-
Notifications
You must be signed in to change notification settings - Fork 0
/
pints.json
476 lines (475 loc) · 22.1 KB
/
pints.json
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
{
"name": "PINTS",
"label": "overall",
"children": [
{
"name": "optimisation",
"children": [
{"name": "gradient-free",
"children":
[
{"name": "particle based methods",
"children":
[
{"name": "evolution strategies",
"children":
[
{"name": "Covariance Matrix Adaptation Evolution Strategy (CMAES)"},
{"name": "Separable Natural Evolution Strategy (SNES)"},
{"name": "Exponential Natural Evolution Strategy (XNES)"},
{"name": "differential evolution"}
]
},
{"name": "Particle Swarm Optimisation (PSO)"}
]
},
{"name": "Nelder-Mead"},
{"name": "simulated annealing"},
{"name": "random search"}
]
},
{"name": "use gradients",
"children":
[
{"name": "1st order only",
"children":
[
{"name": "stochastic gradient descent"},
{"name": "AdaGrad"},
{"name": "Adaptive Moment Estimation (Adam)"},
{"name": "RMSProp"}
]
},
{"name": "1st & 2nd order",
"children":
[
{"name": "stochastic gradient descent"},
{"name": "conjugate gradients"},
{"name": "Newton's method"}
]
}
]
}
]
},
{
"name": "sampling",
"note": "approximates posterior by sampling from it",
"label": "category",
"children": [
{
"name": "Approximate Bayesian Computation (ABC)",
"note": "approximates posterior by reject sampling from the joint parameter-data distribution",
"label": "category",
"children": [
{
"name": "Approximate simulation",
"note": "involves approximate simulation of model",
"label": "category",
"children": [
{
"name": "Lazy ABC",
"note": "cheap approximate model simulated first then, if it passes, the same sample is used for the full model",
"status": "undecided"
}
]
},
{
"name": "exact simulation",
"note": "requires only exact simulation from model",
"label": "category",
"children": [
{
"name": "ABC Markov chain Monte Carlo",
"note": "uses dependent samplers to generate proposals",
"status": "planned",
"url": "https://www.sciencedirect.com/science/article/abs/pii/S0169534710000662"
},
{
"name": "ABC Regression Adjustment",
"note": "uses the gradient in summary statistic to generate samples",
"status": "planned",
"url": "https://www.sciencedirect.com/science/article/abs/pii/S0169534710000662"
},
{
"name": "ABC Rejection",
"note": "reject samples from joint parameter-data distribution and accepts parameter if criteria are met",
"status": "planned",
"url": "https://www.genetics.org/content/162/4/2025.short"
},
{
"name": "ABC Sequential Monte Carlo",
"note": "uses importance sampling to generate proposals",
"status": "planned",
"url": ""
},
{
"name": "Saddle point ABC",
"note": "uses saddle point optimisation to overcome issues with regression and sampling ABC",
"status": "undecided",
"url": "https://papers.nips.cc/paper/8228-predictive-approximate-bayesian-computation-via-saddle-points.pdf"
},
{
"name": "Hamiltonian ABC",
"note": "approximates ABC gradient using forward simulations",
"status": "planned",
"url": "https://arxiv.org/pdf/1503.01916.pdf"
}
]
}
]
},
{
"name": "exact (asymptotically)",
"note": "approximates posterior exactly in infinite limit",
"label": "category",
"children": [
{
"name": "Markov chain Monte Carlo (MCMC)",
"note": "uses a dependent sampler (a Markov chain) to sample from posterior",
"label": "category",
"children": [
{
"name": "gradient-free",
"note": "only requires (unnormalised) posterior evaluations",
"label": "category",
"children": [
{
"name": "multiple chain",
"note": "requires multiple Markov chains",
"label": "category",
"children": [
{
"name": "differential evolution",
"note": "creates proposals by combining current values of a number of Markov chains",
"label": "category",
"children": [
{
"name": "(vanilla) differential evolution",
"note": "combines the current value of two randomly-chosen Markov chains to form a proposal",
"status": "done",
"url" : "https://link.springer.com/article/10.1007/s11222-006-8769-1"
},
{
"name": "emcee hammer",
"note": "affine-invariant ensemble sampler that combines two randomly-chosen Markov chains to form a proposal",
"status": "done",
"url": "https://arxiv.org/abs/1202.3665"
},
{
"name": "DiffeRential Evolution Adaptive Metropolis (DREAM)",
"note": "combines current value of many Markov chains to form a proposal",
"status": "done",
"url": "https://www.degruyter.com/view/j/ijnsns.2009.10.3/ijnsns.2009.10.3.273/ijnsns.2009.10.3.273.xml"
}
]
},
{
"name": "Population MCMC",
"note": "ensemble of Markov chains - each at different temperatures - used to sample from posterior",
"status": "done",
"url": "https://link.springer.com/article/10.1007/s11222-007-9028-9"
}
]
},
{
"name": "single chain",
"note": "works with a single Markov chain",
"label": "category",
"children":[
{
"name": "adaptive",
"note": "adapt sampling hyperparameters as it runs",
"label": "category",
"children": [
{
"name": "Adaptive parallel tempering",
"note": "adapts temperature of chains as sampler runs",
"status": "undecided",
"url": "https://arxiv.org/pdf/1205.1076.pdf"
},
{
"name": "Delayed Rejection Adaptive Metropolis",
"note": "combines delayed rejection (using multiple proposal kernels) with adaptive covariance",
"status": "done",
"url": "https://link.springer.com/article/10.1007/s11222-006-9438-0"
},
{
"name": "Generalised elliptical slice sampling",
"note": "exploits parallel chains to construct scale-location Gaussian mixture approximation of posterior to use in elliptical slice sampling",
"status": "planned",
"url": "https://arxiv.org/abs/1210.7477"
},
{
"name": "Mode jumping adaptive MCMC",
"note": "finds modes via (for example) optimisation then implements an MCMC routine that jumps between them",
"status": "planned",
"url": "https://pdfs.semanticscholar.org/c75d/f035c23e3c0425409e70d457cd43b174076f.pdf"
},
{
"name": "Remi",
"note": "adapts covariance matrix according to previously accepted steps",
"status": "done",
"url": "http://dx.doi.org/10.1016/j.yjmcc.2015.11.018"
},
{
"name": "Slice sampling with overrelaxation",
"note": "univariate method that proposes values on the opposite side of a mode from current state",
"status": "done",
"url": "https://projecteuclid.org/euclid.aos/1056562461"
},
{
"name": "Transport map accelerated Markov chain Monte Carlo",
"note": "uses optimal transport theory to construct a reference space which can be more easily sampled than target space. Can we used to boost any MCMC algorithm",
"status": "planned",
"url": "https://arxiv.org/pdf/1412.5492.pdf"
},
{
"name": "Vine copula adaptive MCMC",
"note": "fits vine copula to samples and uses this to propose samples",
"url": "https://projecteuclid.org/download/pdfview_1/euclid.ba/1362406647",
"status": "planned"
}
]
},
{
"name": "non-adaptive",
"note": "do not adapt sampling hyperparameters",
"label": "category",
"children": [
{
"name": "Random Walk Metropolis",
"note": "oldest MCMC sampler out there",
"status": "done",
"url": "https://aip.scitation.org/doi/abs/10.1063/1.1699114"
},
{
"name": "Slice sampling with doubling",
"note": "univariate method that proposes by rejection sampling within slices estimated by doubling intervals",
"status": "done",
"url": "https://projecteuclid.org/euclid.aos/1056562461"
},
{
"name": "Slice sampling with stepout",
"note": "univariate method that proposes by rejection sampling within slices estimated by expanding intervals incrementally",
"status": "done",
"url": "https://projecteuclid.org/euclid.aos/1056562461"
},
{
"name": "Slice sampling with hyperrectangles",
"note": "multivariate method that proposes by rejection sampling within slices defined by hyperrectangles",
"status": "planned",
"url": "https://projecteuclid.org/euclid.aos/1056562461"
},
{
"name": "Slice sampling with Peano curves",
"note": "Skilling and MacKay's idea to represent multidimensional variables to a single integer via a space-filling curve, such as a Peano",
"status": "planned",
"url": "https://projecteuclid.org/download/pdf_1/euclid.aos/1056562461"
}
]
}
]
}
]
},
{
"name": "use gradients",
"note": "require derivatives of (unnormalised) posterior",
"label": "category",
"children": [
{
"name": "1st order sensitivities",
"note": "requires 1st order derivative of (unnormalised) posterior",
"label": "category",
"children": [
{
"name": "Adaptive Hamiltonian Monte Carlo",
"note": "uses expected squared jumping distance and Bayesian optimisation to adapt HMC steps",
"status": "planned",
"url": "http://proceedings.mlr.press/v28/wang13e.pdf"
},
{
"name": "Adaptive Metropolis Adjusted Langevin Algorithm (MALA)",
"note": "extends ideas from adaptive covariance Metropolis to make MALA adaptive",
"status": "planned",
"url": "https://link.springer.com/article/10.1007%2Fs11009-006-8550-0"
},
{
"name": "Bouncy particle sampler",
"note": "Markov chain 'bounces' off contours to avoid rejection",
"status": "planned",
"url": "https://arxiv.org/pdf/1510.02451.pdf"
},
{
"name": "Hamiltonian Monte Carlo (HMC)",
"note": "follows Hamiltonian dynamics of particles on negative log posterior space to generate proposals",
"status": "done",
"url": "https://arxiv.org/pdf/1206.1901.pdf"
},
{
"name": "Metropolis Adjusted Langevin Algorithm (MALA)",
"note": "solves a diffusion equation of a particle so that its stationary distribution is the posterior",
"status": "done",
"url": "https://rss.onlinelibrary.wiley.com/doi/full/10.1111/j.1467-9868.2010.00765.x"
},
{
"name": "Monomial Gamma Hamiltonian Monte Carlo (MG HMC)",
"note": "uses generalised kinetic energies and momentum distribution opposed to standard HMC (in doing so, unifies HMC and slice sampling)",
"status": "planned",
"url": "https://papers.nips.cc/paper/6147-towards-unifying-hamiltonian-monte-carlo-and-slice-sampling.pdf"
},
{
"name": "No U-Turn Sampler (NUTS)",
"note": "a dynamic version of HMC which avoids ``U-turns'' in parameter space",
"status": "planned",
"url": "https://arxiv.org/abs/1111.4246"
},
{
"name": "Slice sampling with adaptive hyperrectangles",
"note": "proposes values by adaptively shrinking hyperrectangles after each rejection",
"status": "planned",
"url": "https://arxiv.org/abs/1003.3201"
},
{
"name": "Slice sampling with covariance matching",
"note": "matches conditional variance of proposal distribution to uniform distribution over a section of slice",
"status": "planned",
"url": "https://arxiv.org/abs/1003.3201"
},
{
"name": "Slice sampling with rank shrinking",
"note": " shrinks rank of proposal distribution to draw next proposal from a more convenient subspace",
"status": "planned",
"url": "https://arxiv.org/abs/1003.3201"
},
{
"name": "Shadow Hamiltonian Monte Carlo",
"note": "considers a shadow Hamiltonian (of integrator) and uses this to propose momenta resulting in higher acceptance rates. See the following for shadow Hamiltonian construction: https://epubs.siam.org/doi/abs/10.1137/S106482750138318X",
"status": "planned",
"url": "https://arxiv.org/pdf/1705.02891v1.pdf"
}
]
},
{
"name": "2nd order sensitivities",
"note": "requires 2nd order derivative of (unnormalised) posterior",
"label": "category",
"children": [
{
"name": "Riemannian Manifold Hamiltonian Monte Carlo (RMHMC)",
"note": "uses the curvature of posterior to determine speed of particle moving over negative log posterior space",
"status": "planned",
"url": "https://rss.onlinelibrary.wiley.com/doi/full/10.1111/j.1467-9868.2010.00765.x"
},
{
"name": "Riemannian Manifold Langevin",
"note": "uses curvature of posterior to determine a natural gradient that guides proposals",
"status": "planned",
"url": "https://rss.onlinelibrary.wiley.com/doi/full/10.1111/j.1467-9868.2010.00765.x"
}
]
}
]
}
]
},
{
"name": "nested sampling",
"note": "generates posterior samples from regions of parameter space in proportion to their probability mass",
"label": "category",
"children": [
{
"name": "gradient-free",
"note": "only requires (unnormalised) posterior evaluations",
"label": "category",
"children": [
{
"name": "Rejection nested sampler",
"note": "generates proosals by rejection sampling the prior subject to a likelihood threshold",
"status": "done",
"url": "https://projecteuclid.org/euclid.ba/1340370944"
},
{
"name": "Ellipsoidal nested sampler",
"note": "fits an ellipse to active particles then generates proposals by uniformly sampling ellipses",
"status": "done",
"url": "https://iopscience.iop.org/article/10.1086/501068"
},
{
"name": "MCMC nested sampler",
"note": "uses MH accept-reject to sample from constrained prior region",
"status": "planned",
"url": "https://arxiv.org/pdf/0704.3704.pdf"
},
{
"name": "MultiNest",
"note": "adaptively fits a number of ellipses to active particles then uniformly samples them for proposals",
"status": "planned",
"url": "https://arxiv.org/abs/0809.3437"
},
{
"name": "MultiNest using importance sampling",
"note": "uses importance sampling to improve evidence estimates from MultiNest",
"status": "planned",
"url": "https://arxiv.org/pdf/1306.2144.pdf"
},
{
"name": "PolyChord",
"note": "uses slice sampling to generate proposals from prior",
"status": "planned",
"url": "https://arxiv.org/abs/1506.00171"
},
{
"name": "Diffusive nested sampling",
"note": "uses MCMC to explore constrained prior distributions",
"status": "planned",
"url": "https://arxiv.org/pdf/0912.2380"
},
{
"name": "Dynamic nested sampling",
"note": "number of active points varies to allocate samples more efficiently",
"status": "planned",
"url": "https://arxiv.org/abs/1704.03459"
},
{
"name": "DyPolyChord",
"note": "version of PolyChord where number of active points varies",
"status": "planned",
"url": "https://arxiv.org/abs/1704.03459"
}
]
},
{
"name": "use gradients",
"note": "require derivatives of likelihood",
"label": "category",
"children": [
{
"name": "Constrained Hamiltonian Monte Carlo",
"note": "uses HMC to sample from within constrained likelihood regions of prior",
"status": "planned",
"url": "https://arxiv.org/pdf/1005.0157.pdf"
},
{
"name": "Galilean Monte Carlo",
"note": "uses gradient of likelihood at edges of constrained prior region to guide proposals",
"status": "planned",
"url": "https://arxiv.org/abs/1312.5638"
}
]
}
]
},
{
"name": "Sequential Monte Carlo",
"note": "uses a series of tempered distributions to propose efficient samples from posterior",
"status": "done",
"url": "https://link.springer.com/article/10.1007/s11222-007-9028-9"
}
]
}
]
}
]
}