diff --git a/DESCRIPTION b/DESCRIPTION index 2b7e455..e41bb61 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -1,7 +1,7 @@ Package: grpreg Title: Regularization Paths for Regression Models with Grouped Covariates -Version: 3.2-000 -Date: 2018-06-15 +Version: 3.2-0 +Date: 2018-09-27 Authors@R: c( person("Patrick", "Breheny", role=c("aut","cre"), email="patrick-breheny@uiowa.edu", comment=c(ORCID="000-0002-0650-1119")), person("Yaohui", "Zeng", role="ctb")) diff --git a/man/Birthwt.Rd b/man/Birthwt.Rd index 468bd33..3ed6d8b 100644 --- a/man/Birthwt.Rd +++ b/man/Birthwt.Rd @@ -43,8 +43,9 @@ data(Birthwt) category.} } } -\source{\code{MASS}. \code{R} package. Available at - \code{http://cran.r-project.org}.} +\source{\code{MASS}. \code{R} package. + \url{https://cran.r-project.org/package=MASS} +} \references{ \itemize{ \item Venables, W. N. and Ripley, B. D. (2002) \emph{Modern Applied diff --git a/man/predict.Rd b/man/predict.Rd index 28e853f..b6bb732 100644 --- a/man/predict.Rd +++ b/man/predict.Rd @@ -61,9 +61,9 @@ fit <- grpreg(X, y, group, penalty="grLasso", family="binomial") # Coef and predict methods coef(fit, lambda=.001) -predict(fit, X, type="link", lambda=.001) -predict(fit, X, type="response", lambda=.001) -predict(fit, X, type="class", lambda=.001) +predict(fit, X, type="link", lambda=.07)[1:10] +predict(fit, X, type="response", lambda=.07)[1:10] +predict(fit, X, type="class", lambda=.01)[1:15] predict(fit, type="vars", lambda=.07) predict(fit, type="groups", lambda=.07) predict(fit, type="norm", lambda=.07) @@ -71,7 +71,7 @@ predict(fit, type="norm", lambda=.07) # Coef and predict methods for cross-validation cvfit <- cv.grpreg(X, y, group, family="binomial", penalty="grMCP") coef(cvfit) -predict(cvfit, X) -predict(cvfit, X, type="response") +predict(cvfit, X)[1:10] +predict(cvfit, X, type="response")[1:10] predict(cvfit, type="groups") } diff --git a/man/select-grpreg.Rd b/man/select-grpreg.Rd index fb6cf01..2223a3b 100644 --- a/man/select-grpreg.Rd +++ b/man/select-grpreg.Rd @@ -27,7 +27,7 @@ select(obj,\dots) freedom, and \eqn{n}{n} is the sample size: \deqn{AIC = L + 2\nu}{AIC = L + 2*df} - \deqn{BIC = L + log(n)\nu}{BIC = L + log(n)*df} + \deqn{BIC = L + \log(n)\nu}{BIC = L + log(n)*df} \deqn{GCV = \frac{L}{(1-\nu/n)^2}}{GCV= L/((1-df/n)^2)} \deqn{AICc = AIC + 2\frac{\nu(\nu+1)}{n-\nu-1}}{AICc = AIC + 2*df*(df+1)/(n-df-1)} \deqn{EBIC = BIC + 2 \log{p \choose \nu}}{EBIC = BIC + 2*log(p choose df)}