-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy patheval.py
executable file
·177 lines (139 loc) · 6.53 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Evaluation script for the DeepLab model.
See model.py for more details and usage.
"""
import six
import math
import tensorflow as tf
from deeplab import common
from deeplab import model
from deeplab.datasets import segmentation_dataset
from deeplab.utils import input_generator
slim = tf.contrib.slim
flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_string('master', '', 'BNS name of the tensorflow server')
# Settings for log directories.
flags.DEFINE_string('eval_logdir', None, 'Where to write the event logs.')
flags.DEFINE_string('checkpoint_dir', None, 'Directory of model checkpoints.')
# Settings for evaluating the model.
flags.DEFINE_integer('eval_batch_size', 1,
'The number of images in each batch during evaluation.')
flags.DEFINE_multi_integer('eval_crop_size', [513, 513],
'Image crop size [height, width] for evaluation.')
flags.DEFINE_integer('eval_interval_secs', 60 * 5,
'How often (in seconds) to run evaluation.')
# For `xception_65`, use atrous_rates = [12, 24, 36] if output_stride = 8, or
# rates = [6, 12, 18] if output_stride = 16. For `mobilenet_v2`, use None. Note
# one could use different atrous_rates/output_stride during training/evaluation.
flags.DEFINE_multi_integer('atrous_rates', None,
'Atrous rates for atrous spatial pyramid pooling.')
flags.DEFINE_integer('output_stride', 16,
'The ratio of input to output spatial resolution.')
# Change to [0.5, 0.75, 1.0, 1.25, 1.5, 1.75] for multi-scale test.
flags.DEFINE_multi_float('eval_scales', [1.0],
'The scales to resize images for evaluation.')
# Change to True for adding flipped images during test.
flags.DEFINE_bool('add_flipped_images', False,
'Add flipped images for evaluation or not.')
# Dataset settings.
flags.DEFINE_string('dataset', 'mvd',
'Name of the segmentation dataset.')
flags.DEFINE_string('eval_split', 'val',
'Which split of the dataset used for evaluation')
flags.DEFINE_string('dataset_dir', None, 'Where the dataset reside.')
flags.DEFINE_integer('max_number_of_evaluations', 0,
'Maximum number of eval iterations. Will loop '
'indefinitely upon nonpositive values.')
def main(unused_argv):
tf.logging.set_verbosity(tf.logging.INFO)
# Get dataset-dependent information.
dataset = segmentation_dataset.get_dataset(
FLAGS.dataset, FLAGS.eval_split, dataset_dir=FLAGS.dataset_dir)
tf.gfile.MakeDirs(FLAGS.eval_logdir)
tf.logging.info('Evaluating on %s set', FLAGS.eval_split)
with tf.Graph().as_default():
samples = input_generator.get(
dataset,
FLAGS.eval_crop_size,
FLAGS.eval_batch_size,
min_resize_value=FLAGS.min_resize_value,
max_resize_value=FLAGS.max_resize_value,
resize_factor=FLAGS.resize_factor,
dataset_split=FLAGS.eval_split,
is_training=False,
model_variant=FLAGS.model_variant)
model_options = common.ModelOptions(
outputs_to_num_classes={common.OUTPUT_TYPE: dataset.num_classes},
crop_size=FLAGS.eval_crop_size,
atrous_rates=FLAGS.atrous_rates,
output_stride=FLAGS.output_stride)
if tuple(FLAGS.eval_scales) == (1.0,):
tf.logging.info('Performing single-scale test.')
predictions = model.predict_labels(samples[common.IMAGE], model_options,
image_pyramid=FLAGS.image_pyramid)
else:
tf.logging.info('Performing multi-scale test.')
predictions = model.predict_labels_multi_scale(
samples[common.IMAGE],
model_options=model_options,
eval_scales=FLAGS.eval_scales,
add_flipped_images=FLAGS.add_flipped_images)
predictions = predictions[common.OUTPUT_TYPE]
predictions = tf.reshape(predictions, shape=[-1])
print(predictions)
labels = tf.reshape(samples[common.LABEL], shape=[-1])
weights = tf.to_float(tf.not_equal(labels, dataset.ignore_label))
# Set ignore_label regions to label 0, because metrics.mean_iou requires
# range of labels = [0, dataset.num_classes). Note the ignore_label regions
# are not evaluated since the corresponding regions contain weights = 0.
labels = tf.where(
tf.equal(labels, dataset.ignore_label), tf.zeros_like(labels), labels)
predictions_tag = 'miou'
for eval_scale in FLAGS.eval_scales:
predictions_tag += '_' + str(eval_scale)
if FLAGS.add_flipped_images:
predictions_tag += '_flipped'
# Define the evaluation metric.
metric_map = {}
metric_map[predictions_tag] = tf.metrics.mean_iou(
predictions, labels, dataset.num_classes, weights=weights)
metrics_to_values, metrics_to_updates = (
tf.contrib.metrics.aggregate_metric_map(metric_map))
for metric_name, metric_value in six.iteritems(metrics_to_values):
slim.summaries.add_scalar_summary(
metric_value, metric_name, print_summary=True)
num_batches = int(
math.ceil(dataset.num_samples / float(FLAGS.eval_batch_size)))
tf.logging.info('Eval num images %d', dataset.num_samples)
tf.logging.info('Eval batch size %d and num batch %d',
FLAGS.eval_batch_size, num_batches)
num_eval_iters = None
if FLAGS.max_number_of_evaluations > 0:
num_eval_iters = FLAGS.max_number_of_evaluations
slim.evaluation.evaluation_loop(
master=FLAGS.master,
checkpoint_dir=FLAGS.checkpoint_dir,
logdir=FLAGS.eval_logdir,
num_evals=num_batches,
eval_op=list(metrics_to_updates.values()),
max_number_of_evaluations=num_eval_iters,
eval_interval_secs=FLAGS.eval_interval_secs)
if __name__ == '__main__':
flags.mark_flag_as_required('checkpoint_dir')
flags.mark_flag_as_required('eval_logdir')
flags.mark_flag_as_required('dataset_dir')
tf.app.run()