}', args.likelihood_cost_form),
('run={:d}', args.run),
]
else:
layout = [
('model={:s}', args.cell),
('BBB={:s}', str(args.BBB)),
('data={:s}', args.dataset_name),
('nlayers={:d}', args.nlayers),
('nhid={:d}', args.hidden_feat_dim),
('const_var={}', args.constant_var),
('dropout={:.1f}', args.dropout),
('clipgrad={}', str(args.clip_grad)),
('loss={:s}', args.likelihood_cost_form),
('sharpen={:s}', str(args.sharpen)),
('pi={:.2f}', args.pi),
('logstd1={:d}', args.logstd1),
('logstd2={:d}', args.logstd2),
('run={:d}', args.run),
]
model_name = '_'.join([t.format(v) for (t, v) in layout])
print(model_name, '\n')
if not args.dev_mode:
ut.prepare_dirs(model_name, overwrite_existing=True)
else:
args.iter_plot = np.inf
# dataset_name = 'dummy{}d'.format(input_feat_dim)
# n_batches = 2000 # only used by dummy data
# training_set = data_ut.dummy_data_creator(
# batch_size=batch_size,
# n_batches=n_batches,
# input_feat_dim=input_feat_dim,
# n_input_steps=n_input_steps,
# n_pred_steps=n_pred_steps,
# kernel=data_ut.sinusoidal_kernel,
# device=device)
training_set = data_ut.read_highd_data(
'highd_processed_tracks01-60_fr05_loc123456_p0.30',
args.batch_size, device)
n_batches = len(training_set)
if args.cell == 'LSTM':
model = BBBTimeSeriesPredModel(
num_rnn_layers=args.nlayers,
pi=args.pi,
std1=std1,
std2=std2,
gpu=gpu,
BBB=args.BBB,
training=args.training,
sharpen=args.sharpen,
dropout=args.dropout,
likelihood_cost_form=args.likelihood_cost_form,
input_feat_dim=args.input_feat_dim,
pred_feat_dim=args.pred_feat_dim,
hidden_feat_dim=args.hidden_feat_dim,
n_input_steps=args.n_input_steps,
n_pred_steps=args.n_pred_steps,
constant_var=args.constant_var,
rnn_cell_type=args.cell,
name=model_name,
device=device).to(device)
elif args.cell == 'FF':
model = BBBTimeSeriesPredModel_FF(
num_hidden_layers=args.nlayers,
pi=args.pi,
std1=std1,
std2=std2,
gpu=gpu,
BBB=args.BBB,
training=args.training,
sharpen=args.sharpen,
dropout=args.dropout,
likelihood_cost_form=args.likelihood_cost_form,
input_feat_dim=args.input_feat_dim,
pred_feat_dim=args.pred_feat_dim,
hidden_feat_dim=args.hidden_feat_dim,
n_input_steps=args.n_input_steps,
n_pred_steps=args.n_pred_steps,
constant_var=args.constant_var,
name=model_name,
device=device).to(device)
train(model, training_set, args.batch_size, n_batches,
kernel=data_ut.sinusoidal_kernel,
lr=args.lr,
clip_grad=args.clip_grad,
iter_max=args.iter_max,
iter_save=args.iter_save,
iter_plot=args.iter_plot,
reinitialize=False)