-
-
Notifications
You must be signed in to change notification settings - Fork 39
/
book.bib
1652 lines (1618 loc) · 63.9 KB
/
book.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
@inproceedings{Strumbelj,
title = {A General Method for Visualizing and Explaining Black-box Regression Models},
author = {\v{S}trumbelj, Erik and Kononenko, Igor},
year = 2011,
booktitle = {Proceedings of the 10th International Conference on Adaptive and Natural Computing Algorithms - Volume Part II},
location = {Ljubljana, Slovenia},
publisher = {Springer-Verlag},
address = {Berlin, Heidelberg},
series = {Icannga'11},
pages = {21--30},
isbn = {978-3-642-20266-7},
url = {http://dl.acm.org/citation.cfm?id=1997005.1997009},
numpages = 10,
acmid = 1997009,
keywords = {SVM, neural networks, prediction, transparency}
}
@article{imeJLMR,
title = {An Efficient Explanation of Individual Classifications Using Game Theory},
author = {\v{S}trumbelj, Erik and Kononenko, Igor},
year = 2010,
month = mar,
journal = {Journal of Machine Learning Research},
publisher = {JMLR.org},
volume = 11,
pages = {1--18},
issn = {1532-4435},
url = {http://dl.acm.org/citation.cfm?id=1756006.1756007},
issue_date = {3/1/2010},
numpages = 18,
acmid = 1756007
}
@article{variableImportancePermutations,
author = {Aaron Fisher and Cynthia Rudin and Francesca Dominici},
title = {All models are Wrong, but many are Useful: Learning a variable's importance by studying an entire class of prediction models simultaneously},
journal = {Journal of Machine Learning Research},
year = {2019},
volume = {20},
number = {177},
pages = {1-81},
url = {http://jmlr.org/papers/v20/18-760.html}
}
@manual{R-factorMerger,
title = {factorMerger: The Merging Path Plot},
author = {Agnieszka Sitko and Aleksandra Grudziąż and Przemyslaw Biecek},
year = 2018,
url = {https://CRAN.R-project.org/package=factorMerger},
note = {R package version 0.3.6}
}
@manual{factorMerger,
title = {factorMerger: Hierarchical Algorithm for Post-Hoc Testing},
author = {Agnieszka Sitko and Przemyslaw Biecek},
year = 2017,
url = {https://github.com/MI2DataLab/factorMerger},
note = {R package version 0.3.4}
}
@manual{randomForestExplainer,
title = {randomForestExplainer: A set of tools to understand what is happening inside a Random Forest},
author = {Aleksandra Paluszynska and Przemyslaw Biecek},
year = 2017,
url = {https://github.com/MI2DataLab/randomForestExplainer},
note = {R package version 0.9}
}
@manual{R-randomForestExplainer,
title = {randomForestExplainer: Explaining and Visualizing Random Forests in Terms of Variable Importance},
author = {Aleksandra Paluszynska and Przemyslaw Biecek},
year = 2017,
url = {https://CRAN.R-project.org/package=randomForestExplainer},
note = {R package version 0.9}
}
@manual{R-ICEbox,
title = {ICEbox: Individual Conditional Expectation Plot Toolbox},
author = {Alex Goldstein and Adam Kapelner and Justin Bleich},
year = 2017,
url = {https://CRAN.R-project.org/package=ICEbox},
note = {R package version 1.1.2}
}
@article{ICEbox,
title = {Peeking Inside the Black Box: Visualizing Statistical Learning With Plots of Individual Conditional Expectation},
author = {Alex Goldstein and Adam Kapelner and Justin Bleich and Emil Pitkin},
year = 2015,
journal = {Journal of Computational and Graphical Statistics},
volume = 24,
number = 1,
pages = {44--65},
doi = {10.1080/10618600.2014.907095}
}
@inproceedings{LWRP,
title = {Layer-wise Relevance Propagation for Neural Networks with Local Renormalization Layers},
author = {Alexander Binder and Gr{\'{e}}goire Montavon and Sebastian Bach and Klaus{-}Robert M{\"{u}}ller and Wojciech Samek},
year = "2016",
doi = "10.1007/978-3-319-44781-0_8",
isbn = "9783319447803",
volume = "9887 LNCS",
series = "Lecture Notes in Computer Science",
publisher = "Springer Verlag",
pages = "63--71",
booktitle = "Artificial Neural Networks and Machine Learning - 25th International Conference on Artificial Neural Networks, ICANN 2016, Proceedings",
note = "25th International Conference on Artificial Neural Networks and Machine Learning, ICANN 2016",
}
@manual{SAFE-arxiv,
title = {SAFE ML: Surrogate Assisted Feature Extraction for Model Learning},
author = {Alicja Gosiewska and Aleksandra Gacek and Piotr Lubon and Przemyslaw Biecek},
year = 2019,
url = {https://arxiv.org/abs/1902.11035}
}
@manual{iBreakDownRPackage,
title = {{iBreakDown: Uncertainty of Model Explanations for Non-additive Predictive Models}},
author = {Alicja Gosiewska and Przemyslaw Biecek},
year = 2019,
url = {https://arxiv.org/abs/1903.11420v1},
note = {R package version 1.3.3}
}
@manual{shapperPackage,
title = {{shapper: Wrapper of Python library shap}},
author = {Szymon Maksymiuk and Alicja Gosiewska and Przemyslaw Biecek},
year = 2019,
url = {https://github.com/ModelOriented/shapper},
note = {R package version 0.1.2}
}
@Manual{fastshapRpackage,
title = {{fastshap: Fast Approximate Shapley Values}},
author = {Brandon Greenwell},
year = {2020},
note = {R package version 0.0.5},
url = {https://CRAN.R-project.org/package=fastshap},
}
@manual{R-auditor,
title = {{auditor: Model Audit - Verification, Validation, and Error Analysis}},
author = {Alicja Gosiewska and Przemyslaw Biecek},
year = 2018,
url = {https://CRAN.R-project.org/package=auditor},
note = {R package version 0.2.1}
}
@article{auditorarxiv,
title = {{auditor}: an {R} Package for Model-Agnostic Visual Validation and Diagnostic},
author = {Alicja Gosiewska and Przemysław Biecek},
year = 2018,
journal = {ArXiv e-prints},
archiveprefix = {arXiv},
eprint = {1809.07763},
primaryclass = {stat.CO}
}
@article{randomForest,
title = {{Classification and regression by randomForest}},
author = {Andy Liaw and Matthew Wiener},
year = 2002,
journal = {R News},
volume = 2,
number = 3,
pages = {18--22},
url = {http://CRAN.R-project.org/doc/Rnews/}
}
@inproceedings{DeepLIFT,
author = {Shrikumar, Avanti and Greenside, Peyton and Kundaje, Anshul},
booktitle = {ICML},
editor = {Precup, Doina and Teh, Yee Whye},
ee = {http://proceedings.mlr.press/v70/shrikumar17a.html},
keywords = {dblp},
pages = {3145-3153},
publisher = {Proceedings of Machine Learning Research},
title = {Learning Important Features Through Propagating Activation Differences.},
url = {http://dblp.uni-trier.de/db/conf/icml/icml2017.html#ShrikumarGK17},
volume = 70,
year = 2017
}
@manual{MicrosofrCognitiveServices,
title = {{Microsoft Cognitive Services}},
author = {Azure},
year = 2019,
url = {https://azure.microsoft.com/en-en/services/cognitive-services/}
}
@article{BachLWRP,
title = {On {pixel}-{wise} {explanations} for {non}-{linear} {classifier} {decisions} by {layer}-{Wise} {relevance} {propagation}},
author = {Bach, Sebastian and Binder, Alexander and Montavon, Grégoire and Klauschen, Frederick and Müller, Klaus-Robert and Samek, Wojciech},
year = 2015,
month = jul,
journal = {Plos One},
volume = 10,
number = 7,
pages = {e0130140},
doi = {10.1371/journal.pone.0130140},
issn = {1932-6203},
url = {http://dx.plos.org/10.1371/journal.pone.0130140},
urldate = {2018-09-24},
language = {en},
editor = {Suarez, Oscar Deniz}
}
@article{spiral1988,
title = {A Spiral Model of Software Development and Enhancement},
author = {Barry Boehm},
year = 1988,
pages = {61--72},
volume = {21(5)},
journal = {{ IEEE Computer, IEEE}}
}
@manual{DARPA,
title = {Inside DARPA’s effort to create explainable artificial intelligence},
author = {Ben Dickson},
year = 2019,
url = {https://bdtechtalks.com/2019/01/10/darpa-xai-explainable-artificial-intelligence/}
}
@inproceedings{hoover2019exbert,
title = "ex{BERT}: A Visual Analysis Tool to Explore Learned Representations in {T}ransformer Models",
author = "Hoover, Benjamin and
Strobelt, Hendrik and
Gehrmann, Sebastian",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.acl-demos.22",
pages = "187--196"
}
@article{mlr,
title = {{mlr: Machine Learning in R}},
author = {Bernd Bischl and Michel Lang and Lars Kotthoff and Julia Schiffner and Jakob Richter and Erich Studerus and Giuseppe Casalicchio and Zachary M. Jones},
year = 2016,
journal = {Journal of Machine Learning Research},
volume = 17,
number = 170,
pages = {1--5},
url = {http://jmlr.org/papers/v17/15-066.html}
}
@article{pdpRPackage,
title = {pdp: An {R} package for constructing partial dependence plots},
author = {Brandon M. Greenwell},
year = 2017,
journal = {{The R Journal}},
volume = 9,
number = 1,
pages = {421--436},
url = {https://journal.r-project.org/archive/2017/RJ-2017-016/index.html}
}
@book{CARTtree,
title = {Classification and Regression Trees},
author = {Breiman, L. and Friedman, J. H. and Olshen, R. A. and Stone, C. J.},
year = 1984,
publisher = {Wadsworth and Brooks},
address = {Monterey, CA}
}
@manual{R-nnet,
title = {nnet: Feed-Forward Neural Networks and Multinomial Log-Linear Models},
author = {Brian Ripley},
year = 2016,
url = {https://CRAN.R-project.org/package=nnet},
note = {R package version 7.3-12}
}
@article{RightToExpl,
title={{European Union} regulations on algorithmic decision-making and a “Right to explanation”},
volume={38}, url={https://www.aaai.org/ojs/index.php/aimagazine/article/view/2741},
DOI={10.1609/aimag.v38i3.2741},
number={3},
journal={AI Magazine},
author={Goodman, Bryce and Flaxman, Seth},
year={2017},
pages={50-57}
}
@article{IBMWatson,
title = {{IBM’s Watson supercomputer recommended ‘unsafe and incorrect’ cancer treatments, internal documents show}},
author = {Casey Ross and Ike Swetliz},
year = 2018,
journal = {Statnews},
url = {https://www.statnews.com/2018/07/25/ibm-watson-recommended-unsafe-incorrect-treatments/},
note = {https://bit.ly/38mVxSW}
}
@article{RightToExpl2,
title = {{Rethinking explainable machines: The GDPR's Right to Explanation debate and the rise of algorithmic audits in enterprise}},
author = {Casey, Bryan and Farhangi, Ashkon and Vogl, Roland},
year = 2019,
journal = {Berkeley Technology Law Journal},
volume = 34,
pages = {143--188}
}
@book{molnar2019,
title = {{Interpretable Machine Learning}},
author = {Christoph Molnar},
year = 2019,
note = {\url{https://christophm.github.io/interpretable-ml-book/}},
subtitle = {A Guide for Making Black Box Models Explainable}
}
@book{molnar,
title = {Interpretable Machine Learning},
author = {Christoph Molnar},
year = 2018,
publisher = {https://christophm.github.io/interpretable-ml-book/},
note = {\url{https://christophm.github.io/interpretable-ml-book/}}
}
@manual{R-iml,
title = {iml: Interpretable Machine Learning},
author = {Christoph Molnar},
year = 2018,
url = {https://CRAN.R-project.org/package=iml},
note = {R package version 0.7.0}
}
@article{imlRPackage,
title = {{iml: An R package for Interpretable Machine Learning}},
author = {Christoph Molnar and Bernd Bischl and Giuseppe Casalicchio},
year = 2018,
journal = {Journal of Open Source Software},
volume = 3,
number = 26,
pages = 786,
doi = {10.21105/joss.00786},
url = {http://joss.theoj.org/papers/10.21105/joss.00786}
}
@article{AppleCreditCard,
title = {{Apple co-founder Steve Wozniak says Apple Card discriminated against his wife}},
author = {Clare Duffy},
year = 2019,
journal = {CNN Business},
url = {https://edition.cnn.com/2019/11/10/business/goldman-sachs-apple-card-discrimination/index.html},
note = {https://cnn.it/36i6kLq}
}
@article{wine2009,
title = {Modeling wine preferences by data mining from physicochemical properties},
author = {Cortez, Paulo and Cerdeira, António and Almeida, Fernando and Matos, Telmo and Reis, José},
year = 2009,
month = nov,
journal = {Decision Support Systems},
volume = 47,
number = 4,
pages = {547--553},
doi = {10.1016/j.dss.2009.05.016},
issn = 1679236,
url = {http://linkinghub.elsevier.com/retrieve/pii/S0167923609001377},
urldate = {2017-10-24},
language = {en}
}
@manual{ALEPlot,
title = {ALEPlot: Accumulated Local Effects (ALE) Plots and Partial Dependence (PD) Plots},
author = {Dan Apley},
year = 2017,
url = {https://CRAN.R-project.org/package=ALEPlot},
note = {R package version 1.0}
}
@manual{ALEPlotRPackage,
title = {ALEPlot: Accumulated Local Effects (ALE) Plots and Partial Dependence (PD) Plots},
author = {Dan Apley},
year = 2018,
url = {https://CRAN.R-project.org/package=ALEPlot},
note = {R package version 1.1}
}
@manual{R-ALEPlot,
title = {ALEPlot: Accumulated Local Effects (ALE) Plots and Partial Dependence (PD) Plots},
author = {Dan Apley},
year = 2018,
url = {https://CRAN.R-project.org/package=ALEPlot},
note = {R package version 1.1}
}
@manual{sjPlot,
title = {sjPlot: Data Visualization for Statistics in Social Science},
author = {Daniel Lüdecke},
year = 2017,
url = {https://CRAN.R-project.org/package=sjPlot},
note = {R package version 2.4.0}
}
@article{ALEPlot2,
title = {Visualizing the Effects of Predictor Variables in Black Box Supervised Learning Models},
author = {Daniel W. Apley and Jingyu Zhu},
year = 2019,
journal = {CoRR},
volume = {abs/1612.08468},
url = {http://arxiv.org/abs/1612.08468},
archiveprefix = {arXiv},
eprint = {1612.08468}
}
@manual{xgboostExplainer,
title = {xgboostExplainer: An R package that makes xgboost models fully interpretable},
author = {David Foster},
year = 2017,
url = {https://github.com/AppliedDataSciencePartners/xgboostExplainer/},
note = {R package version 0.1}
}
@manual{R-xgboostExplainer,
title = {xgboostExplainer: XGBoost Model Explainer},
author = {David Foster},
year = 2018,
note = {R package version 0.1}
}
@manual{DARPA2,
title = {Explainable Artificial Intelligence (XAI)},
author = {David Gunning},
year = 2017,
url = {https://www.darpa.mil/attachments/XAIProgramUpdate.pdf}
}
@manual{broom,
title = {broom: Convert Statistical Analysis Objects into Tidy Data Frames},
author = {David Robinson},
year = 2017,
url = {https://CRAN.R-project.org/package=broom},
note = {R package version 0.4.3}
}
@article{demsar2018,
title = {Detecting concept drift in data streams using model explanation},
author = {Demšar, Jaka and Bosnić, Zoran},
year = 2018,
month = feb,
journal = {Expert Systems with Applications},
volume = 92,
pages = {546--559},
doi = {10.1016/j.eswa.2017.10.003},
issn = 9574174,
url = {https://linkinghub.elsevier.com/retrieve/pii/S0957417417306772},
urldate = {2018-10-08},
language = {en}
}
@inproceedings{Diaz2018,
title = {Addressing Age-Related Bias in Sentiment Analysis},
author = {Diaz, Mark and Johnson, Isaac and Lazar, Amanda and Piper, Anne Marie and Gergle, Darren},
year = 2018,
booktitle = {Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems},
location = {Montreal QC, Canada},
publisher = {{ACM}},
series = {Chi '18},
pages = {412:1--412:14},
doi = {10.1145/3173574.3173986},
isbn = {978-1-4503-5620-6},
url = {http://doi.acm.org/10.1145/3173574.3173986},
articleno = 412,
numpages = 14,
acmid = 3173986,
keywords = {aging, algorithmic bias, older adults, sentiment analysis}
}
@article{BILLCD8,
title = {{BILLCD8} – A~multivariable survival model as a simple and clinically useful prognostic tool to identify high-risk cutaneous melanoma patients},
author = {Donizy, Piotr and Biecek, Przemyslaw and Halon, Agnieszka and Matkowski, Rafal},
year = 2016,
month = 9,
journal = {Anticancer Research},
volume = 36,
pages = {4739--4748}
}
@article{Edwards_Veale_2018,
title = {Enslaving the Algorithm: From a ‘Right to an Explanation' to a ‘Right to Better Decisions'?},
author = {Edwards, Lilian and Veale, Michael},
year = 2018,
month = may,
journal = {IEEE Security and Privacy},
volume = 16,
number = 3,
pages = {46–54},
doi = {10.1109/msp.2018.2701152},
issn = {1540-7993, 1558-4046}
}
@book{Efron2016,
title = {Computer Age Statistical Inference: Algorithms, Evidence, and Data Science (1st Ed.)},
author = {Efron, Bradley and Hastie, Trevor},
year = 2016,
publisher = {Cambridge University Press},
address = {New York, NY},
isbn = {1107149894, 9781107149892}
}
@manual{h2oPackage,
title = {h2o: {R}~Interface for {H2O}},
author = {Erin LeDell and Navdeep Gill and Spencer Aiello and Anqi Fu and Arno Candel and Cliff Click and Tom Kraljevic and Tomas Nykodym and Patrick Aboyoun and Michal Kurka and Michal Malohlava},
year = 2019,
url = {https://CRAN.R-project.org/package=h2o},
note = {R package version 3.22.1.1}
}
@manual{EIXkarbowiak,
title = {EIX: Explain Interactions in Gradient Boosting Models},
author = {Ewelina Karbowiak and Przemyslaw Biecek},
year = 2019,
url = {https://CRAN.R-project.org/package=EIX},
note = {R package version 1.0}
}
@inproceedings{nnet_vis,
title = {Opening the black box - data driven visualization of neural networks},
author = {F. Y. Tzeng and K. L. Ma},
year = 2005,
month = oct,
booktitle = {VIS 05. IEEE Visualization, 2005.},
pages = {383--390},
doi = {10.1109/visual.2005.1532820}
}
@article{RigorousML,
title = {Towards A Rigorous Science of Interpretable Machine Learning},
author = {Finale Doshi-Velez and Been Kim},
year = 2017,
journal = {Arxiv},
url = {https://arxiv.org/abs/1702.08608}
}
@manual{rms,
title = {rms: Regression Modeling Strategies},
author = {Frank E {Harrell Jr}},
year = 2018,
url = {https://CRAN.R-project.org/package=rms},
note = {R package version 5.1-2}
}
@book{Galecki2013,
title = {Linear Mixed-Effects Models Using R: A Step-by-Step Approach},
author = {Galecki, A. and Burzykowski, T.},
year = 2013,
publisher = {Springer-Verlag New York},
address = {New York, NY},
isbn = {1461438993, 9781461438991}
}
@manual{r4ds2019,
author = {Garrett Grolemund and Hadley Wickham},
isbn = {1491910399},
keywords = {visualisation textbook computing rpackage},
month = jan,
publisher = {O'Reilly Media},
title = {{R for Data Science: Import, Tidy, Transform, Visualize, and Model Data}},
url = {http://r4ds.had.co.nz/},
year = 2017
}
@manual{EUGDPR,
title = {{The EU General Data Protection Regulation (GDPR) is the most important change in data privacy regulation in 20 years}},
author = {{GDPR}},
year = 2018,
url = {https://eugdpr.org/}
}
@manual{gbm,
title = {gbm: Generalized Boosted Regression Models},
author = {Greg Ridgeway},
year = 2017,
url = {https://CRAN.R-project.org/package=gbm},
note = {R package version 2.1.3}
}
@book{ggplot2,
title = {ggplot2: Elegant Graphics for Data Analysis},
author = {Hadley Wickham},
year = 2009,
publisher = {Springer-Verlag New York},
isbn = {978-0-387-98140-6},
url = {http://ggplot2.org}
}
@manual{R-ggplot2,
title = {ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics},
author = {Hadley Wickham and Winston Chang and Lionel Henry and Thomas Lin Pedersen and Kohske Takahashi and Claus Wilke and Kara Woo},
year = 2018,
url = {https://CRAN.R-project.org/package=ggplot2},
note = {R package version 3.0.0}
}
@article{lstm,
title = {Long Short-Term Memory},
author = {Hochreiter, Sepp and Schmidhuber, Jürgen},
year = 1997,
journal = {Neural Computation},
volume = 9,
number = 8,
pages = {1735--1780},
doi = {10.1162/neco.1997.9.8.1735},
url = {https://doi.org/10.1162/neco.1997.9.8.1735}
}
@inproceedings{seq2seq,
title = {Sequence to Sequence Learning with Neural Networks},
author = {Sutskever, Ilya and Vinyals, Oriol and Le, Quoc V.},
booktitle = {NIPS},
editor = {Ghahramani, Zoubin and Welling, Max and Cortes, Corinna and Lawrence, Neil D. and Weinberger, Kilian Q.},
ee = {http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks},
pages = {3104-3112},
url = {http://dblp.uni-trier.de/db/conf/nips/nips2014.html#SutskeverVL14},
year = 2014
}
@book{usdp1999,
author = {Jacobson, Ivar and Booch, Grady and Rumbaugh, James},
keywords = {UP},
publisher = {Addison-Wesley},
address={Boston, MA},
title = {{The Unified Software Development Process}},
year = 1999,
isbn={978-0-201-57169-1}
}
@inproceedings{ImageNet,
title = {{ImageNet: A large-scale hierarchical image database}},
author = {J. {Deng} and W. {Dong} and R. {Socher} and L. {Li} and {Kai Li} and {Li Fei-Fei}},
booktitle = {2009 IEEE Conference on Computer Vision and Pattern Recognition},
year = {2009},
publisher = {IEEE Computer Society},
address = {Los Alamitos, CA, USA},
pages = {248--255},
doi = {10.1109/cvpr.2009.5206848},
url = {https://doi.ieeecomputersociety.org/10.1109/CVPR.2009.5206848},
issn = {1063-6919}
}
@book{James20147,
title = {An Introduction to Statistical Learning: With Applications in R},
author = {James, Gareth and Witten, Daniela and Hastie, Trevor and Tibshirani, Robert},
year = 2014,
publisher = {Springer},
address = {New York, NY},
isbn = {1461471370, 9781461471370}
}
@article{RightToExpl3,
title = {{Machine learning and the right to explanation in GDPR}},
author = {Javier Ruiz},
year = 2018,
journal = {Open Rights Group},
url = {https://www.openrightsgroup.org/blog/2018/machine-learning-and-the-right-to-explanation-in-gdpr},
note = {https://bit.ly/3lgl7ww}
}
@article{COMPAS,
title = {How we analyzed the {COMPAS} recidivism algorithm},
author = {Jeff Larson and Surya Mattu and Lauren Kirchner and Julia Angwin},
year = 2016,
journal = {ProPublica},
url = {https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm}
}
@article{AmazonAI,
title = {Amazon scraps secret {AI} recruiting tool that showed bias against women},
author = {Jeffrey Dastin},
year = 2018,
journal = {Reuters},
url = {https://www.reuters.com/article/us-amazon-com-jobs-automation-insight-idUSKCN1MK08G},
note = {https://reut.rs/2UhvfZP}
}
@article{Friedman00greedyfunction,
title = {Greedy Function Approximation: A Gradient Boosting Machine},
author = {Jerome H. Friedman},
year = 2000,
journal = {Annals of Statistics},
volume = 29,
pages = {1189--1232}
}
@manual{kerasPackage,
title = {{keras: R Interface to Keras}},
author = {JJ Allaire and François Chollet},
year = 2019,
url = {https://CRAN.R-project.org/package=keras},
note = {R package version 2.2.4.1}
}
@manual{R-rmarkdown,
title = {rmarkdown: Dynamic Documents for R},
author = {JJ Allaire and Yihui Xie and Jonathan McPherson and Javier Luraschi and Kevin Ushey and Aron Atkins and Hadley Wickham and Joe Cheng and Winston Chang},
year = 2018,
url = {https://CRAN.R-project.org/package=rmarkdown},
note = {R package version 1.10}
}
@book{Faraway02practicalregression,
title = {{Linear Models With R (1st Ed.)}},
author = {Julian Faraway},
year = 2005,
publisher = {Chapman and Hall/CRC},
address = {Boca Raton, Florida},
isbn = {978-1584884255},
url = {https://cran.r-project.org/doc/contrib/Faraway-PRA.pdf}
}
@inproceedings{SaliencyMaps,
title = {{Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps}},
biburl = {https://dblp.org/rec/bib/journals/corr/SimonyanVZ13},
author = {Simonyan, Karen and Vedaldi, Andrea and Zisserman, Andrew},
booktitle = {ICLR (Workshop Poster)},
editor = {Bengio, Yoshua and LeCun, Yann},
keywords = {dblp},
url = {http://dblp.uni-trier.de/db/conf/iclr/iclr2014w.html#SimonyanVZ13},
year = 2014
}
@inproceedings{Simonyan15,
title = {Very deep convolutional networks for large-scale image recognition},
author = {Karen Simonyan and Andrew Zisserman},
year = 2015,
booktitle = {International Conference on Learning Representations},
publisher = {ICLR 2015},
address = {San Diego, CA}
}
@manual{tidymodels,
title = {tidymodels: Easily Install and Load the 'Tidymodels' Packages},
author = {Kuhn Max and Hadley Wickham},
year = 2018,
url = {https://CRAN.R-project.org/package=tidymodels},
note = {R package version 0.0.2}
}
@book{Kuhn2013,
title = {{Applied Predictive Modeling}},
author = {Kuhn, Max and Johnson, Kjell},
year = 2013,
booktitle = {{Applied Predictive Modeling}},
publisher = {Springer},
address = {New York, NY},
isbn = {978-1461468486},
url = {http://appliedpredictivemodeling.com/}
}
@article{Lazer1203,
title = {The parable of {Google Flu}: traps in big data analysis},
author = {Lazer, David and Kennedy, Ryan and King, Gary and Vespignani, Alessandro},
year = 2014,
journal = {Science},
publisher = {American Association for the Advancement of Science},
volume = 343,
number = 6176,
pages = {1203--1205},
doi = {10.1126/science.1248506},
issn = {0036-8075},
url = {https://science.sciencemag.org/content/343/6176/1203},
eprint = {https://science.sciencemag.org/content/343/6176/1203.full.pdf}
}
@article{randomForestBreiman,
title = {Random Forests},
author = {Leo Breiman},
year = 2001,
journal = {Machine Learning},
volume = 45,
pages = {5--32},
doi = {10.1023/a:1010933404324}
}
@manual{R-randomForest,
title = {{randomForest: Breiman and Cutler's Random Forests for Classification and Regression}},
author = {Leo Breiman and Adele Cutler and Andy Liaw and Matthew Wiener},
year = 2018,
url = {https://CRAN.R-project.org/package=randomForest},
note = {R package version 4.6-14}
}
@incollection{SHAP,
title = {A unified approach to interpreting model predictions},
author = {Lundberg, Scott M and Lee, Su-In},
year = 2017,
booktitle = {Advances in Neural Information Processing Systems 30},
publisher = {Curran Associates},
address = {Montreal},
pages = {4765--4774},
url = {http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf},
editor = {I. Guyon and U. V. Luxburg and S. Bengio and H. Wallach and R. Fergus and S. Vishwanathan and R. Garnett}
}
@manual{R-modelDown,
title = {modelDown: Make Static HTML Website for Predictive Models},
author = {Magda Tatarynowicz and Kamil Romaszko and Mateusz Urbański},
year = 2018,
url = {https://github.com/MI2DataLab/modelDown},
note = {R package version 0.1.1}
}
@article{explainPaper,
title = {Explaining Classifications For Individual Instances},
author = {Marco {Robnik-\v{S}ikonja} and Igor {Kononenko}},
year = 2008,
journal = {IEEE Transactions on Knowledge and Data Engineering},
volume = 20,
number = 5,
pages = {589--600},
doi = {10.1109/tkde.2007.190734}
}
@article{condvisRPackage,
title = {Conditional visualization for statistical models: an introduction to the condvis package in {R}},
author = {Mark O'Connell and Catherine Hurley and Katarina Domijan},
year = 2017,
journal = {Journal of Statistical Software, Articles},
volume = 81,
number = 5,
pages = {1--20},
doi = {10.18637/jss.v081.i05},
issn = {1548-7660},
url = {https://www.jstatsoft.org/v081/i05}
}
@manual{gower,
title = {gower: Gower's Distance},
author = {Mark {van der Loo}},
year = 2017,
url = {https://CRAN.R-project.org/package=gower},
note = {R package version 0.1.2}
}
@manual{gowerRPackage,
title = {{gower: Gower's Distance}},
author = {Mark {van der Loo}},
year = 2017,
url = {https://CRAN.R-project.org/package=gower},
note = {R package version 0.1.2}
}
@manual{R-gower,
title = {gower: Gower's Distance},
author = {Mark {van der Loo}},
year = 2017,
url = {https://CRAN.R-project.org/package=gower},
note = {R package version 0.1.2}
}
@manual{explainPackage,
title = {ExplainPrediction: Explanation of Predictions for Classification and Regression Models},
author = {Marko {Robnik-\v{S}ikonja}},
year = 2018,
url = {https://CRAN.R-project.org/package=ExplainPrediction},
note = {R package version 1.3.0}
}
@article{rangerRpackage,
title = {{ranger}: A Fast Implementation of Random Forests for High Dimensional Data in {C++} and {R}},
author = {Marvin N. Wright and Andreas Ziegler},
year = 2017,
journal = {Journal of Statistical Software},
volume = 77,
number = 1,
pages = {1--17},
doi = {10.18637/jss.v077.i01}
}
@manual{live,
title = {live: Local Interpretable (Model-agnostic) Visual Explanations},
author = {Mateusz Staniak and Przemyslaw Biecek},
year = 2017,
url = {https://github.com/MI2DataLab/live},
note = {R package version 1.4.0}
}
@manual{localModelPackage,
title = {{localModel: LIME-Based Explanations with Interpretable Inputs Based on Ceteris Paribus Profiles}},
author = {Mateusz Staniak and Przemyslaw Biecek and Krystian Igras and Alicja Gosiewska},
year = 2019,
url = {https://CRAN.R-project.org/package=localModel},
note = {R package version 0.3.11}
}
@manual{R-live,
title = {live: Local Interpretable (Model-Agnostic) Visual Explanations},
author = {Mateusz Staniak and Przemysław Biecek},
year = 2018,
url = {https://CRAN.R-project.org/package=live},
note = {R package version 1.5.7}
}
@manual{forestplot,
title = {forestplot: Advanced Forest Plot Using 'grid' Graphics},
author = {Max Gordon and Thomas Lumley},
year = 2017,
url = {https://CRAN.R-project.org/package=forestplot},
note = {R package version 1.7.2}
}
@manual{parsnipPackage,
title = {parsnip: A Common API to Modeling and Analysis Functions},
author = {Max Kuhn and Davis Vaughan},
year = 2019,
url = {https://CRAN.R-project.org/package=parsnip},
note = {R package version 0.0.2}
}
@manual{parsnipPackages,
title = {parsnip: A Common API to Modeling and Analysis Functions},
author = {Max Kuhn and Davis Vaughan},
year = 2019,
url = {https://CRAN.R-project.org/package=parsnip},
note = {R package version 0.0.2}
}
@manual{tidy2018,
title = {tidymodels: Easily Install and Load the 'Tidymodels' Packages},
author = {Max Kuhn and Wickham Hadley},
year = 2018,
url = {https://CRAN.R-project.org/package=tidymodels},
note = {R package version 0.0.2}
}
@article{caret,
author = {Max Kuhn},
title = {Building predictive models in {R} using the caret package},
journal = {Journal of Statistical Software},
volume = {28},
number = {5},
year = {2008},
keywords = {},
issn = {1548-7660},
pages = {1--26},
doi = {10.18637/jss.v028.i05},
url = {https://www.jstatsoft.org/v028/i05}
}
@article{alber2018innvestigate,
author = {Maximilian Alber and Sebastian Lapuschkin and Philipp Seegerer and Miriam H{{\"a}}gele and Kristof T. Sch{{\"u}}tt and Gr{{\'e}}goire Montavon and Wojciech Samek and Klaus-Robert M{{\"u}}ller and Sven D{{\"a}}hne and Pieter-Jan Kindermans},
title = {{iNNvestigate Neural Networks!}},
journal = {Journal of Machine Learning Research},
year = {2019},
volume = {20},
number = {93},
pages = {1-8},
url = {http://jmlr.org/papers/v20/18-540.html}
}
@manual{ELI5,
title = {ELI5: Python package which helps to debug machine learning classifiers and explain their predictions},
author = {Mikhail Korobov and Konstantin Lopuhin},
year = 2017,
url = {https://eli5.readthedocs.io/en/latest/}
}
@manual{forestmodel,
title = {forestmodel: Forest Plots from Regression Models},
author = {Nick Kennedy},
year = 2017,
url = {https://CRAN.R-project.org/package=forestmodel},
note = {R package version 0.4.3}
}
@article{svm95vapnik,
author = {Corinna Cortes and Vladimir Vapnik},
title = {Support-Vector Networks},
journal = {Machine Learning},
year = {1995},
pages = {273--297}
}
@manual{e1071,
title = {e1071: manual Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien},
author = {David Meyer and Evgenia Dimitriadou and Kurt Hornik and Andreas Weingessel and Friedrich Leisch},
year = {2019},
note = {R package version 1.7-2},
url = {https://CRAN.R-project.org/package=e1071},
}
@article{MAGIX,
title = {{MAGIX:} Model Agnostic Globally Interpretable Explanations},
author = {Nikaash Puri and Piyush Gupta and Pratiksha Agarwal and Sukriti Verma and Balaji Krishnamurthy},
year = 2017,
journal = {CoRR},
volume = {abs/1706.07160},
url = {http://arxiv.org/abs/1706.07160},
archiveprefix = {arXiv},
eprint = {1706.07160},
timestamp = {Mon, 13 Aug 2018 16:47:13 +0200},
biburl = {https://dblp.org/rec/bib/journals/corr/PuriGAVK17},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@book{Nolan2015,
title = {Data Science in R: A Case Studies Approach to Computational Reasoning and Problem Solving},
author = {Nolan, Deborah and Lang, Duncan Temple},
year = 2015,
publisher = {Chapman and Hall/CRC},
address = {New York, NY},
isbn = {1482234815, 9781482234817}
}
@book{ONeil,
title = {Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy},
author = {O'Neil, Cathy},
year = 2016,
publisher = {Crown Publishing Group},
address = {New York, NY},
isbn = {0553418815, 9780553418811}
}
@article{misconceptions2019,
title={Proposed guidelines for the responsible use of explainable machine learning},
author={Patrick Hall and Navdeep Gill and Nicholas Schmidt},
year={2019},
volume={1906.03533},
journal={arXiv},
url = {https://github.com/jphall663/xai_manualonceptions/blob/master/xai_misconceptions.pdf}
}
@manual{crisp1999,
title = {{The CRISP-DM 1.0 Step-by-step data mining guide}},
author = {Pete Chapman and Julian Clinton and Randy Kerber and Thomas Khabaza and Thomas Reinartz and Colin Shearer and Rudiger Wirth},
year = 1999,
publisher = {SPSS Inc.},
url = {ftp://ftp.software.ibm.com/software/analytics/spss/support/Modeler/Documentation/14/UserManual/CRISP-DM.pdf}
}
@book{rup1998,
title = {{The Rational Unified Process}},
author = {Philippe Kruchten},
publisher = {Addison-Wesley},
adddress = {Boston, MA},
year = 1998
}
@article{picard_1985,
title = {{Testing and estimating change-points in time series}},
author = {Picard, Dominique},
year = 1985,
journal = {Advances in Applied Probability},
publisher = {Cambridge University Press},
volume = 17,
number = 4,
pages = {841–867},
doi = {10.2307/1427090}
}
@article{DALEX,
title = {{DALEX: Explainers for complex predictive models in R}},
author = {Przemyslaw Biecek},
year = 2018,
journal = {Journal of Machine Learning Research},
volume = 19,
number = 84,
pages = {1--5},
url = {http://jmlr.org/papers/v19/18-416.html}
}
@manual{breakDown,
title = {{breakDown: BreakDown Plots}},
author = {Przemyslaw Biecek},
year = 2017,
url = {https://CRAN.R-project.org/package=breakDown},
note = {R package version 0.1.2}
}
@article{mdp2019,
title = {{Model Development Process}},
author = {Przemyslaw Biecek},
year = 2019,
journal = {CoRR},
volume = {abs/1907.04461},
url = {http://arxiv.org/abs/1907.04461},
archiveprefix = {arXiv},
eprint = {1907.04461}
}
@manual{R-breakDown,
title = {{breakDown: Model Agnostic Explainers for Individual Predictions}},
author = {Przemyslaw Biecek},
year = 2018,
url = {https://CRAN.R-project.org/package=breakDown},
note = {R package version 0.1.6}
}
@manual{R-ceterisParibus,