-
Notifications
You must be signed in to change notification settings - Fork 157
/
train_soft_actor_critic_atlas.py
276 lines (251 loc) · 9.31 KB
/
train_soft_actor_critic_atlas.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
"""A training script of Soft Actor-Critic on RoboschoolAtlasForwardWalk-v1."""
import argparse
import functools
import logging
import sys
import gym
import gym.wrappers
import numpy as np
import torch
from torch import distributions, nn
import pfrl
from pfrl import experiments, replay_buffers, utils
from pfrl.nn.lmbda import Lambda
def make_env(args, seed, test):
if args.env.startswith("Roboschool"):
# Check gym version because roboschool does not work with gym>=0.15.6
from distutils.version import StrictVersion
gym_version = StrictVersion(gym.__version__)
if gym_version >= StrictVersion("0.15.6"):
raise RuntimeError("roboschool does not work with gym>=0.15.6")
import roboschool # NOQA
env = gym.make(args.env)
# Unwrap TimiLimit wrapper
assert isinstance(env, gym.wrappers.TimeLimit)
env = env.env
# Use different random seeds for train and test envs
env_seed = 2**32 - 1 - seed if test else seed
env.seed(int(env_seed))
# Cast observations to float32 because our model uses float32
env = pfrl.wrappers.CastObservationToFloat32(env)
# Normalize action space to [-1, 1]^n
env = pfrl.wrappers.NormalizeActionSpace(env)
if args.monitor:
env = pfrl.wrappers.Monitor(
env, args.outdir, force=True, video_callable=lambda _: True
)
if args.render:
env = pfrl.wrappers.Render(env, mode="human")
return env
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--outdir",
type=str,
default="results",
help=(
"Directory path to save output files."
" If it does not exist, it will be created."
),
)
parser.add_argument(
"--env",
type=str,
default="RoboschoolAtlasForwardWalk-v1",
help="OpenAI Gym env to perform algorithm on.",
)
parser.add_argument(
"--num-envs", type=int, default=4, help="Number of envs run in parallel."
)
parser.add_argument("--seed", type=int, default=0, help="Random seed [0, 2 ** 32)")
parser.add_argument(
"--gpu", type=int, default=0, help="GPU to use, set to -1 if no GPU."
)
parser.add_argument(
"--load", type=str, default="", help="Directory to load agent from."
)
parser.add_argument(
"--steps",
type=int,
default=10**7,
help="Total number of timesteps to train the agent.",
)
parser.add_argument(
"--eval-n-runs",
type=int,
default=20,
help="Number of episodes run for each evaluation.",
)
parser.add_argument(
"--eval-interval",
type=int,
default=100000,
help="Interval in timesteps between evaluations.",
)
parser.add_argument(
"--replay-start-size",
type=int,
default=10000,
help="Minimum replay buffer size before " + "performing gradient updates.",
)
parser.add_argument(
"--update-interval",
type=int,
default=1,
help="Interval in timesteps between model updates.",
)
parser.add_argument("--batch-size", type=int, default=256, help="Minibatch size")
parser.add_argument(
"--render", action="store_true", help="Render env states in a GUI window."
)
parser.add_argument(
"--demo", action="store_true", help="Just run evaluation, not training."
)
parser.add_argument(
"--monitor", action="store_true", help="Wrap env with Monitor to write videos."
)
parser.add_argument(
"--log-interval",
type=int,
default=1000,
help="Interval in timesteps between outputting log messages during training",
)
parser.add_argument(
"--log-level", type=int, default=logging.INFO, help="Level of the root logger."
)
parser.add_argument(
"--n-hidden-channels",
type=int,
default=1024,
help="Number of hidden channels of NN models.",
)
parser.add_argument("--discount", type=float, default=0.98, help="Discount factor.")
parser.add_argument("--n-step-return", type=int, default=3, help="N-step return.")
parser.add_argument("--lr", type=float, default=3e-4, help="Learning rate.")
parser.add_argument("--adam-eps", type=float, default=1e-1, help="Adam eps.")
args = parser.parse_args()
logging.basicConfig(level=args.log_level)
args.outdir = experiments.prepare_output_dir(args, args.outdir, argv=sys.argv)
print("Output files are saved in {}".format(args.outdir))
# Set a random seed used in PFRL
utils.set_random_seed(args.seed)
# Set different random seeds for different subprocesses.
# If seed=0 and processes=4, subprocess seeds are [0, 1, 2, 3].
# If seed=1 and processes=4, subprocess seeds are [4, 5, 6, 7].
process_seeds = np.arange(args.num_envs) + args.seed * args.num_envs
assert process_seeds.max() < 2**32
def make_batch_env(test):
return pfrl.envs.MultiprocessVectorEnv(
[
functools.partial(make_env, args, process_seeds[idx], test)
for idx, env in enumerate(range(args.num_envs))
]
)
sample_env = make_env(args, process_seeds[0], test=False)
timestep_limit = sample_env.spec.max_episode_steps
obs_space = sample_env.observation_space
action_space = sample_env.action_space
print("Observation space:", obs_space)
print("Action space:", action_space)
del sample_env
action_size = action_space.low.size
def squashed_diagonal_gaussian_head(x):
assert x.shape[-1] == action_size * 2
mean, log_scale = torch.chunk(x, 2, dim=1)
log_scale = torch.clamp(log_scale, -20.0, 2.0)
var = torch.exp(log_scale * 2)
base_distribution = distributions.Independent(
distributions.Normal(loc=mean, scale=torch.sqrt(var)), 1
)
# cache_size=1 is required for numerical stability
return distributions.transformed_distribution.TransformedDistribution(
base_distribution, [distributions.transforms.TanhTransform(cache_size=1)]
)
policy = nn.Sequential(
nn.Linear(obs_space.low.size, args.n_hidden_channels),
nn.ReLU(),
nn.Linear(args.n_hidden_channels, args.n_hidden_channels),
nn.ReLU(),
nn.Linear(args.n_hidden_channels, action_size * 2),
Lambda(squashed_diagonal_gaussian_head),
)
torch.nn.init.xavier_uniform_(policy[0].weight)
torch.nn.init.xavier_uniform_(policy[2].weight)
torch.nn.init.xavier_uniform_(policy[4].weight)
policy_optimizer = torch.optim.Adam(
policy.parameters(), lr=args.lr, eps=args.adam_eps
)
def make_q_func_with_optimizer():
q_func = nn.Sequential(
pfrl.nn.ConcatObsAndAction(),
nn.Linear(obs_space.low.size + action_size, args.n_hidden_channels),
nn.ReLU(),
nn.Linear(args.n_hidden_channels, args.n_hidden_channels),
nn.ReLU(),
nn.Linear(args.n_hidden_channels, 1),
)
torch.nn.init.xavier_uniform_(q_func[1].weight)
torch.nn.init.xavier_uniform_(q_func[3].weight)
torch.nn.init.xavier_uniform_(q_func[5].weight)
q_func_optimizer = torch.optim.Adam(
q_func.parameters(), lr=args.lr, eps=args.adam_eps
)
return q_func, q_func_optimizer
q_func1, q_func1_optimizer = make_q_func_with_optimizer()
q_func2, q_func2_optimizer = make_q_func_with_optimizer()
rbuf = replay_buffers.ReplayBuffer(10**6, num_steps=args.n_step_return)
def burnin_action_func():
"""Select random actions until model is updated one or more times."""
return np.random.uniform(action_space.low, action_space.high).astype(np.float32)
# Hyperparameters in http://arxiv.org/abs/1802.09477
agent = pfrl.agents.SoftActorCritic(
policy,
q_func1,
q_func2,
policy_optimizer,
q_func1_optimizer,
q_func2_optimizer,
rbuf,
gamma=args.discount,
update_interval=args.update_interval,
replay_start_size=args.replay_start_size,
gpu=args.gpu,
minibatch_size=args.batch_size,
burnin_action_func=burnin_action_func,
entropy_target=-action_size,
temperature_optimizer_lr=args.lr,
)
if len(args.load) > 0:
agent.load(args.load)
if args.demo:
eval_env = make_env(args, seed=0, test=True)
eval_stats = experiments.eval_performance(
env=eval_env,
agent=agent,
n_steps=None,
n_episodes=args.eval_n_runs,
max_episode_len=timestep_limit,
)
print(
"n_runs: {} mean: {} median: {} stdev {}".format(
args.eval_n_runs,
eval_stats["mean"],
eval_stats["median"],
eval_stats["stdev"],
)
)
else:
experiments.train_agent_batch_with_evaluation(
agent=agent,
env=make_batch_env(test=False),
eval_env=make_batch_env(test=True),
outdir=args.outdir,
steps=args.steps,
eval_n_steps=None,
eval_n_episodes=args.eval_n_runs,
eval_interval=args.eval_interval,
log_interval=args.log_interval,
max_episode_len=timestep_limit,
)
if __name__ == "__main__":
main()