This repository has been archived by the owner on Aug 17, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaverage_learner.jl
112 lines (95 loc) · 3 KB
/
average_learner.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
using ReinforcementLearning
using Setfield: @set
using Random
using Flux
using Flux.Losses
mutable struct AverageLearner{
Tq<:AbstractApproximator,
R<:AbstractRNG,
} <: AbstractLearner
approximator::Tq
min_reservoir_history::Int
update_freq::Int
update_step::Int
sampler::NStepBatchSampler
rng::R
end
"""
AverageLearner(;kwargs...)
In the `Neural Fictitious Self-play` algorithm, AverageLearner, also known as Supervisor Learner, works to learn the best response for the state from RL_agent's policy.
See paper: [Deep Reinforcement Learning from Self-Play in Imperfect-Information Games](https://arxiv.org/pdf/1603.01121.pdf)
# Keywords
- `approximator`::[`AbstractApproximator`](@ref).
- `batch_size::Int=32`
- `update_horizon::Int=1`: length of update ('n' in n-step update).
- `min_reservoir_history::Int=32`: number of transitions that should be experienced before updating the `approximator`.
- `update_freq::Int=1`: the frequency of updating the `approximator`.
- `stack_size::Union{Int, Nothing}=nothing`: use the recent `stack_size` frames to form a stacked state.
- `traces = SARTS`.
- `rng = Random.GLOBAL_RNG`
"""
function AverageLearner(;
approximator::Tq,
batch_size::Int = 32,
update_horizon::Int = 1,
min_reservoir_history::Int = 32,
update_freq::Int = 1,
update_step::Int = 0,
stack_size::Union{Int,Nothing} = nothing,
traces = SARTS,
rng = Random.GLOBAL_RNG,
) where {Tq}
sampler = NStepBatchSampler{traces}(;
γ = 0f0, # no need to set discount factor
n = update_horizon,
stack_size = stack_size,
batch_size = batch_size,
)
AverageLearner(
approximator,
min_reservoir_history,
update_freq,
update_step,
sampler,
rng,
)
end
Flux.functor(x::AverageLearner) = (Q = x.approximator, ), y -> begin
x = @set x.approximator = y.Q
x
end
function (learner::AverageLearner)(env)
env |>
state |>
x -> Flux.unsqueeze(x, ndims(x) + 1) |>
x -> send_to_device(device(learner), x) |>
learner.approximator |>
send_to_host |> vec
end
function RLBase.update!(learner::AverageLearner, t::AbstractTrajectory)
length(t[:terminal]) - learner.sampler.n <= learner.min_reservoir_history && return
learner.update_step += 1
learner.update_step % learner.update_freq == 0 || return
inds, batch = sample(learner.rng, t, learner.sampler)
if t isa PrioritizedTrajectory
priorities = update!(learner, batch)
t[:priority][inds] .= priorities
else
update!(learner, batch)
end
end
function RLBase.update!(learner::AverageLearner, batch::NamedTuple)
Q = learner.approximator
_device(x) = send_to_device(device(Q), x)
local s, a
@sync begin
@async s = _device(batch[:state])
@async a = _device(batch[:action])
end
gs = gradient(params(Q)) do
ŷ = Q(s)
y = Flux.onehotbatch(a, axes(ŷ, 1)) |> _device
crossentropy(ŷ, y)
end
update!(Q, gs)
end