forked from redresistor/mick.ai
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmistralstrain.py
81 lines (68 loc) · 2.87 KB
/
mistralstrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import json
import torch
from torch.utils.data import Dataset, DataLoader
from transformers import T5Tokenizer, AutoTokenizer, T5ForConditionalGeneration, TrainingArguments, Trainer, DataCollatorForSeq2Seq
import pandas as pd
class StoryDataset(Dataset):
def __init__(self, filepath, tokenizer):
self.tokenizer = tokenizer
with open(filepath, 'r', encoding='utf-8') as f:
data = json.load(f)
self.data = data
df = pd.DataFrame(data, index=[10 * i for i in range(len(self.data))])
labels = df.columns
self.labels = labels
def __getitem__(self, idx):
input_text = self.data[idx]['input']
output_text = self.data[idx]['target']
encoding = self.tokenizer.encode_plus(
input_text, add_special_tokens=True, max_length=1024, padding='max_length', truncation=True, return_attention_mask=True, return_tensors='pt'
)
item = {
'input_ids': encoding['input_ids'].flatten(),
'attention_mask': encoding['attention_mask'].flatten()
}
if self.labels is not None: # Assuming you have labels in your dataset
label_ids = self.tokenizer.encode(output_text, add_special_tokens=False, padding='max_length', truncation=True)
item['labels'] = torch.tensor(label_ids)
return item
def __len__(self):
return len(self.data)
# Set up tokenizer and model
tokenizer = T5Tokenizer.from_pretrained("t5-base")
model = T5ForConditionalGeneration.from_pretrained("t5-base")
#train_dataset = StoryDataset('data/syntdatatrain.json', tokenizer)
#val_dataset = StoryDataset('data/syntdataval.json', tokenizer)
#test_dataset = StoryDataset('data/syndatatest.json', tokenizer)
# Prepare training data
dataset = StoryDataset("data/syntdatatrain.json", tokenizer)
train_dataloader = DataLoader(dataset, batch_size=4, num_workers=0)
eval_dataset = StoryDataset("data/syntdataval.json", tokenizer)
#eval_dataloader
# Set up training arguments and trainer
training_args = TrainingArguments(
output_dir='output',
num_train_epochs=3,
per_device_train_batch_size=2,
evaluation_strategy="epoch",
logging_dir="logs",
dataloader_num_workers=1,
)
#def data_collator(batch):
# #inputs = [ex['inputs'] for ex in batch]
# input_ids = [ex['input_ids'] for ex in batch]
# decoder_input_ids = [ex['decoder_input_ids'] for ex in batch]
# return {'input_ids': torch.stack(input_ids), 'decoder_input_ids': torch.stack(decoder_input_ids)}
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model, padding=True, return_tensors='pt')
trainer = Trainer(
model=model,
args=training_args,
train_dataset=dataset,
eval_dataset=eval_dataset,
data_collator=data_collator
)
# ...
#loss = trainer.compute_loss(model, (batch['input_ids'], batch['decoder_input_ids']))
# Train the model
if __name__ == '__main__':
trainer.train()