diff --git a/hatt_train.ipynb b/hatt_train.ipynb index 16a2c42..d732e1c 100644 --- a/hatt_train.ipynb +++ b/hatt_train.ipynb @@ -2537,22 +2537,6 @@ "np.save('/data/tmp/embedding_matrix', embedding_matrix)" ] }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "collapsed": true, - "deletable": true, - "editable": true - }, - "outputs": [], - "source": [ - "x_train = np.load('/data/tmp/x_train.npy')\n", - "y_train = np.load('/data/tmp/y_train.npy')\n", - "reviews = np.load('/data/tmp/reviews.npy')\n", - "embedding_matrix = np.load('/data/tmp/embedding_matrix.npy')" - ] - }, { "cell_type": "code", "execution_count": 5, diff --git a/lstm_word2vec.ipynb b/lstm_word2vec.ipynb index deb14f5..4cb4b1e 100644 --- a/lstm_word2vec.ipynb +++ b/lstm_word2vec.ipynb @@ -1317,7 +1317,6 @@ "source": [ "BATCH_SIZE = 100\n", "NUM_EPOCHS = 10\n", - "REG_PARAMS = [1e-7, 1e-3, 1e1]\n", "LSTM_DIM = 100\n", "OPTIMIZER = SGD(lr=0.01, nesterov=True)" ] @@ -1380,30 +1379,6 @@ " res_file.write(str(history.history))" ] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "collapsed": false, - "deletable": true, - "editable": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Epoch 1/10\n", - "16017s - loss: 1.1015 - acc: 0.5225\n", - "Epoch 4/10\n" - ] - } - ], - "source": [ - "for reg_param in REG_PARAMS:\n", - " lstm_create_train(reg_param)" - ] - }, { "cell_type": "code", "execution_count": null, @@ -1439,31 +1414,13 @@ "# Tensorflow automatically uses several cores and one GPU of the DSVM. " ] }, - { - "cell_type": "code", - "execution_count": 52, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/anaconda/envs/py35/lib/python3.5/site-packages/keras/models.py:281: UserWarning: Error in loading the saved optimizer state. As a result, your model is starting with a freshly initialized optimizer.\n", - " warnings.warn('Error in loading the saved optimizer '\n" - ] - } - ], - "source": [ - "model = load_model('model_wvec_1e-10.h5')" - ] - }, { "cell_type": "code", "execution_count": null, "metadata": { - "collapsed": false + "collapsed": false, + "deletable": true, + "editable": true }, "outputs": [], "source": []