@@ -166,13 +166,12 @@ class MDLikelihoodRatio(BaseScoreType):
166
166
167
167
def __init__ (self , name = 'lr' , precision = 2 ,
168
168
min_likelihood = 1.4867195147342979e-06 , # 5 sigma
169
- output_dim = None , verbose = False , plot = False , multivar = False ):
169
+ output_dim = None , verbose = False , multivar = False ):
170
170
self .name = name
171
171
self .precision = precision
172
172
self .output_dim = output_dim
173
173
self .min_likelihood = min_likelihood
174
174
self .verbose = verbose
175
- self .plot = plot
176
175
self .multivar = multivar
177
176
178
177
def __call__ (self , y_true , y_pred ):
@@ -181,8 +180,8 @@ def __call__(self, y_true, y_pred):
181
180
multivar = self .multivar ,
182
181
min_likelihood = self .min_likelihood ,
183
182
output_dim = self .output_dim ,
184
- verbose = self .verbose or self . plot )
185
- if self .verbose or self . plot :
183
+ verbose = self .verbose )
184
+ if self .verbose :
186
185
nll_reg , log_lks = nll_reg_score (y_true , y_pred )
187
186
else :
188
187
nll_reg = nll_reg_score (y_true , y_pred )
@@ -291,13 +290,11 @@ class MDKSCalibration(BaseScoreType):
291
290
minimum = 0.0
292
291
maximum = 1.0
293
292
294
- def __init__ (self , name = 'ks' , precision = 2 , output_dim = None , verbose = False ,
295
- plot = False ):
293
+ def __init__ (self , name = 'ks' , precision = 2 , output_dim = None , verbose = False ):
296
294
self .name = name
297
295
self .precision = precision
298
296
self .output_dim = output_dim
299
297
self .verbose = verbose
300
- self .plot = plot
301
298
302
299
def __call__ (self , y_true , y_pred ):
303
300
n_instances = len (y_true )
0 commit comments