title | summary |
---|---|
Bookshop Example Application |
Bookshop is an online bookstore app for buying and rating books. You can import table structures and data via TiUP or TiDB Cloud. Method 1 uses TiUP to quickly generate and import sample data, while Method 2 imports data from Amazon S3 to TiDB Cloud. The database tables include books, authors, users, ratings, book_authors, and orders. The database initialization script `dbinit.sql` creates the table structures for the Bookshop application. |
Bookshop is a virtual online bookstore application through which you can buy books of various categories and rate the books you have read.
To make your reading on the application developer guide more smoothly, we present the example SQL statements based on the table structures and data of the Bookshop application. This document focuses on the methods of importing the table structures and data as well as the definitions of the table structures.
You can import Bookshop table structures and data either via TiUP or via the import feature of TiDB Cloud.
For TiDB Cloud, you can skip Method 1: Via tiup demo
and import Bookshop table structures via the import feature of TiDB Cloud.
If your TiDB cluster is deployed using TiUP or you can connect to your TiDB server, you can quickly generate and import sample data for the Bookshop application by running the following command:
If your TiDB cluster is deployed using TiUP or you can connect to your TiDB server, you can quickly generate and import sample data for the Bookshop application by running the following command:
tiup demo bookshop prepare
By default, this command enables your application to connect to port 4000
on address 127.0.0.1
, enables you to log in as the root
user without a password, and creates a table structure in the database named bookshop
.
The following table lists the connection parameters. You can change their default settings to match your environment.
Parameter | Abbreviation | Default value | Description |
---|---|---|---|
--password |
-p |
None | Database user password |
--host |
-H |
127.0.0.1 |
Database address |
--port |
-P |
4000 |
Database port |
--db |
-D |
bookshop |
Database name |
--user |
-U |
root |
Database user |
For example, if you want to connect to a database on TiDB Cloud, you can specify the connection information as follows:
tiup demo bookshop prepare -U <username> -H <endpoint> -P 4000 -p <password>
You can specify the volume of data to be generated in each database table by configuring the following parameters:
Parameter | Default value | Description |
---|---|---|
--users |
10000 |
The number of rows of data to be generated in the users table |
--authors |
20000 |
The number of rows to be generated in the authors table |
--books |
20000 |
The number of rows of data to be generated in the books table |
--orders |
300000 |
The number of rows of data to be generated in the orders table |
--ratings |
300000 |
The number of rows of data to be generated in the ratings table |
For example, the following command is executed to generate:
- 200,000 rows of user information via the
--users
parameter - 500,000 rows of book information via the
--books
parameter - 100,000 rows of author information via the
--authors
parameter - 1,000,000 rows of rating records via the
--ratings
parameter - 1,000,000 rows of order records via the
--orders
parameter
tiup demo bookshop prepare --users=200000 --books=500000 --authors=100000 --ratings=1000000 --orders=1000000 --drop-tables
You can delete the original table structure through the --drop-tables
parameter. For more parameter descriptions, run the tiup demo bookshop --help
command.
-
Open the Import page for your target cluster.
-
Log in to the TiDB Cloud console and navigate to the Clusters page of your project.
Tip:
If you have multiple projects, you can click in the lower-left corner and switch to another project.
-
Click the name of your target cluster to go to its overview page, and then click Import in the left navigation pane.
-
-
Select Import data from S3.
If this is your first time using TiDB Cloud Import, select Import From Amazon S3.
-
On the Import Data from Amazon S3 page, configure the following source data information:
- Import File Count: select Multiple files.
- Included Schema Files: select Yes.
- Data Format: select SQL.
- Folder URI: enter
s3://developer.pingcap.com/bookshop/
. - Bucket Access: select AWS Role ARN.
- Role ARN: enter
arn:aws:iam::494090988690:role/s3-tidb-cloud-developer-access
.
In this example, the following data is generated in advance:
- 200,000 rows of user information
- 500,000 rows of book information
- 100,000 rows of author information
- 1,000,000 rows of rating records
- 1,000,000 rows of order records
-
Click Connect > Start Import to start the import process and wait for TiDB Cloud to complete the import.
For more information about how to import or migrate data to TiDB Cloud, see TiDB Cloud Migration Overview.
After the import is completed, you can view the data volume information of each table by executing the following SQL statement:
SELECT
CONCAT(table_schema,'.',table_name) AS 'Table Name',
table_rows AS 'Number of Rows',
CONCAT(ROUND(data_length/(1024*1024*1024),4),'G') AS 'Data Size',
CONCAT(ROUND(index_length/(1024*1024*1024),4),'G') AS 'Index Size',
CONCAT(ROUND((data_length+index_length)/(1024*1024*1024),4),'G') AS 'Total'
FROM
information_schema.TABLES
WHERE table_schema LIKE 'bookshop';
The result is as follows:
+-----------------------+----------------+-----------+------------+---------+
| Table Name | Number of Rows | Data Size | Index Size | Total |
+-----------------------+----------------+-----------+------------+---------+
| bookshop.orders | 1000000 | 0.0373G | 0.0075G | 0.0447G |
| bookshop.book_authors | 1000000 | 0.0149G | 0.0149G | 0.0298G |
| bookshop.ratings | 4000000 | 0.1192G | 0.1192G | 0.2384G |
| bookshop.authors | 100000 | 0.0043G | 0.0000G | 0.0043G |
| bookshop.users | 195348 | 0.0048G | 0.0021G | 0.0069G |
| bookshop.books | 1000000 | 0.0546G | 0.0000G | 0.0546G |
+-----------------------+----------------+-----------+------------+---------+
6 rows in set (0.03 sec)
This section describes the database tables of the Bookshop application in detail.
This table stores the basic information of books.
Field name | Type | Description |
---|---|---|
id | bigint | Unique ID of a book |
title | varchar(100) | Title of a book |
type | enum | Type of a book (for example, magazine, animation, or teaching aids) |
stock | bigint | Stock |
price | decimal(15,2) | Price |
published_at | datetime | Date of publish |
This table stores basic information of authors.
Field name | Type | Description |
---|---|---|
id | bigint | Unique ID of an author |
name | varchar(100) | Name of an author |
gender | tinyint | Biological gender (0: female, 1: male, NULL: unknown) |
birth_year | smallint | Year of birth |
death_year | smallint | Year of death |
This table stores information of Bookshop users.
Field name | Type | Description |
---|---|---|
id | bigint | Unique ID of a user |
balance | decimal(15,2) | Balance |
nickname | varchar(100) | Nickname |
This table stores records of user ratings on books.
Field name | Type | Description |
---|---|---|
book_id | bigint | Unique ID of a book (linked to books) |
user_id | bigint | User's unique identifier (linked to users) |
score | tinyint | User rating (1-5) |
rated_at | datetime | Rating time |
An author may write multiple books, and a book may involve more than one author. This table stores the correspondence between books and authors.
Field name | Type | Description |
---|---|---|
book_id | bigint | Unique ID of a book (linked to books) |
author_id | bigint | Unique ID of an author(Link to authors) |
This table stores user purchase information.
Field name | Type | Description |
---|---|---|
id | bigint | Unique ID of an order |
book_id | bigint | Unique ID of a book (linked to books) |
user_id | bigint | User unique identifier (associated with users) |
quantity | tinyint | Purchase quantity |
ordered_at | datetime | Purchase time |
If you want to manually create database table structures in the Bookshop application, run the following SQL statements:
CREATE DATABASE IF NOT EXISTS `bookshop`;
DROP TABLE IF EXISTS `bookshop`.`books`;
CREATE TABLE `bookshop`.`books` (
`id` bigint AUTO_RANDOM NOT NULL,
`title` varchar(100) NOT NULL,
`type` enum('Magazine', 'Novel', 'Life', 'Arts', 'Comics', 'Education & Reference', 'Humanities & Social Sciences', 'Science & Technology', 'Kids', 'Sports') NOT NULL,
`published_at` datetime NOT NULL,
`stock` int DEFAULT '0',
`price` decimal(15,2) DEFAULT '0.0',
PRIMARY KEY (`id`) CLUSTERED
) DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_bin;
DROP TABLE IF EXISTS `bookshop`.`authors`;
CREATE TABLE `bookshop`.`authors` (
`id` bigint AUTO_RANDOM NOT NULL,
`name` varchar(100) NOT NULL,
`gender` tinyint DEFAULT NULL,
`birth_year` smallint DEFAULT NULL,
`death_year` smallint DEFAULT NULL,
PRIMARY KEY (`id`) CLUSTERED
) DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_bin;
DROP TABLE IF EXISTS `bookshop`.`book_authors`;
CREATE TABLE `bookshop`.`book_authors` (
`book_id` bigint NOT NULL,
`author_id` bigint NOT NULL,
PRIMARY KEY (`book_id`,`author_id`) CLUSTERED
) DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_bin;
DROP TABLE IF EXISTS `bookshop`.`ratings`;
CREATE TABLE `bookshop`.`ratings` (
`book_id` bigint NOT NULL,
`user_id` bigint NOT NULL,
`score` tinyint NOT NULL,
`rated_at` datetime NOT NULL DEFAULT NOW() ON UPDATE NOW(),
PRIMARY KEY (`book_id`,`user_id`) CLUSTERED,
UNIQUE KEY `uniq_book_user_idx` (`book_id`,`user_id`)
) DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_bin;
ALTER TABLE `bookshop`.`ratings` SET TIFLASH REPLICA 1;
DROP TABLE IF EXISTS `bookshop`.`users`;
CREATE TABLE `bookshop`.`users` (
`id` bigint AUTO_RANDOM NOT NULL,
`balance` decimal(15,2) DEFAULT '0.0',
`nickname` varchar(100) UNIQUE NOT NULL,
PRIMARY KEY (`id`)
) DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_bin;
DROP TABLE IF EXISTS `bookshop`.`orders`;
CREATE TABLE `bookshop`.`orders` (
`id` bigint AUTO_RANDOM NOT NULL,
`book_id` bigint NOT NULL,
`user_id` bigint NOT NULL,
`quality` tinyint NOT NULL,
`ordered_at` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
PRIMARY KEY (`id`) CLUSTERED,
KEY `orders_book_id_idx` (`book_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_bin
Ask the community on Discord or Slack, or submit a support ticket.
Ask the community on Discord or Slack, or submit a support ticket.