-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathbubblewrap.py
447 lines (342 loc) · 14 KB
/
bubblewrap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
import numpy
import jax.numpy as np
from math import floor
import time
from collections import deque
from jax import jit, grad, vmap, value_and_grad
import jax.scipy.stats
from jax.scipy.stats import multivariate_normal as jmvn
from scipy.stats import multivariate_normal as mvn
from jax.scipy.special import logsumexp as lse
from jax import nn, random
epsilon = 1e-10
class Bubblewrap():
def __init__(self, num, dim, seed=42, M=30, step=1e-6, lam=1, eps=3e-2, nu=1e-2, B_thresh=1e-4, n_thresh=5e-4, t_wait=1, batch=False, batch_size=1, go_fast = False, future_distance=1):
self.N = num # Number of nodes
self.d = dim # dimension of the space
self.seed = seed
self.lam_0 = lam
self.nu = nu
self.eps = eps
self.B_thresh = B_thresh
self.n_thresh = n_thresh
self.t_wait = t_wait
self.step = step
self.batch = batch
self.batch_size = batch_size
if not self.batch: self.batch_size = 1
self.printing = False
self.go_fast = go_fast
self.future_distance = future_distance
self.future_x = None
self.key = random.PRNGKey(self.seed)
numpy.random.seed(self.seed)
# observations of the data; M is how many to keep in history
if self.batch: M=self.batch_size
self.obs = Observations(self.d, M=M, go_fast=go_fast)
self.get_mus0 = jit(vmap(get_mus, 0))
self.mu_orig = None
def init_nodes(self):
### Based on observed data so far of length M
self.mu = np.zeros((self.N, self.d))
com = center_mass(self.mu)
if len(self.obs.saved_obs) > 1:
obs_com = center_mass(self.obs.saved_obs)
else:
## this section for if we init nodes with no data
obs_com = 0
self.obs.curr = com
self.obs.obs_com = com
self.mu += obs_com
prior = (1/self.N)*np.ones(self.N)
self.alpha = self.lam_0 * prior
self.last_alpha = self.alpha.copy()
self.lam = self.lam_0 * prior
self.n_obs = 0*self.alpha
self.mu_orig = self.mu.copy()
self.mus_orig = self.get_mus0(self.mu_orig)
### Initialize model parameters (A,En,...)
self.A = np.ones((self.N,self.N)) - np.eye(self.N)
self.A /= np.sum(self.A, axis=1)
self.B = np.zeros((self.N))
self.En = np.zeros((self.N,self.N))
self.S1 = np.zeros((self.N,self.d))
self.S2 = np.zeros((self.N,self.d,self.d))
self.log_A = np.zeros((self.N,self.N))
fullSigma = numpy.zeros((self.N,self.d,self.d), dtype="float32")
self.L = numpy.zeros((self.N,self.d,self.d))
self.L_diag = numpy.zeros((self.N,self.d))
if self.batch and not self.go_fast:
var = self.obs.cov
else:
var = np.diag(np.var(np.array(self.obs.saved_obs), axis=0))
for n in numpy.arange(self.N):
fullSigma[n] = var * (self.nu + self.d + 1) / (self.N**(2/self.d))
## Optimization is done with L split into L_lower and L_diag elements
## L is defined using cholesky of precision matrix, NOT covariance
L = np.linalg.cholesky(fullSigma[n])
self.L[n] = np.linalg.inv(L).T
self.L_diag[n] = np.log(np.diag(self.L[n]))
self.L_lower = np.tril(self.L,-1)
self.sigma_orig = fullSigma[0]
## Set up gradients
## Change grad to value_and_grad if we want Q values
self.grad_all = jit(vmap(jit(grad(Q_j, argnums=(0,1,2,3))), in_axes=(0,0,0,0,0,0,0,0,0,None,None,None,None,0)))
## Other jitted functions
self.logB_jax = jit(vmap(single_logB, in_axes=(None, 0, 0, 0)))
self.expB_jax = jit(expB)
self.update_internal_jax = jit(update_internal)
self.kill_nodes = jit(kill_dead_nodes)
self.log_pred_prob = jit(log_pred_prob)
self.pred_ahead = jit(pred_ahead, static_argnames=['future_distance'])
self.sum_me = jit(sum_me)
self.compute_L = jit(vmap(get_L, (0,0)))
self.get_amax = jit(amax)
## for adam gradients
self.m_mu = np.zeros_like(self.mu)
self.m_L = np.zeros_like(self.L_lower)
self.m_L_diag = np.zeros_like(self.L_diag)
self.m_A = np.zeros_like(self.A)
self.v_mu = np.zeros_like(self.mu)
self.v_L = np.zeros_like(self.L_lower)
self.v_L_diag = np.zeros_like(self.L_diag)
self.v_A = np.zeros_like(self.A)
## Variables for keeping track of dead nodes
self.dead_nodes = np.arange(0,self.N).tolist()
self.dead_nodes_ind = self.n_thresh*numpy.ones(self.N)
self.current_node = 0
## Variables for tracking progress
self.pred = []
self.pred_far = []
self.teleported_times = []
self.time_em = []
self.time_observe = []
self.time_updates = []
self.time_grad_Q = []
self.time_pred = []
self.entropy_list = []
self.loss = []
self.t = 1
def observe(self, x, future_x=None, b=None):
# Get new data point and update observation history
## Do all observations, and then update mu0, sigma0
if self.batch:
for o in x: # x array of observations
self.obs.new_obs(o)
else:
self.obs.new_obs(x)
self.future_x = future_x
if not self.go_fast and self.obs.cov is not None and self.mu_orig is not None:
lamr = 0.02
eta = np.sqrt(lamr * np.diag(self.obs.cov))
self.mu_orig = (1-lamr)*self.mu_orig + lamr*self.obs.mean + eta*numpy.random.normal(size=(self.N, self.d))
self.sigma_orig = self.obs.cov * (self.nu + self.d + 1) / (self.N**(2/self.d))
def e_step(self):
# take E step; after observation
if self.batch:
for o in self.obs.saved_obs:
self.single_e_step(o)
else:
self.single_e_step(self.obs.curr)
def single_e_step(self, x):
self.beta = 1 + 10/(self.t+1)
self.B = self.logB_jax(x, self.mu, self.L, self.L_diag)
### Compute log predictive probability and entropy; turn off for faster code
if not self.go_fast:
new_log_pred = self.log_pred_prob(self.B, self.A, self.alpha)
self.pred.append(new_log_pred)
ent = entropy(self.A, self.alpha)
self.entropy_list.append(ent)
if self.future_x is not None:
future_B = self.logB_jax(self.future_x, self.mu, self.L, self.L_diag)
pred_far = self.pred_ahead(future_B, self.A, self.alpha, self.future_distance)
self.pred_far.append(pred_far)
self.update_B(x)
self.gamma, self.alpha, self.En, self.S1, self.S2, self.n_obs = self.update_internal_jax(self.A, self.B, self.alpha, self.En, self.eps, self.S1, x, self.S2, self.n_obs)
self.t += 1
def update_B(self, x):
if np.max(self.B) < self.B_thresh:
if not (self.dead_nodes):
target = numpy.argmin(self.n_obs)
if self.printing:
print('-------------- killing a node: ', target)
n_obs = numpy.array(self.n_obs)
n_obs[target] = 0
self.n_obs = n_obs
self.remove_dead_nodes()
node = self.teleport_node(x)
self.B = self.logB_jax(x, self.mu, self.L, self.L_diag)
self.current_node, self.B = self.expB_jax(self.B)
def remove_dead_nodes(self):
ma = (self.n_obs + self.dead_nodes_ind) < self.n_thresh
if ma.any():
ind2 = self.get_amax(ma)
# try:
self.n_obs, self.S1, self.S2, self.En, self.log_A = self.kill_nodes(ind2, self.n_thresh, self.n_obs, self.S1, self.S2, self.En, self.log_A)
actual_ind = int(ind2)
self.dead_nodes.append(actual_ind)
self.dead_nodes_ind[actual_ind] = self.n_thresh
if self.printing:
print('Removed dead node ', actual_ind, ' at time ', self.t)
def teleport_node(self, x):
node = self.dead_nodes.pop(0)
mu = numpy.array(self.mu)
mu[node] = x
self.mu = mu
alpha = numpy.array(self.alpha)
alpha[node] = 1
self.alpha = alpha
self.dead_nodes_ind[node] = 0
if self.printing:
print('Teleported node ', node, ' to current data location at time ', self.t)
self.teleported_times.append(self.t)
return node
def grad_Q(self):
divisor = 1+self.sum_me(self.En)
(grad_mu, grad_L, grad_L_diag, grad_A) = self.grad_all(self.mu, self.L_lower, self.L_diag, self.log_A, self.S1, self.lam, self.S2, self.n_obs, self.En, self.nu, self.sigma_orig, self.beta, self.d, self.mu_orig)
self.run_adam(grad_mu/divisor, grad_L/divisor, grad_L_diag/divisor, grad_A/divisor)
self.A = sm(self.log_A)
self.L = self.compute_L(self.L_diag, self.L_lower)
def run_adam(self, mu, L, L_diag, A):
## inputs are gradients
self.m_mu, self.v_mu, self.mu = single_adam(self.step, self.m_mu, self.v_mu, mu, self.t, self.mu)
self.m_L, self.v_L, self.L_lower = single_adam(self.step, self.m_L, self.v_L, L, self.t, self.L_lower)
self.m_L_diag, self.v_L_diag, self.L_diag = single_adam(self.step, self.m_L_diag, self.v_L_diag, L_diag, self.t, self.L_diag)
self.m_A, self.v_A, self.log_A = single_adam(self.step, self.m_A, self.v_A, A, self.t, self.log_A)
beta1 = 0.99
beta2 = 0.999
### A ton of jitted functions for fast code execution
@jit
def single_adam(step, m, v, grad, t, val):
m = beta1*m + (1-beta1)*grad
v = beta2*v + (1-beta2)*grad**2
m_hat = m/(1-np.power(beta1,t+1))
v_hat = v/(1-np.power(beta2,t+1))
update = step*m_hat / (np.sqrt(v_hat)+epsilon)
val -= update
return m, v, val
@jit
def sm(log_A):
return nn.softmax(log_A, axis=1)
@jit
def sum_me(En):
return np.sum(En)
@jit
def amax(A):
return np.argmax(A)
@jit
def get_L(x, y):
return np.tril(np.diag(np.exp(x) + epsilon) + np.tril(y,-1))
@jit
def get_L_inv(L):
return np.linalg.inv(L)
@jit
def get_sig_inv(L):
return L @ L.T
@jit
def get_fullSigma(L):
inv = np.linalg.inv(L)
return inv.T @ inv
@jit
def get_sub_l(L):
return L.flatten()/np.linalg.norm(L.flatten())
@jit
def get_mus(mu):
return np.outer(mu,mu)
@jit
def get_ld(L):
return -2 * np.sum(L)
@jit
def Q_j(mu, L_lower, L_diag, log_A, S1, lam, S2, n_obs, En, nu, sigma_orig, beta, d, mu_orig):
L = np.tril(np.diag(np.exp(L_diag) + epsilon) + np.tril(L_lower,-1))
sig_inv = L @ L.T
mus = np.outer(mu,mu)
mus_orig = np.outer(mu_orig,mu_orig)
ld = -2 * np.sum(L_diag)
summed = 0
summed += (S1 + lam * mu_orig).dot(sig_inv).dot(mu)
summed += (-1/2) * np.trace( (sigma_orig + S2 + lam * mus_orig + (lam + n_obs) * mus) @ sig_inv )
summed += (-1/2) * (nu + n_obs + d + 2) * ld
summed += np.sum((En + beta - 1) * nn.log_softmax(log_A))
return -np.sum(summed)
@jit
def single_logB(x, mu, L, L_diag):
n = mu.shape[0]
B = (-1/2) * np.linalg.norm((x-mu)@L)**2 - (n/2) * np.log(2*np.pi) + np.sum(L_diag)
return B
@jit
def expB(B):
max_Bind = np.argmax(B)
current_node = max_Bind
B -= B[max_Bind]
B = np.exp(B)
return current_node, B
@jit
def update_internal(A, B, last_alpha, En, eps, S1, obs_curr, S2, n_obs):
gamma = B * A / (last_alpha.dot(A).dot(B) + 1e-16)
alpha = last_alpha.dot(gamma)
En = gamma * last_alpha[:,np.newaxis] + (1-eps) * En
S1 = (1 - eps)*S1 + alpha[:,np.newaxis] * obs_curr
S2 = (1 - eps)*S2 + alpha[:,np.newaxis,np.newaxis] * (obs_curr[:,np.newaxis] * obs_curr.T)
n_obs = (1 - eps)*n_obs + alpha
return gamma, alpha, En, S1, S2, n_obs
@jit
def kill_dead_nodes(ind2, n_thresh, n_obs, S1, S2, En, log_A):
N = n_obs.shape[0]
d = S1.shape[1]
n_obs = n_obs.at[ind2].set(0)
S1 = S1.at[ind2].set(np.zeros(d))
S2 = S2.at[ind2].set(np.zeros((d,d)))
log_A = log_A.at[ind2].set(np.zeros(N))
log_A = log_A.at[:, ind2].set(np.zeros(N))
return n_obs, S1, S2, En, log_A
@jit
def log_pred_prob(B, A, alpha):
return np.log(alpha @ A @ np.exp(B) + 1e-16)
# @jit
def pred_ahead(B, A, alpha, future_distance):
AT = np.linalg.matrix_power(A,future_distance)
return np.log(alpha @ AT @ np.exp(B) + 1e-16)
@jit
def entropy(A, alpha):
AT = np.linalg.matrix_power(A,1)
one = alpha @ AT
return - np.sum(one.dot(np.log2(alpha @ AT)))
def center_mass(points):
return numpy.mean(points, axis=0)
class Observations:
def __init__(self, dim, M=5, go_fast=True):
self.M = M # how many observed points to hold in memory
self.d = dim # dimension of coordinate system
self.go_fast = go_fast
self.curr = None
self.saved_obs = deque(maxlen=self.M)
self.mean = None
self.last_mean = None
self.cov = None
self.n_obs = 0
def new_obs(self, coord_new):
self.curr = coord_new
self.saved_obs.append(self.curr)
self.n_obs += 1
if not self.go_fast:
if self.mean is None:
self.mean = self.curr.copy()
else:
self.last_mean = self.mean.copy()
self.mean = update_mean(self.mean, self.curr, self.n_obs)
if self.n_obs > 2:
if self.cov is None:
self.cov = np.cov(np.array(self.saved_obs).T, bias=True)
else:
self.cov = update_cov(self.cov, self.last_mean, self.curr, self.mean, self.n_obs)
@jit
def update_mean(mean, curr, n_obs):
return mean + (curr - mean)/n_obs
@jit
def update_cov(cov, last, curr, mean, n):
lastm = get_mus(last)
currm = get_mus(mean)
curro = get_mus(curr)
f = (n-1)/n
return f*(cov + lastm) + (1-f)*curro - currm