-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathelliptic.py
156 lines (103 loc) · 3.28 KB
/
elliptic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
from fractions import Fraction as frac
class EllipticCurve(object):
def __init__(self, a, b):
# assume we're already in the Weierstrass form
self.a = a
self.b = b
self.discriminant = -16 * (4 * a*a*a + 27 * b * b)
if not self.isSmooth():
raise Exception("The curve %s is not smooth!" % self)
def isSmooth(self):
return self.discriminant != 0
def testPoint(self, x, y):
return y*y == x*x*x + self.a * x + self.b
def __str__(self):
return 'y^2 = x^3 + %sx + %s' % (self.a, self.b)
def __repr__(self):
return str(self)
def __eq__(self, other):
return (self.a, self.b) == (other.a, other.b)
def from_x(self, x):
n = x*x*x + self.a * x + self.b
y = n**(1./2) if n>=0 else -((-n)**(1./2))
return Point(self, x, frac(y))
class Point(object):
def __init__(self, curve, x, y):
self.curve = curve # the curve containing this point
self.x = x
self.y = y
#if not curve.testPoint(x,y):
#raise Exception("The point %s is not on the given curve %s!" % (self, curve))
def __str__(self):
return "(%r, %r)" % (self.x, self.y)
def __repr__(self):
return str(self)
def __neg__(self):
return Point(self.curve, self.x, -self.y)
def __add__(self, Q):
if self.curve != Q.curve:
raise Exception("Can't add points on different curves!")
if isinstance(Q, Ideal):
return self
x_1, y_1, x_2, y_2 = self.x, self.y, Q.x, Q.y
if (x_1, y_1) == (x_2, y_2):
if y_1 == 0:
return Ideal(self.curve)
# slope of the tangent line
m = (3 * x_1 * x_1 + self.curve.a) / (2 * y_1)
else:
if x_1 == x_2:
return Ideal(self.curve)
# slope of the secant line
m = (y_2 - y_1) / (x_2 - x_1)
x_3 = m*m - x_2 - x_1
y_3 = m*(x_3 - x_1) + y_1
return Point(self.curve, x_3, -y_3)
def __sub__(self, Q):
return self + -Q
def __mul__(self, n):
if not isinstance(n, int):
raise Exception("Can't scale a point by something which isn't an int!")
if n < 0:
return -self * -n
if n == 0:
return Ideal(self.curve)
Q = self
R = self if n & 1 == 1 else Ideal(self.curve)
i = 2
while i <= n:
Q += Q
if n & i == i:
R += Q
i = i << 1
return R
def __rmul__(self, n):
return self * n
def __list__(self):
return [self.x, self.y]
def __eq__(self, other):
if type(other) is Ideal:
return False
return self.x, self.y == other.x, other.y
def __ne__(self, other):
return not self == other
def __getitem__(self, index):
return [self.x, self.y][index]
class Ideal(Point):
def __init__(self, curve):
self.curve = curve
def __neg__(self):
return self
def __str__(self):
return "Ideal"
def __add__(self, Q):
if self.curve != Q.curve:
raise Exception("Can't add points on different curves!")
return Q
def __mul__(self, n):
if not isinstance(n, int):
raise Exception("Can't scale a point by something which isn't an int!")
else:
return self
def __eq__(self, other):
return type(other) is Ideal