diff --git a/docs/source/index.rst b/docs/source/index.rst index 38d9e9e23b..ec0da09932 100644 --- a/docs/source/index.rst +++ b/docs/source/index.rst @@ -88,6 +88,8 @@ Sampling on any :class:`LogPDF` that provides 1st order sensitivities. - :class:`Hamiltonian Monte Carlo`, works on any :class:`LogPDF` that provides 1st order sensitivities. + - :class:`Neal Langenvin Monte Carlo`, works on any + :class:`LogPDF` that provides 1st order sensitivities. - NUTS #. Differential geometric methods (Need Hessian of :class:`LogPDF`) diff --git a/docs/source/mcmc_samplers/index.rst b/docs/source/mcmc_samplers/index.rst index 09b89bba82..e46f0b032f 100644 --- a/docs/source/mcmc_samplers/index.rst +++ b/docs/source/mcmc_samplers/index.rst @@ -25,6 +25,7 @@ interface, that can be used to sample from an unknown mala_mcmc metropolis_mcmc monomial_gamma_hamiltonian_mcmc + neal_langevin_mcmc nuts_mcmc population_mcmc rao_blackwell_ac_mcmc diff --git a/docs/source/mcmc_samplers/neal_langevin_mcmc.rst b/docs/source/mcmc_samplers/neal_langevin_mcmc.rst new file mode 100644 index 0000000000..5884b02eec --- /dev/null +++ b/docs/source/mcmc_samplers/neal_langevin_mcmc.rst @@ -0,0 +1,8 @@ +******************* +Neal Langenvin MCMC +******************* + +.. currentmodule:: pints + +.. autoclass:: NealLangevinMCMC + diff --git a/examples/README.md b/examples/README.md index db8dcdd7e8..cab41eb695 100644 --- a/examples/README.md +++ b/examples/README.md @@ -60,6 +60,7 @@ relevant code. - [Haario Adaptive Covariance MCMC](./sampling/adaptive-covariance-haario.ipynb) - [Haario-Bardenet Adaptive Covariance MCMC](./sampling/adaptive-covariance-haario-bardenet.ipynb) - [Metropolis Random Walk MCMC](./sampling/metropolis-mcmc.ipynb) +- [Neal Langevin MCMC](./sampling/neal-langevin-mcmc.ipynb) - [Population MCMC](./sampling/population-mcmc.ipynb) - [Rao-Blackwell Adaptive Covariance MCMC](./sampling/adaptive-covariance-rao-blackwell.ipynb) - [Slice Sampling: Doubling MCMC](./sampling/slice-doubling-mcmc.ipynb) diff --git a/examples/sampling/neal-langevin-mcmc.ipynb b/examples/sampling/neal-langevin-mcmc.ipynb new file mode 100644 index 0000000000..7da66133bc --- /dev/null +++ b/examples/sampling/neal-langevin-mcmc.ipynb @@ -0,0 +1,617 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Inference: Neal Langevin MCMC\n", + "\n", + "This example shows you how to perform Bayesian inference on a Gaussian distribution using [Neal Langevin MCMC](http://pints.readthedocs.io/en/latest/mcmc_samplers/hamiltonian_mcmc.html).\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "First, we create a simple normal distribution" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAEKCAYAAADzQPVvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOyddXxcVfr/3zcyk8zE07hbkyb1pJq6O5QiS4EFulCky2JfXIrsAgvsIssW7eJQChTqpS6ppU3bNG3c3X2SjN7fH2n5LWz1zkz0vl8vXiu59zmHmTufc+5zHhFEUURGRkZGpm9j090TkJGRkZGxPrLYy8jIyPQDZLGXkZGR6QfIYi8jIyPTD5DFXkZGRqYfIIu9jIyMTD/AqmIvCMLDgiCcFQThjCAI3wqC4GDN8WRkZGRkLozVxF4QhADgL0CCKIqDAVvgD9YaT0ZGRkbm4ljbjWMHOAqCYAeogHIrjycjIyMjcwHsrGVYFMUyQRDeBIqBdmC7KIrbf3+dIAjLgeUAarU6PiYmxlpTkpGRkelzpKSk1Iqi6HW56wRrlUsQBMEd+BG4CWgEvgd+EEXxq4vdk5CQIB4/ftwq85GRkZHpiwiCkCKKYsLlrrOmG2cGUCCKYo0oinpgHTDeiuPJyMjIyFwEa4p9MTBWEASVIAgCMB3IsOJ4MjIyMjIXwWpiL4riUeAH4ASQdm6sj6w1noyMjIzMxbHaAS2AKIorgZXWHENGRkZG5vLIGbQyMjIy/QBZ7GVkZGT6AbLYy8jIyPQDZLGXkZGR6QfIYi8jIyPTD5DFXkZGRqYfIIu9jIyMTD9AFnsZGRmZfoAs9jIyMjL9AFnsZWRkZPoBstjLyMjI9ANksZeRkZHpB1i1EJqMTG9Ap9XTptGi0Whpa9Wi7dCj1xvR6wwYjabfXGtnZ4udvS329rYoHexROzmgclKiUitRKOSfk0zPRX46ZfosoijSUNdKRVkDlWUN1FY1U1vTTE1lM/W1LTQ1ttHUoKG9TWeR8VRqJa5uKlzd1Xh6OTPA2wVPb2e8fFzxC3THL8AdV3c1ne0dZGS6FlnsZXo9oihSV9NCbmYFhblVFBfUUJRfQ0lhLdoO/W+udXJ2wNPbBc8BzgQEe+Lq3inOaiclKrUDKpUCpaMChcIWe3s7bO1+6+k0GIzodUb0eiPadh1tbTraNB20tnTQ1NC5eDTUaygpquXUsQI0rR2/ud9RpSAodADBYV4Eh3sRFulDZIwfHgOcrf45yfRvZLGX6XVoWjrIPFtGxukSMs+UkpNRTmO95te/e/m4EhzuxeARIfgHeeAX4I5vgDvevq44OCq6dK7tbVqqK5uoLGukorSe8pJ6Sgo7F4Kdm1N/vc5jgDNRg/yIGRJI7JAgBsYFoFIru3SuMn0bWexlejwtze2kpRSSmlLI6ZRCCnKqEEURQRAIDvdiVGIUUTF+RMb4ExrpjdrJobun/CuOKiUh4d6EhHv/z980LR3k51aRm1FObmYF2enlHD2QDYCNjUBEtB9D40MZGh/KkBEhqJ17zr+XTO9DEEWxu+fwKwkJCeLx48e7exoy3YwoiuRlVZJ8MJtjB3PITCvFZBJRKO2IHRbMkBEhDBoaRExcQJ8TwJbmdrLOlJF+upi0E0VkpJWi1xmwsbUhblgQoxKjGJUYRVikj+z7lwFAEIQUURQTLnudtcReEIRo4Lv/+r/CgedFUXz7YvfIYt9/MeiNnD5RyKG9mRzel0ltVTMAA2P9SRgfxcixEUTHBfS7iBedVk9GWiknjuZx7GAOeVmVAPj4uzFucgzjp8QweHgwtna23TxTme6i28X+d5OxBcqAMaIoFl3sOlns+xcmk4n01BL2bEtj/46zNDe1oVTaEz8ugrGTYxidGIW7p1N3T7NHUVvdTHJSNof3ZXEyOR+9zoC7pxOTZ8Yxdc5QogcHyDv+fkZPE/tZwEpRFBMvdZ0s9v2DyrIGtm88yc5NqVRVNKJU2jNuSjSTZw1h5JjwLj9E7a20t2k5fiiXvdvPcPRANnqdAb9AD2YtGs6M+cPx9nXt7inKdAE9Tez/A5wQRfG9S10ni33fxaA3cnBPBlvWHefUsQIEQWDE6HCmzx/G+CkxcuSJmWhaOkjak8GuzamkHu/8fEeOCWf+klGMnTRQdvP0YXqM2AuCoADKgThRFKsu8PflwHKA4ODg+KKii3p5ZHohdTUtbP3pOJt/TKG+tgXfAHdmLxrBjPnD8PZz6+7p9UkqSuvZsekU2zecoqaqCS8fV+Zfn8DcxfG4uau7e3oyFqYnif01wApRFGdd7lp5Z993KC6o4ccvD7FrSyp6vZGE8ZFcc9MYEsZHYmMjl2TqCowGI0cPZLN+bTKnkvNRKO2YtXAES24dj3+QR3dPT8ZC9CSxXwP8Iorip5e7Vhb73k9ORjnffLKPQ3szUSjtmL1oBIuXjiMg2LO7p9avKcqvZt3Xh9m1ORWj0cSE6bHc/KdJhEf5dvfUZMykR4i9IAhqoBgIF0Wx6XLXy2Lfe8k6W8ZXH+0lOSkbJxdHrrlpNItuGiO7DXoYdTUtrF9zhI3fH6NNoyVx2iBuuXsKEQNl0e+t9Aixv1pkse99FOZW8em/d3FkfxbOro5cd8s4rrlpTI/KYpX5X5qb2vjpmyP8/O0R2jRaJk6P5Y4V0wkMGdDdU5O5SmSxl7EqtdXNfPHBbnZsPIWjSsn1fxzPtX8YK0fV9DJamttZ9/Vh1n19GJ3OwPzr4rnl7ilyfkMvQhZ7Gaug7dDzw5cH+e7TJEwmEwtvHM3Nyybh4qbq7qnJmEFDXStff7yXLetSUDrYs/SuSVx781js7ftXxnJvRBZ7GYtzZH8W77+5lcqyBiZOj+WuB2fhG+De3dOSsSClRbV89NYvHD2QTWCIJ/c/No/4cZHdPS2ZSyCLvYzFqK5sYtXrWzi8L5PgcC9WPDaP4aPDu3taMlbk2MEcVr2xhfKSeibPGsy9j86Ra+73UGSxlzEbk8nE5h+Ps/rdHZiMIrfdO4XFN4/Dzr5vZ2MajCZ0egNanQG9wfibv9nb2aJU2KFU2GHbx/MFdDoDaz9LYs1/9qN0sOeeR+Ywc+FwufZOD0MWexmzqCxv4B8v/MzplEJGjAnnoWcW9XqXTVuHjtKqJkqrG6ioaaamoZWaBg11ja00tXbQrOmgRdOBVm+8vDFAqbDDRa3ERe2Aq5Mjnm5qvNyd8HJ3wt/LhUAfNwK83HB0sLfyv5l1KSms5a2X13P2VDEJ4yN5+LlrGODt0t3TkjmHLPYykhBFkR0bT7HqjS0IgsA9j8xm9jUje9VuzmA0UVBWR2ZhFfmldeSW1JJfWktto+Y31ykVdp3i7KbG1dkRF7UDzmolKgcFSoUdDgo77GxtOf+vLoqgNxjRntv1a9p1tGg6F4mm1g5qG1qpaWj9n8XCy92JyKABhAd6EhE4gEFhPoT4e/SqNwOTycTG74+x+p0d2CtseeDphUyZNbi7pyWDLPYyEmhtaeftv27kwM6zDI0P5f9eXIxPL6hfo2nXkZpdxomMEtJyK8gsqKJDZwA6BT0swJPwAE9C/DwI8nEj0McNfy8XnFRKiy9ioijSrOmgvKaZ0qpGSqsaKayop6C0joLyOnTnFgKVgz0xYT4MjfJnZEwQQ6P8e8UbQFlxHa8/t47MM6XMmD+MFU/Ml8NtuxlZ7GWuiswzpbzy5PfUVjdz+/3TuP62RGxte+bO02QSySio5HBqIYfTCsnIr8RoErGztSEmzIe4CF/iwn0ZFOZLgI9rj9lBG4wmSiobyCioIj2/krN5FWQV1WA0mrC1tSEuwpfxQ8MYNyyUgcHe2Nj0zLcpg97IN6v38e3q/fgFevDM32+UM3C7EVnsZa4IURTZ9P0xPvjHNjy9nHn61RuIGRLY3dP6HwwGI8fSi9l1NJukk/k0tLQjCBAb7svouBBGDgpkaJQ/Dsqevzv+b9o6dJzOLiclo4Tks8VkFnQWhvV0VTMpPoLpowcyIiYQux648J5OKeS1Z36gpbmdB55cwKxFI7p7Sv0SWexlLou2Q8+7r2xk5+ZURidG8djL1+Hi2nOSo0RR5FRWGVuS0tl7PIdmjRaVg4IJI8JIHBbO2KGhuDk7dvc0LUpdk4ajaUUkncznUGoB7Vo9bs6OTBsVxbyJsQyO8OtR5ycNda28+vQPpB4vYP6SBO57bK6ciNXFyGIvc0nqa1t48dE1ZJ4p5bZ7prD0rsk9pvRwdX0LG/adYUtSOmXVTagc7JkUH8n00QMZMzgEZT/pQ9uh1XP4dCG7krPZfyIPrc5AsK878yfGsXBSHJ5uPaPInNFg5LNVu1n7eRJD40N57vWb5IzqLkQWe5mLkpddycqHvqG5qY3HX76OCdNiu3tKiKLIycxSvt9xin0puZhEkYTYYOZNiGVqQlSvOLy0Jq3tWnYn57D5wFlOZZVhZ2vD9NEDuX7GcIZE9Yzd/q4tqbz10nq8fF158a2lBId5dfeU+gWy2MtckJQjebz82BrUTg688M+biRrk363zMRhN7DmWwxebkskuqsFFrWTR5CFcN30oAd49PxKoOyiuaOCHXafYtP8smnYdceG+/HHhKCaNjOz2Q9300yW8+Oi3GPRGXnxrKYNHhHTrfPoDstjL/A87N6fyzxd/Jjjci7++e2u3JsboDUY27T/LV5uPUVrdRKi/B7fMjWfWuJhed8jaXbR16NialMHXW49Tdu4zvG3+KOYkDurWA93KsgaeeeBLqiqaePJvS3rEm2NfRhZ7md/w41eH+OitXxiWEMbKN/+A2rl76s0bTSZ+OZTJRz8eoqK2mdhwH25fOLpH7Ep7K+ffjj7fmExOcQ1Bvm7csySR6aMHdttn2tSgYeUj35KZVspfnl7AvOsuq0UyEpHFXgbo9IV//fE+vvxwDxOnx/L4X5eg6IYDTlEUSTqZz3vfHaCwvJ7oUG/uuyGRsUNCe4S/uS8giiL7T+Tx4Q8HySutY2CIF3++aRJjhnSPK6WjXcffnlhL8sEc7nlkNtfdMr5b5tHXkcVeBlEU+WzVLtb85wAzFwzn4ecWYWvX9UXMCsrq+OdXe0k+U0Swrzv33pDItFFRsshbCaPJxI7DWXz44yHKa5qYOCKcB2+ZTJBP19c20usNvPbMjyTtSmfZAzO46Y6JXT6Hvo4s9jJ89dEevvxwL3MXx/OXpxd0eWhle4eej386xJpfTqJS2nPXdeO4fvow7LphwemP6PQGvvvlJP9ZfwS9wcSt8xO4c9GYLg9dNRqMvP78T+z9JU3e4VuBKxV7q37rgiC4AZ8AgwERWCaK4mFrjinTydrPk/jyw73MXDi8W4T+SFohr/1nJxW1zSyaPJj7b5yAu0vPiL0WRZE6TRulDc2UNjZR3thMnaaNOk079Zo2Wjq0tOv1tOkM6AyG39yrsLNDpbDD0d4eZwclnmoVHmoVA5xUBLi5EOjmSqC7C+4qx25/c1HY23Hbgs4D2/fW7OfT9UfZeTSLp5fNZOSgoC6bh62dLY+/tBijwciH//wFe3s7Ft44usvGl+nEqjt7QRA+Bw6IoviJIAgKQCWKYuPFrpd39pZhy7rjvPO3jUyZPZjHX17SpTVuWtu0vP31XjbuP0uInztP/WkmI6K7r/yCwWgip7qW1NIKsqpqya6uJae6juYO7W+uUynsfxVuFwcljvZ2OCrsUdrZcV6yRUBrMNCu09OuN9DU3kG9po16TTttev1v7Lk6OhDl7clA7wHE+HoxLNCPSK/urXSZfKaI1z7dSVl1E9fPGMafb5rUpfkLBr2Rlx//jqMHsnn85euYNndol43dl+l2N44gCK7AKSBcvMJBZLE3n/07zvLKU98zanwkK/9xc5c2GjmVVcYLH2ylqq6FW+cncNficV3uMjAYTZwpr+JQfhFHC0pJK6v8VYidlUoG+nQKcLiXx6+7cH9XF9RKhVnjtmp1lDU2U9bQRGljE7k19WRXdS4sGp0OALVCwbBAX0aHBpEYEUysn3eXi397h573f0hi7faTBPq48dJ984gN77oiZjqtnmce+Iqzp4p54Z83M3rCwC4bu6/SE8R+OPARkA4MA1KAB0VR1PzuuuXAcoDg4OD4oqIiq8ynP3DmZBFP3vc5A2MDeOXft+HgaJ6AXSlGk4lP1x9l9U9H8Pdy4YV75zIkquuStVo7tOzLKWRnZi5JuUW0aLUIQIyvFyOC/BkR5MfwQD8C3V273LUiiiJF9Y2cKqngVGkFJ4rLya6uBTp3/xMjQ5k5KJKJkaGoFF23y07JKOHFD7dR26jh/hsmsHRufJeFaWpaO3j8ns8oKazlH58s6/bEvt5OTxD7BOAIkCiK4lFBEN4BmkVRfO5i98g7e+mUldTx0O2f4OzqyNuf3tVltUnqm9p4btVmjqeXMGd8DI/fMQN1FywyWr2BXVl5bDidwcG8YvRGIwPUKqYMDCcxIpixYcG4q3tmkbTaVg2H80s4mFfEvpwCGtraUdrZMikyjIVDY5gyMBxFFxxiN2s6+Nsn29l7PJfE4WG8cO9cXNRdk39RX9vCg7d/jMFg4p3P78bb17VLxu2L9ASx9wWOiKIYeu5/TwSeFEVx/sXukcVeGprWDh68/WOaGtp4+7O7CAj27JJxMwurePztDTQ2t/F/t09n4aQ4q++cMytr+O74aTafyaK5Q4uvixOzYwcya1Akw4P8ekzt+ivFYDSRUlzGjoxcfknPpqa1DTdHBxYOjeGm+KFEelv3uxRFkR92nuLtr/fh6+nMGw9fQ3jgAKuOeZ7C3CoeXrYa/0AP/rF6WZe9ifY1ul3sz03iAHCXKIpZgiC8AKhFUXzsYtfLYn/1mEwmXnjkW44fyuW1929naHxol4y740gWL3/8C27Ojrz+0CJiQn2sNpbRZGJ3Vj5fHDnJsaJSlHa2zBoUxbXDYxkbFtTrBP5iGIwmDuUX8dOpdHZm5qE3GhkfHsxtY0YwOSrMqm6W09nlPPHuBjq0el68bx6TRkZYbaz/Jjkpm+cf+obJswbz5N+WdHsEU2+kp4j9cDpDLxVAPnCnKIoNF7teFvur53ws/Z+fmN8l4WyiKPL5xmO8/30SwwYG8OpfFuDpap1Su3qjkQ2pGXxwIJmShiYC3Fy4ZfRwloyIw9Wxe8o9dBUNmnbWnkjjm+RUqlpaCfN05/7JY5g3ONpqi1tVfQtPvL2BzMIqHrl1KjfO6ppmJN99eoD/vLeT5Q/PZsmtcgz+1dIjxP5qkcX+6jhxNI+nV3zJ9HlD+b8XF1t9V2Q0mfjHF3v4cVcqs8fF8Nzy2dhbwbesNxpZn5rBB/uPUtrYTJyfN/dMHM30mIg+s4u/UvRGI9vTc/koKZmsqlpCPd25b9JoFgyJscpn0aHV8/z7W9iXkscfF4zivhsmWP3gVhRFXn7sO47sz+LNT5YRO7TrcgD6ArLY93Hqalq47+b3cXVX8a8vllvd36k3GHl+1RZ2H8vhlnnx/PmmSRYXAVEU2ZdTwN9/2U9BXQND/H1YMWUsk6PC+v3rvckksjMzl1X7jpJZVcNA7wE8NWcy48KDLT6W0WTizc93s273aeZNiOWZu2ZZvYpma0s7K275EIPByPvf3tejOqb1dGSx78OYTCaefeArzpws5l9fLSck3Nuq42l1Bp7610YOnirgwaWTWTo33uJj5NfU88q2vSTlFRHq6c5jMycyLTq834v87zGZRH5Jz+bNnUmUNTYzPTqCJ2ZPItjDsrX/RVFk9c9H+HjdYWaMiebFe+dYvcxFdnoZD9+5mrGTo3n27zfK3/0V0iPKJchYh5/XHCXlSB4PPLXA6kKv0xt44p0NHD5dyBN3zuC6aZbNetQZjHxw4CgfHziGo8Kep2ZP5uZRw7ok9LA3YmMjMHdwNNOiI/j8yAk+OJDMwlVfsGLyWJaNT7DYDlwQBO5aPA4HhT3/WrMfo8nEX1fMt+oOf2BsALffP43V7+7gl/UnmHOt5TcV/Rl5Z9/LKCuu494/rGLE6HBefGupVXc/BoORp9/bxL6UPJ7+00yumTLEovbTyip5ev12cqrrWDAkhqdmT8bTqWe8vutNRjR6He2G35ZBUNkpUNsrsOshZwdVza38desedmTkEufnzSvXzCLa17LtAL/dmsLb3+xjTuIgVi6fY1Ufvslk4ol7Pyc3s4IP166Q4++vANmN0wcxmUw8tvwzCnKq+PiHFXh6Wa/TlMkk8uJH29h2MINHb7NsZIbRZOLDA8n8e+8RPJ1UvLhgBlOjwy1m/0po1WvJaawju7GG3KY6yjXNVLS1UKFppkHbTofRcMn7He3s8VA64qtyxk/tQoDahQhXT6LdvIhy9URl37Ux49vOZvPS5t20dGh5aHoid46zbEbsZxuO8v73B1kyfRiP3T7NqpuMitJ67rlpFUNGhvDXd2+V3TmXQXbj9EE2/3icMyeLeGTltVYVeoD3v09i28EM7lky3qJCX9Oi4bF1WzlSUMKCITE8P28qLlYOoxRFkcKWBpKrSjheXUpKTRn5zfW//l1pa0eA2gU/lTPjfEMY4KDCSaHEyV6Bo639r2IjiiJtBj2tei0tei31He1UtDVztq6S7cXZ6EzGX21GunqS4BVIvHcAY3yCCXa2bj/dOXEDGRMaxPMbd/LGjgMkF5by2uLZuKssk0V8x6IxtLZp+XLzcbw9nLljkfXCfP0CPVj25xm8/+ZW9mxNY9o8uWCaJZB39r2E2upm7r7+PQbGBfDaqj9adbezblcqf/9sF9dNG8rjd0y32FjHi0p5+PvNtHToeG7+NJaMiLOI3QuhNxk5XFnM7tJc9pTlUdTSWWzVXelIvFcAwwf4M9BtANHuXgSqXc0OYzSaTBS1NpLdWENWQw2naitIqSmlWddZXTPcxYOpARFMC4xgjE+w1dxAoijydXIqf9++nwFqFe/cuIChgZYpdCaKIivf38ovhzN58d65zEkcZBG7F8JoNPHIstVUlNbzyY8PdFn5j96I7MbpY7z69Pcc2pvJB9/dT0CQ9VLoj50t5sHXf2Ts0FBef+gaix3I/XjyLC9s3EmAuyvv3riAgT6WT8kXRZHUugp+yjvDxsIM6rXtKG3tSPQNYWpgBON9Qwh38egyt4BJFMlrquNgRSG7y/I4UlmMzmRkgIOaa8JiWRweR5yHj1Xmk1ZWyUPfb6a2VcNr185m7uBoi9jV6Q08+MY60nIqeP+ZGxgSab0iZgU5Vay45QNmXzOCB59ZZLVxejuy2PchzqYW88iy1Sy9azK33zfNauOU1zRxx/Nf4+GqZvXKmy1S0MxkEnl790E+SjrG+PBg3r5hvsXdNm16HT8VnOWzjBRymmpR2NgyMyiKa8PjmOgXioNd11WTvBRteh37ywv4qeAsu0tz0ZtMDHL35s6YeBaFxVp8ng2adlas2cCJknIempbIPRNHWWRhaWpt586V36DVGfj85VsY4OZkgdlemPff3MqG747y3tf3EjGw60ox9yZkse8jiKLIg7d/TF1NC6vXPWC15Cmd3sBdL62hrLqJT19cSrCv+f1K9UYjT/+8nY1pmdwwcjDPz5+Gva3lQirrO9r4JP0YX2efpEnXQZyHD7dFj2ReSDQuip5dTqFR287Gwgy+yjpJVmMNng4qboseyZ2DEnC14Ny1egPPbNjBprRMbowfwsr50yySeZtbUsOfXviW6FAfVj19g9VCMlua21l27buED/Thtfdvlw9rL8CVin3PiB+TuSj7d5wl62wZf7xvmlWzZP/17X6yCqtZec8ciwi9zmDg4e83szEtk4emJfLSwhkWE/pmXQf/PHWAST99wPtnDjPeN4TvZ9/Cpvl38IeoYT1e6AHclI7cFj2SbQuX8c3MPzBigD9vpyYxcd37/DvtEBq9ziLjKO3teOO6OSyfMIq1KWk8+dMvGIwms+1GBnnx1LKZpGaX8ck663UadXZx5Ja7J3PqWAHHD+dabZz+gByN04Mx6I18+t5OwiJ9mDF/mNXG2X8ij7U7TnHznJEWqXaoMxh44LtN7Msp4Jm5U7htjGWieYwmE19ln+StUwdo1HUwLySah4dNJMqta0ryWgNBEBjvF8p4v1DO1lfxz1P7eePkfj7NOM7/jZjMjZFDsTFzNysIAo/MmIBKoeDt3QfRG428uWSe2bvxOYmDSMko4bONR0mIDSIhzvKlGwDmX5/Az2uOsvqdHcSPjejyfsp9BflT68Fs33iSirIGlj0ww2p9ZBua23hl9Q4Ghnix4qaJZtvTG408+sNW9uUU8OKC6RYT+tO1FVy79QtWJu9gsKcvm+bfwarJi3u10P+eOA8fVk+7gXVzbyPMxYMnD2/lhm1fkdlQbRH7904azeOzJrEtPYen1/+CyWS+C/fR26YS7OvOyx//Qmub9vI3SMDe3o477p9GQW4V+3ectcoY/QFZ7Hsoer2Bb1fvZ9CQQEYlRlltnDc+302LpoOV98wxu4KlKIo8t2EnOzJzeXrOFG5KMD8+usNo4MVjO7lmy+dUtrXwr4nX8OWMmxjs2XcP60Z6BbB29i28MX4e+c31zN/0KX8/sRed0Xj5my/DsvHxPDRtPBtOZ/K3bXsx98zOQWnP88vnUF3fyttf7zV7fhdj0sw4QiK8+fLDvRgt4Ibqj8hi30PZszWN6somblk+xWqHUvtSctmVnM3d140jMsj8FPtV+47yc2o6f54ylj+ONX9Hn9tYy7WbP+fTjOPcGj2SXdfczcKwQf3ikE4QBG6IHMrua5ZzXfhg3j9zhBu2fUVRy0XbQVwx90wczR3jRvJ18im+OHLSbHuDI/24dX4CG/ef5fjZYrPtXQgbGxtuvXsKpUW1HNqbaZUx+jqy2PdATCYT3395kPCBviSMi7TKGJp2HW9+sZvIoAHcOu+yB/mXZePpTP619zDXDotlxeSxZttbm5PKgs2fUdOh4dNpN/DymFm94uDV0rg7OPJG4nzen3wtBS2du/wNBelm2RQEgcdnTmLmoEhe+2UfuzPzzJ7nnxaPJdDblVc/3YlWd+lSE1JJnDYIv0AP1n6eZPYbSX9EFvseyIkj+RTn17Dk1vFW28V+tuEo1fWtPLlshtmla9Mrqnl2w3YSQgJ4aeEMs+ZsNJl4IayL/5MAACAASURBVHkHjx/eykivALYuWMbUwK5pkdeTmRsSw5YFy4h28+IvBzbw+ol9mMwQPBsbgdcXz2Gwvw+PrdtGfk395W+6BA4Ke564cwalVY18u+2EWbYuhq2tDUtuHUf22TLST5dYZYy+jByN0wP5ec0R3D2dmDzLOuUEyqub+HbbCeZNiDU7A7K5vYMH127CzdGRd25YYFZpYo1ex18OrGdXaR53xY7iqZFTu6wzlVE0UdleS3FbJXW6Rpr1Gpr0GtoM7b+5Tm3niIu9Ghd7JwYo3QhW+eLj4ImtYP15Bjq5smb2Up4/uoNVZw5T1NLAPxLnS07GclTY86+bFnLdh1/zl7UbWXv3UlQK6YldoweHMDk+gs83HmXBpFirJFvNmD+MT9/bxfo1R4kbZp3on76KVcVeEIRCoAUwAoYrCfzv75QW1XLsYA633TMVe3vrfD3v/5CErY3AfTckmmVHFEVe2LSLiqYWvrzzBrPKEzd0tHPH7rWk1VXy8phZ3BY90qy5XY5mvYa0plxON+aQ3pRHSVsVevG37gcnOxVqWwf4r0JoGmM7mt8tAAobe4JVvsS5RjDENZLBrpE421unlou9jS2vjJ1NmIs7r6bsobZDwydTr8dZoZRkz9fVmTeXzOVPX67j1W17eXnRTLPm98DNk/jDE5/z0Y+HefpP5tm6EI4qJXMXj2TdN0eorW5mgLd1CwL2JbpiZz9VFMXaLhinT7BlXQq2tjbMXWydxg3ZRdVsP5zFHYtG4+3hbJatTWmZbDmbzUPTEhkRJP0Nob6jjaU7viW/qZ4PJi9mVvBAs+Z1MWq1jSTVnORAzUkyWwoBUNooGOQSxsKAaIJVfud26h4426uwFS78lmIwGWk2aKjuqKO4rZJiTSX5mjK2VhxkfdleBARiXcKY6DWSRK/heCgsK0iCILA8bgw+KmceTdrErTvX8OWMmySfaYyPCOGuxAQ+PnicqQPDmRYj3W0W5OPO4mlDWbcrlVvnJ1gkQe/3zF8yih++PMS2n09w6/IpFrffV5HdOD0Ivd7Ajo2nGDclBk8v84T4Ynz04yFc1EqzD2WrW1p5afMeRgb5c/cE6bZadFr+uPM7CpobWD3teib6h5k1r98jiiIpDRn8XLqHU43ZiIiEqwO4NWQew9wGEuUcjL3N1f0M7Gxs8VC44KFwIcbl/89Xb9KT1VzEqcZsDtWm8kHeD3yU9yPxHrEsDpjKULcoi57BXBMWi6OtHSv2/8yyXT/w5cybcJTo0nlg6niS8op4buNORgYH4KaSfhh+5zVj2LT/LJ+sO8xL98+TbOdi+Ad5ED82gm0/n2DpXZPkJKsrxNqfkghsFwQhRRCE5Re6QBCE5YIgHBcE4XhNTY2Vp9OzOZaUQ3NTG7MXWa5+/H+TXVTDgZP5/GFOPM5q8yJbXtm6F63BwCvXzpLsV9caDdy7dx0ZDdV8MHmxRYXeYDKys/IoK1JeY+WZDyhuq+Tm4Nl8lPAs/4p/gptD5hDrGn7VQn8p7G3sGewWya2h81iV8BSr4p/ihqCZ5LQU83Taezx48g32VqdgFC0XJz4reCDvTFxESk0pD+xfj8EkzbbCzpZXr51NY1s7b+zYb9acPF3VLJk+jB1HsiipMj9U9ELMWjSCmqomTh8vtIr9voi1xX6CKIojgbnACkEQJv3+AlEUPxJFMUEUxQQvL8u2U+tt7Np6GjcPNfFjrRN98vnGZFQOCm6YOdwsO/tzCtiWnsN9k8YQ6intNV0URR4/tIWDlUW8MX6+RSNuTjZksiLlNd7K/hqAR6JvZfXoldwSOo8AlXV79v43IWo//hi2gE/HvMADUX9Aa9TxRubnPHjidc40Wq7Oy7yQGF4aM4udpbk8d3S75LDEGF8v7hwfz48nz5JSVGbWnJbOjcfOzoYvN1mnsOG4yTGo1Ep2bT1tFft9EauKvSiKZef+sxr4CbBee5teTke7jmNJOUycEYetFZptV9W3sOdYNtdOHYKLGbt6vdHIa7/sJ8TDjT8lSnfffJKezPqCdB4bMZnrIgZLtvPf1HQ08Er6ap5NW4VRNPJs7F38O/5JpvuMtugO/mpR2Ngzx2887yc8zZOD7qDV0M4Tp9/ljcwvqNc2WWSM26JHcv/gcXybc4o1OamS7ayYPBZfFyde/WWfWeUUPN3UzJsQy7aD6TS2tF/+hqtE6WDPuCkxHNqbiUFvfmZxf8BqYi8IgloQBOfz/x2YBZyx1ni9nWMHc9Bq9UycHmsV++t2pSKKmL2r/z7lDPm19Tw+a5LkMMujVcW8dmIvc4OjuX+w+QlYAPuqU7gv5RWO16dzW+h8ViU8xbgBQ3tUtq2NYMNEr5F8kPAMNwXNIqnmJPenvMrhWsvsTh8dPpFJ/mGsTN5BWl2lJBuOCnsemT6BM+VVbEzLMGs+N84cgVZvZP3eNLPsXIyJ02NpbW4n9XiBVez3Nay5s/cBkgRBSAWSgc2iKG6z4ni9miP7s3B2dWTwcMvHDhuMJjbuO0vi8DD8vVwl2+nQG3h//1ESggOYJrFBeLOug0eSNhHk5Mbr4+eZLcZ6k573c7/n9czPCVX7syr+af4QPBuFTc9oWHIhHGwV/DFsAf+OfxIfB0/+mv4J/8lfj1E0b4dqa2PDOxMW4emg4sEDG2g36CXZWTAkhlhfb/6994hZ5ZAjggYwMiaQ9XvTLFJ07ffEj41AqbTnyIEsi9vui1hN7EVRzBdFcdi5f+JEUfybtcbq7RiNJo4dyiVhXKRVXDiHUwuoa9KwcJJ57pK1KWnUtGp4YOo4ySL9QvJOKttaeGvCQsmx4edp0DXzROq7bCo/wOKAqbw29C/4OlqvZaOlCVT58Mbwh5jnl8iPpbt45vS/adFrzLLp7uDIm4nzyW+u59WUPZJs2NgI/HnKWIobmlh/2rzd/cLJgymrbuJkVqlZdi6EQmnP8NFhHD2QLZdPuALkmKUeQE56OU0NGkZPsE58+eakdNxdVCQOlx7tojca+fRQCgkhAYwJC5JkY19ZPuvyz7BiyDhGeJmXuVurbeTJ1Hcp1FTw9KBl3BWxGDsbyy+U1kZhY8+KqJt4NPpWMpoLePr0ezTpWsyymegXyrJBCXyRdYLj1dJEdmp0OLG+3qw+eNysXfm0UVGoHRVsSTKvns/FGDNxIFXljZQUyqk8l0MW+x7A8cO5CIJglSic1jYtB0/lM3NstFk1cLan51LR3MKycdKSvbRGAyuTdxDm7M6KIeMlzwOguqOeJ1PfpU7XxMtD7iPRy7xziJ7ANJ/RrIxbTml7NU+dfo96XbNZ9v5v+CT8VS48d3S7pHBMQRC4c/xI8mvr2Z8r3SfuoLRnSkIUe47lWKVAWvy5QoFyF6vLI4t9D+DUsXwiY/xwdVdb3PaBk3no9EZmjY02y87XyacI8XBjykBpvvovs05Q2NLAytEzUdpKj4xp0rXwbNoqmvUa/jpkBXGufadI2kiPQbw4+F6qOup4Pm0VrYY2ybZU9gqeSZhGRkM1P+RJOyCdEzcQH2cnvk6WHt0DMGtcNJp2HUfPFJll50L4+rsTEOzJyaP5Frfd15DFvpvR6QxkniljaHyoVezvT8ljgJuauAg/yTbyauo4UVLOjfFDsLG5el99q17LqrTDJPqGMCVA2mIBoDcZ+Gv6amq0Dbww+B5iXEIl2+qpDHWL4tm4uyhpq+LvGZ+ZdWg7LySaYQP8eDf1IFrj1e+q7W1tWTIyjqTcQsobpb9pJAwKwkmlZH+KdXbfQ+NDOXuqWG5qchlkse9mctLL0esMDB4RYnHbBoORI2mFTBgRLkmkz7Pu5FnsbGy4dpi0sNAvMk9Qr23nsZGTJc8B4NOC9aQ35/PwwFuIdZW+aPR0RrjHcH/kDZxoyOSbIukBbIIg8PiIyZS3NbM2R1p455IRnYf6P6dK97nb2dkyflgoSacKrBKVM3hECJrWDoryLdO+sa8ii303k3W28wBt0JBAi9s+k1dJW4eesUNCJdsQRZGtZ7NJjAiRVNVSZzTyWWYKE/1CGT5A+qHs8fp01pftY5H/ZCZ5W7ciZk9gtt94ZvqMYW3xds42SW8uMt43hOED/PkkIxmjBN99gJsL8cEBbD2bLXkOAGMGh9LQ3EZeqeUPUs//drLOmJf129eRxb6byTpbzgAfF9w9LV/7+3h6MYIAIwdJX0jSyqoob2phbpy0SKFNhRlUt7dyd9wYyXNoNbTxdvY3hKj8uDN8kWQ7vY3lEUvwcfDkH5lf0mGU1sy7s0LmaIpaGtlZKs2NMiduIDnVdeTV1Em6H2BUXGf+yDErtC30D/LAydmB7Ixyi9vuS8hi383k51QSGS3dn34pUrPLiQzywtXJUbKNvdn52AiC5IPZNbmphDm7M9EvVPIcvizcQpOuhUdjbu3RyVKWRmXnwMPRt1Clree74u2S7cwKGoiPo5PkMgrTz5U83pstPSrHx9MZfy9XUrMtv/sWBIHwgb4UZEvLGu4vyGLfjeh0BkqL6giNtHxxLpNJ5GxeBUMizVtI9ucWMizQV1LJ2+KWRpKrSrg+cojkJKzitkq2lB9gnv8EIpykxff3ZuJcI5juPZp1pbup7pDWOtDOxobF4YPZX55PdXvrVd/v5+pMlLcnB3ILJY1/niGRfpzJrTDLxsUIjfSmMK8ak8Sqn/0BWey7kYrSekxGE8Fhlq/2WVrViKZdx6BwX8k2Wjq0pFdUMy5cWgmHrUWdaeyLwqTX+/mhZCf2NvYsDZ4j2UZv57bQ+QCsK90t2ca14bEYRZEdJTmS7h8fHsLJknJ0Bumx8oPCfalt1FDXaF6W8IUIDvOivU1HXY15CWl9GVnsu5Gy4s6dWkCw5VP8c4o7ewNEBUtfSE6VVmASRRKCAyTdv6Mkh1h3b4Kc3CTdX6ttZF91CrN9x+GqsE4zl0thEo1o9FW06itp1Vei0VcjWrAW/ZXi5eDOFO8EtlceoVliOYVoNy+Cndwki318sD9ag5GzFdIjXqKCBwD//9m0JOd/Q+d/UzL/i9ypqhupLO9s7OAXYPnWbflltQgChAV4SLaRVlaJAAwNvHpXUItOy4naMlYMHid5/B2VRzCIRq4JmCLZxtXSbqijVHOY8rajVLQdQ2v6bXy5g60bfqrR+KtGE6gah4Od5b+7C7E4cCo7q46yp/qYpM9DEASmBUbwbU4qOqMRhe3VZVMPD+p8Bk6XVkpuQRkZ1LnxyC+rY+zQUEk2LoZ/YOdzXllWD6Ms2+2sryCLfTdSU9mEUmmPi5vlm1OXVDbi6+mCg0L6gWZGZQ3BHm44KRVXfe/xmlJMoshYX2kuIFEU2V11jCGukV1S3ExvauN0/WdkNK7FKOpwtB1AoHoCXg5x2Aidn6FR1FHTkUZ5WzIFLduxExyIc1/KYPfbsLMxr6jb5QhV+xPhFMiuqmTJi99Y32A+y0zhdF0FCd5XF6Hl7ezEALWKzCrpu3I3Z0dcnBworrR89ypPb2cEQaCmyrwyE30ZWey7kdrqZgb4uFil5npJVQNBZjZ7zq6qJdpngKR7T1SXYSsIjJAYW5+vKaO8o4brg6ZLuv9qqOvIYn/lSpr1JYQ7z2aw+y24KcIv+L3EcB2iaKJem0Naw5ek1v+H4tZ9TPJ9CTeldXeUU70T+CT/Zyraa/BzvHr33GjvzgPulOqyqxZ7gIE+A8iuMi9OPsjHjRIriL29vR3uHmpqZbG/KLLPvhtprNfg5mH5ejgAlXUt+HpK93MbjCbKGpsltx3MaKgm3MUTlf3VvxUAnGroPNyN97BOM5fzlGoOs6V0OQaxndkB7zHR93nclRGXXIAFwQZPh2im+P2VGf7/pN1Yz6aSZVS2nbDqXEd5xAFwskFa/XYPBxV+KmcyGqT53UM93SmubzKrnLCvpwtV9dY5RHXzdKLRCoe/fQVZ7LuRpsY23KxQ/MxgMFLf1Ia3h/RErcrmFgwmE8Ee0g5XsxpriHGXfjh8ujGHIJUPA5TSxr8SWvWV7Kt4FjdFOAuDv8BXdfWN3gPUY1kU/AVO9n7sqXiKdoP1DggDHL3xUrqT2ig9mzXG3ZvMRmliH+LhRotWS2N7h+TxfTydqa5vtUr9eVd3FU31sthfDFnsuxFNSwdOLtL7wV6MptbOH6O7i/SzgOqWzh+Nj/PVLxgGk4lyTTMhztLdSPmaUgY6W75e0H9zrOYdRExM9XsFB1vpHbwc7TyZ6vcKBlM7KbWrLDjD3yIIAlHOwRRopGeKhji7UdYqzdXh49L5LNS0SBdUN2dHtDoDHVrLlzt2cnJA0yot07g/IIt9N9Km0eKosvzBXlNrZ4NnczJna1s7f9BS6uFUt7diFEX81S6Sxm7Wa6jXNROqNq/ByaWobDtJsWYfwzzuxMne/AxmV0Uoce5LyWvZQl1HpgVmeGFCVX6Ut9egNeok3e+vdqFFr6VJd/W7c09157Nw/tmQgptz5zN5/hm1JConJW0aWewvhtXFXhAEW0EQTgqCsMnaY/U2tB16lA6WT/9v6+jsPap2lOYvB2jRdoqJi8PVL0b1HZ112D0cpC02NdrOAzwfB+tF4RS27sROcGCQ200WsznY/RYEbClslZ78dDm8HTwRESU3N/Fw6BTsRu3Vi+35Z+H8syEFlUPnM9mmldYf91IolPZorWC3r9AVO/sHAfMaWfZBTCYTRqMJhcLyrfQ6dJ0PvFIhPdiqTdf5g1Yrrn7BaNF37q5c7KW9tTSea8vnZm/54nDnKdUcwl81xqIhkwpbZ3wdR1CiOWgxm7/H/VxyWaNe2iGn87nvpEV39Ttg1bkwXo0ZYu9w7pm0higrFHborOAe6itcVuwFQXhAEARJzldBEAKB+cAnUu7vy5iMnQdUNraWX2+N52zbmWHbcK4RhL0EG/pz9UmkdqTSmTqFwMHWerHrGkMV7krLd7lyV0ag0VdZ3O55HGw6F1+pbpzz34nWdPVNURR2nfdKaXN4Hjs7G7NtXAxbWxur1MvvK1zJL9kHOCYIwlpBEOYIVxcU/jbwOHDRb1YQhOWCIBwXBOF4TY3l06hlZLoWy+dM/Na8efatPDuZHsxlxV4UxWeBKGA1cAeQIwjCK4IgXHJbJAjCAqBaFMWUy9j/SBTFBFEUE7y8LF8QrKcinOscdX6Hb0nOd6Uyp02b7Tkbegk7MLtzgqSTsHsEsLOxPXe/9fyvShtXWvSWr3/eoi8zK7LncujPfSZ2NtLemvTnvhN7QcIbm7HzXlsb6W+M5986zbFxMUwmEzZWSFDsK1zRJy52BsVWnvvHALgDPwiC8PolbksEFgmCUAisAaYJgvCVedPtO9ja2mBja4Neb3kf469+UTNsq8756tt1Vy+4zorOcNJWvTRXg5t9p1+6SX/15XivlAD1OMo0hzGJlvv8DSYtFW3HCFCPt5jN39Nw7jzD3V5awtz58xRnxdW7yNrOPQtqM0pwnD9PcjDjPOli6HQG7JVyUYCLcSU++wcFQUgBXgcOAkNEUbwPiAeWXOw+URSfEkUxUBTFUOAPwG5RFG+1zLT7BtY6UHI8F+FzPipHCufr4UiJvHA7J/YN56JyrhZPRefOuKbD8mn15wl2mozW1ER+yy8Ws5nTvAGD2EGIk3m9di9F7blIJXeFtLDWhnNROK6Kq8/vaNV2LhRSDu3P0649L/aWj0LTaQ0orLCI9BWuZGfvAVwniuJsURS/F0VRDyB21npdYNXZ9XFUauvEBbuoO3/Iza3SMx3Px1TXSYip9lE5IwDlbdIiRtwVLjjZqSg0I3nocgSrJ+LlMJiU2n+jNZpfT6XNUMvJuo/wV43G1zHeAjO8MIWaCryVHqjspCXjlWuacbC1w1159WGxta2di/cACbkX52lq6XwmXZwtn0zYptGiUlu3IF1v5kp89itFUSy6yN+uKKRSFMW9oijKC8PvUDsp0bRIF+SLcT6ZqrFFeuLKAKfOMg7VErIlFba2+KicKW5plDS2IAiEqf3JbS2RdP+VjWHDWO/H0BqbSap6GaMo/S3IaNKSVPkSRlHHGK9HrVLY7jx5rSVmJZuVtDYR4OQqaY415xb+88+GFBpb2rCztUHtIP3t4GJoWrWonGSxvxhyBm034uKmoqlRmqvjUigVdrg6OVBtRsGpALfO3XlJQ5Ok+6NcB5DVKD26aohrJHmtpbRIbNZxJXgooxjt9TClmoNsK7mPFv3V90dt1BWyueRuKtqPM977SVwU1mudWNPRQGl7NUPcIiXbyGqoYaCrtEqmxfVNONjZmbWzr65vxcvdySoLYlODBjcrlAvvK8hi3424eahptFLhJh9PZyrrpIu9ws4OP1cXCuuk+c1jPbzJaaxFZ5QWkTPCPQYRUXKFxyslxm0JU3z/RrO+hA1Ft3O6/nN0xst/bjpjK6fqPmFT8Z20G2uZ7v8mES5zrTrXEw2dL9Ij3KIl3d+q11LU0sAgD2k9j4vqGwj2cDNLqKvqW/AxoxrrpWhs0OBqhcKCfQX5NKMb8fRy5uTRfKvYDvB2I7fEvLyFKG9Psqul1S8fPsAPnclIWn0l8V5X39Yw2iUEd4UL+2pSmOQ9UtIcrpQQ56l4OsSQXPMWp+o+5mTdh/g6jsRfNRovhyHYCJ0/E5Oop7rjNOVtyVS3pyFiJMRpGqO9HkRlZ/2w4b3VKfg7eEl246RUlyGC5B4D2VV1v3askkpJZSPjhoWaZeNCGI0m6mtb8fTu+vaVvQVZ7LsRb19X2jRaNC0dqC18YBXs687+E3kYDEbs7KSVZIjx9SIptxCt3oDS/uoeldE+nR2qjlYWSxJ7W8GWKd4JbCzbR5Ouxeo9aJ3s/Zjm/zoN2jzyWrZRrknmRN0HF7zWQxlNnPtSQp06F4muoLqjnrSmXJaGzJG8sz5aVYKdYCPp+2hq76C8qZmbRw2VNDZAa7uWuiYNwWY21bkQ9bUtmIwmvH2tl+PQ25HFvhvx8et86CvLG4iINr/y4n8TFuCB0WiiuLKB8EBpPtoh/j4YRZGzFdWMDL663aCng4pB7t7sLcvj/iHS+tDO8h3LT6W72VyRxNIQ67pIzuOujCBBuQIGrKDdUEe9NhfoTAQSsMFDGdVlfWf/mw1l+xAQmOEzRrKNPWV5jPTyl9RQ5nRpJQCD/X0kj19QWgdAqL/0vsgXo7LsXPE8v67/bnoLss++GwkI7nzoS4vqLG47KrjTrZBTLN2Vc17gU4qv/uASYGZQFMdryqiTGG8frPJltMdgNpbtp8PY9aVrHe08CVCPIUA9lgD1WPzVo7tF6Fv0bWyrPMQk75F4O0gTypLWRjIaqpkZFCXp/pTizjaTwyQ0nz/P+Wfx/LNpScqKO39D539TMv+LLPbdSECwJ4IgUFJo+ZpAoX4eKO1tySiQXpTLQ60iYoAHh/OLJd0/J3ggJlFkS6H0+u43BM2g2aDh59K9km30dr4v2UGHUcf1gdL78W4s6DzcnRU8UNL9hwtKGOzv82vlSylkFFTholbiN0BaQtilKC6oxV5hJ7txLoEs9t2Ig6MC3wB3CnOltYm7FHZ2tsSE+ZKWW2GWnQmRoRwrKvs1Vf5qiPXwIcbdi+/zTkseP9Y1nMQBw1hbsp3qDuu1/OuplLRV8XPZHmb4jCbM6ep97QCiKPJDXhoJXoGSuoc1aNo5XVrBhMhQSeOfJy23grgIP6uEXRbmVhES5oWtxPOp/oAs9t1MeJQPedmVVrE9NMqPzIIq2s0omzBlYBh6o5GDeRfMq7ssN0UO43RdJadrpS86d4dfh4DA29nfYBItXxq3p2IwGXkr6yscbR24I2yRZDuHK4vIb67nxihph6v7cgoQgclRYZLn0NjSTkFZHUOjLN99TBRF8nOqCIuSfp7QH5DFvpuJivWnvKSeVjOyXS9GQmwwBqOJ1GxpPneAUSGBuKsc2XpWWpPr6yOG4Gyv5OP0ZMlz8HJwZ3nEElIbs/m5bK9kO72NNcW/kNVSxJ+jbsLNjGikj9OPMcBBxaKwWEn3bz2bjb+rM0MCpItpSnpnNvSouGDJNi5GTVUzDXWtRMVar41lX0AW+24mOq7z1TzrjHRBvhjDowOwt7Pl6Blpu3LobIAya1Ake7LyaJVQFM1ZoeTmqGFsKcqkoFm6G2aW71jGeQ7l84KNpDdZJzehJ3GiPoPvin9hus9oJnqNkGwnvb6KPWV5/DEmHgcJzWQaNO0cyitiTtxAs9wvR88UoXZUMCjcV7KNi5F1tvO3Ex0rzc3VX5DFvpuJGRyIjY3AmVPSDkEvhYPSnoTYIPafyKOzSrU0Fg+Po11vYOsZadmsd8WNRmFrx1unkiTPQRAEHhy4FG8HD/6Wvpry9r7b6KZQU85rmZ8RrPbjvsgbzLL1j1P7cVEouT1GWnG29acz0JtMXDtM2lsBgMkkknQyn3FDQ83qnnYxzpwsQqm0JyLG8gtJX0IW+25GpVYSEe1H2olCq9ifOCKC0qpGCsqkh3cOC/QlysuT71LSJC0a3o5O3BmTwIbCdM7UST+fcLZXsTJuOSbRxLOn/01Vh+VDVrub0rYqnk97H6WNPc/H3Y2jGa0Zk6tK2FWax71xYyWVNBZFkbUpaQwL9GOgj7RcDYCz+RXUNWmYOMLybSAB0k4UEjMkEPurTPzrb8hi3wMYPjqMjNOlVil3PCUhEhtBYPsR6TVmBEHg5lHDOFNexckSaWWH7xk8Bk8HFc8n78BkxltGoMqHl4bcR6uxnSdS3+1TO/wiTQVPpL6LUTTx8pD78XHwlGzLYDLxfPJ2/FUu3CFxV5+UW0R+bT1LzciaBdh+OAuFvS0TRoSbZedCNNa3kpdVyfDR0g+P+wuy2PcAEsZGYjAYST1eYHHbnm5qEuKC2X440yxXzrXDY3F1UPLpoROS7ndVOPDkyCmcqCljTU6q5HkARDkH8+rQB9AadTyZ+i55ViyF3FVkNBfw5Ol3sREEXhv2F7PKGAP8J+MYmQ01PDdqmqSMWYBPWEhn8AAAIABJREFUD6fg7axmbpy0wmvQ2bh+59EsEoeH46SyfPnhE0c6z28SxkmvBNpfkMW+BxA7PBiVWklykrSIl8sxN3EQZdVNnMgslWxDpbDnltHD2ZGZS1aVtOJo10cMIdE3hL8e30VRi3ldqCKcAnl12AMICDx68i1+qThk1mLWXYiiyPqyvTyR+g4qWwf+PuxBglTmhRBmNdTw5sn9zAyKYk6wNKE+UVzOofxibh87EoUZseuHUwuob2pj7vhBkm1ciqNJWbh5qC1ebqQvIot9D0ChsGPEmHCSD+ZYRbCmjYpC7ahg474zZtn549iROCkV/HvvYUn3C4LAG4nzsbOx4eGkTb82v5ZKqNqfd0c+xmDXCN7NWcNbWV/TZrB8Mxhr0aJv47WMT/kobx0JHrG8M/Ix/B3NKyXQYTTwUNJGXBRKXh0rvWjae3sP46Fy5OZRw8yaz4Z9Z/BwVZE43PJuFqPByPHDeYxKjMLWCge/fQ35E+ohjJkYTW1VM7mZ5mW8XggHpT1zxg9iV3K2Wd2r3FQO3D52JNszciX77v3VLvxtzBxO1JTx+ol9kudyHleFMy8OuY+lwXPYXX2M+1Ne5WDNqR69yxdFkT1Vx7gv5RUO1Z7mjrCFPBt7F0525jfeeDF5BxkN1bw+fh4DHKXVdk/KLeJQfjF3TxhlVnmEytpmDp7KZ/6EWMmVVy9F2sliWpvbGTNRupupP2E1sRcEwUEQhGRBEFIFQTgrCMKL1hqrLzBuUjQ2tjYc2JVuFfvXzxyOTm/k5z1pZtlZNj4eLyc1r23bh8kkTVAXhg3i9uiRfJye/GvNFnOwFWy4JXQerw97ECc7R17J+A/Ppa2iuM06mcnmkN9axhOp7/Jm1pd4Kd3454hHuCFoJjaC+T/FNTmpfJuTyooh45gWKM2HbTSZ+Pv2fQS5u3LLaPN29T/uSkUUYcmM4WbZuRhJu9NRKu0ZNV72118J1tzZa4FpoigOA4YDcwRBGGvF8Xo1Lm4qhieEsW/7GavsSsP/X3v3HVd12f9x/HWx95AlMgQFFQcucIszZ87MNDVb2s7G3a67ebfuusuW5UorNc1Sy4E4cKchCiJDVBygsvc+53D9/kD7maUZ5xwO43o+Hj4KOXy/1wF5n+tc43P5uNGrc2vWRB2lqlpb5+vYW1vx5LD+xF/IZF1cYp2v81LYMMI9fXl6/0YOZhpmj0FH5zbM7/EMD7adQmrJeR4+/A5vJy3lRHHdN5UZgpSSxKLTvH58IY8deY/08kweD57Gh92eItjRMDtKoy+c5uWDWxnoHchTXQfW+TorfovjZHYe/7plIFYWdV/KWFpRxbqdx4jo2dYohc90Wh37diQRPiAYG1vDn2fbFBkt7GWt0ssfWl7+03DfWzcAQ8eEknmhgKR446wumX1rOHlFZWzcU/eQBpjYtSM9/VvxftQe8krrVr7YytychYNvw9/RhTnRP5KYX/fqnFczF+aM84lgUfjLTPEbRlzBCZ6K+5Dn4uezJ/sIlbp/vgu4rip0VezMiuFfcR/xbPx8UorPMN1/FAvDX2Gkdz+D9OYBjuRc4OHd6+ng6sEXgyZibla3614sLObjHQeICApgRIh+veWfdsRTUl7F3eN66XWd6zlyKI2CvFKGjdZvWWhzYtQxeyGEuRAiDsgGtkkpD/3FY+YKIQ4LIQ7n5DSdNdN1MWBoCNY2lkT9ctQo1+/Z0Y8uQd4s3/gb1Zq69+7NzARvjBtOebWG1zftqPM7EVcbW74ZfgcOllbctX01qXocUH4tZytH7g4cz7LerzOnzSSyKwt4L2UZM359kfeSl7E35yhFmtK/v9A/VFBdzO7sWN5OWsqMX1/kwxPfUqQp5aGg2/m69+vMDBiDo6XhDsU+npfJ3TvW4Glrz9fDpuJoVbfljVJK/v3LdiSSf48dqldphPLKalZujqV3l9ZGKY8AEPXLURydbQkfULf6/M2RUbecSSl1QDchhAuwTgjRWUp5/JrHLAQWAoSFhTXrnr+tnTWDR3Zm19bjzH1ipMGPKhRC8MCU/jz67lp+3HGM6aPqfrZrWw83Hh/ajw+372NDfDITu9VtO30reye+u2Ua06NWMT1qFcuHTaWzm+ECws7Chom+QxjvM4iEolPszTnK/tw49uTU7hcIsG9FF+cgAu19aG3fEn+7lthZ2N7UtUu15Zwvy+R8eSZppRkkFJ36fZ7AxdKRW1r2JcKjOyFOgQbrxV8tNjuDe3b+gKOlNd/dMg2POk7IAqz4LZ59p8/x6tih+LrqVxN+VeQRCkoqmDu5n17XuZ6CvFIORKcwbmq42jX7D9TLd0pKWSiEiAZGAfqt/2vixt4WztYNR9m+OZ4Jd9T9CLrrCe/kT3gnf5b9fIhxEZ302uhyb7+e7E49w5ubo+nu14rWbi51uk5bZze+H3kns7Z9z/SoVXwxaCIDWxl2qZ6ZMKOrSzu6urTjoaDaMf1jhSc5VniSqMyDVNX8//COvYUtzpYOOFnaY29u+3svV0pJmbaCYk0ZRdpSyrT/v7LJ1tyajk5tGOoVTqhzO4Ic/TA3QsBfEXU+lXn7fqGlrQPf3jINX4e6B/SJrFz+u20Pg4IDmRam37BIQXE5KzYfZlDPtnQOMs7a98gNR9BqdYyZHGaU6zdVwlhL1IQQHoDmctDbAlHAe1LKjdf7mrCwMHn48GGjtKexkFLyxN2LKSmuYPGPj2JWx/HXG0k+k8U9r65gxugwHpseode1LhYWM+mrFXg7ObLqvjuw1WOp3qWyYu7Z8QMni3J5q/dIprczziqOa+lkDdmVeZwrz+RiRQ5ZlfkUa0op1pT9IdCFAHtzW5wuvxC4WTvT2s4bfztvPG1cjdJ7v5aUkqXJh3nr8A5C3bxZPHSKXj360soqpixaRVlVFT89MBMPx7pfC+Ddr7fz8+7jrHz7LqOcNavV6Lhr3Ef4t/Hg3S9mG/z6jZEQIlZK+bevfMbs2XsDy4UQ5tTODay5UdArtYQQTJzeh3dfWsvhA6foNaBux8jdSEigF2MHduL7rUeYMKQL/i3rfq5qKxcn/jt5FA+sWM8rv2znv5PrvpHH296JH0bN5NE9G3jhYCTH87N4JWwoNhZ1fwG5GebCDG9bD7z13NBkbGWaal45FMVPaccZ5d+OjwaMw1aP742upoZn10WSnl/IstlT9A761HM5bIhO4PYR3YwS9AD7opPJyylh3kt1P8yluTLmapxjUsruUspQKWVnKeUbxrpXUzNgWAjunk6s/faA0e7x0O39sbG25L2vt+u91DMiOJB5Q/uxMSGFL3b/aQ7+H3G0smbJ0CnM7diLFalHmbj5G04W1q08Q1NyPC+TcZuWsS7tOI+H9ueLQZP0CnqAD7btY+eJNJ4fNYjwAF+9rqWrqeHdpdtwdrDhvonGWWEtpWTtN/vx8XcjvL9aW/9PqR20DZClpQWT7uxD/OEzvx/MYGjuLg48MnUAh5PS2bRX/41cDwzsxcSuHfl016/8HK/fRikLMzNeDBvK18NuJ6eyjHGblrEs+TC6muZzJOEVmhodXx0/xOQt31KmqWbliOk81W0gZnqe47oqJp6vf41lRq9uzOpd98NRrvhxezyJaZk8OXMwzg43N8H9T8XHnOFk8kWmzOpnlOHNpk59xxqo0ZN64uBky8rF+pcUuJ6JQ0IJbdeKj1bsIiu/RK9rCVG7HLN3gB8vbogi+oT+p0kN8WnLlnH30svLj9ditjNpyzd61cNvbGJzLjBu0zLeORLNIJ82bBl3L31bttb7upuPn+CNTTsZFBzICyMH6X299KwCPl+9l76hAYzo20Hv6/0VKSXfLdpFCzcHho/Vb2dvc6XCvoGyd7Bhyqx+HNxzgpTjda9WeSNmZoJ/zx2JVqvj7cVReg/nWFmY8/m0cbT3cmfemo11PqT8ap62DiwfNpX5A8dzsayE8ZuX8+qhKPIq67aZqzHILi/lhV+3cNuWbymqquSrwZNZOHgyLWz0X5+/I+U0z/4USU9/Hz6+fazeJ0fpamp4Y+FWLCzMeeG+W/Ran38jcTFnSDhyjmn3DsTK2rhzOE2VCvsGbMIdvXF2sePrz/QfV78ePy9XHp0WwcGEc3y/Vf/NXA421iyeNZlAd1ceWrmB3an61+gXQjAhsCM7Js5hRrvufJt6lIifvuTDo3soqm48VS7/Tn5lOW8f3snAdV/yw6kE7u8YzvYJcxjpr9/5r1dEJqYyb81GOnp78uWdE/RaOXXF1xsOcSz1Ik/PGoJXi7ofin4jNTU1LP1sO+5eToyeVLeDWBQV9g2anb01M+YOJi7mDDH7TxrtPlOGdyWiR1s++34PSWn6D5O42tmybPYUgjzdePT7n4lMNEydfmcrG97sPYKo8fcz2KcNnyYcYOBPC/jg6B6yyw2/G7a+XCwr5p3YaCLWfcmipN8Y27o9OybO4eWwYdjX8eCRa62LS+SptZsJ9WnJklmTcbDR/yCR2OR0lqw7yKj+IYzub5x69QB7tiWSmniBux8epnr1ejDaOvu6UOvs/0yr0THn9s+wtLJgwcoHMTdCqViAotIK7nr5O4QQLHtjBi6O+k+ylVRWMXfFOuLSL/HcyEHM7tPdoG/zE/Oz+OTYfqLOp2JhZsaY1h2Y2a47YZ6+RhtOMJQaKTmYdZ7vThxh6/lUJDCmdQfmhfYn2KXu571eS0rJgj2H+CT6V/oG+vH59Al6lS2+IqeglNmvrMDe1orlb87AzsY4xciqqzTMuf1zbO2s+GLlg2pi9i/c7Dp7FfaNwP6dybzxzPc8+txYxk01TmEpgKS0TB54azWhwa2Y/+xteo/nAlRUa3huXSRRyaeYFhbKy6OHGOS6VztbXMA3J2L54VQCJZoq/B1cmNimE5PadCLQyTjrvevqZGEu69IS2XAmkQtlxThb2TAtuCsz23fHz6FuO5Cvp1qr5ZWft7PhWDITQkN4c/xwvSpZ/n5djZaH3v6B0+m5LHl1Om39DPfidK3VX+9l6WfbeeeLu+jR2zgHljd2KuybECklzz24nLSTmSz+8TFcXPXb/HIjG/ck8uairUwZ3pV/3aVfQawramokH+3Yx6L9h+nXxp8PbhtNC3vDFQO7okxTTeT5E6xLS2T/pbNIaksxDPVpyxDftvT08MHavH5rqVRqNcRkZ7DzwmmiM05ztqQAcyEY2CqQSW06M8IvWO/18n8lq7iUJ3/YxJH0i8wb0o8HI3oZ5GcppeSNhVvZvC+Jdx6/laHhht/0d0VOVhFzpnxGt/A2vPa/6Ua7T2Onwr6JOXs6m0fu/JJBIzvz7BuTjXqvT1btZsXmWB6fHsGMMYarP/LT0URe27gDFzsb/jdlDGGt9dvIcyOZ5SVsPpdCdMZpDmWlU12jw8rMnC5uLQnz9KWbuzftXDxo7eiKhYGGBjQ1Os4VF5BSmENc7kUOZ18gMT8TTU0N1uYW9G3pz1Cftoxu3UGvEgd/Z9+pczz70xYqNBrenjCC0Z0Nd5LTwh8PsGT9QeZM7sv9k/oa7LrXklLy2tOrOHowja/WPIy3b8N6h9aQNIRyCYoBBbT1ZOrs/qxcsoeho0IJM+LpPI/eEUFmbgmfrNqDu6sDIw20dnpy90509PZk3pqNzF62lkcH92XuwPA611+/kZZ2jtwbEs69IeGUaao5kHmOmKx0DudcYGlyDJrLG7SszMwJcHLF38EFb3snvO0ccbOxw8HSGgdLK+wsLH/vEddISblWQ6mmilJNNXmV5VwqKyazvIT00iLSivP+cN2u7t7cF9KL3l5+9Gnpb5Qe/NU0Oh2fRv/Kon0xBHm48fHUsbT1cDPY9TfsSmDJ+oOMi+hktF2yV+zbmczB3Se4f94tKugNRPXsG5HqKg0P3/kllRUavlrzMPYOhi2BfLWqai2Pv/8jCacu8f688Qzo3sZg1y6trOK1TTvZmJBCqE9L3p4wgiBPw4XS36nUaUktyCG1KJfUghzSivPJKC3iYnkxxdVV/+haLlY2eNs70crekSBnd9q7eNDOxZ1gF/d6HTJKupTNi+ujSMnKYUr3zrw0erBBllZese3gCV75YhN9ugTwwZMTjHKm7BVFBWXMnfo57h5OzF8+BwtL492rKVDDOE1U0rF0nrp3CaMn92Tei+OMeq/S8ioeeXctaRm5fPjURHp11n/35tU2JZzgzc07KavW8HBEb+7rH4aVEUPkZpRpqimsqqBUU02ppopyreYPn7eztMLR0goHS2tcrGywM9DSyLqq1GhZsOcQi/fF0MLellfHDmO4nqdMXWvPkdM8/8kvdAnyZv4zk7Ex8vLHd19ay55tiXz63QO0bWecw0+aEhX2TdjCj7by43cHeP2jO+kTYbjx2L9SVFLBQ2+vISOrkPefmECf0ACDXj+vtJy3tkSzJTGVNu4teH5kBBHBhq1l3xRJKdmRcpr3o/ZwvqCICV1DeGHkYFzsDPtub9fhk7z02Sbatfbg0+en4GCr//r8G4mOTODdl9Yy64HBzJw7xKj3aipU2Ddh1dVa5s1eRF52MQu+fxg3D+PsXLyisKSCR99dy7lL+fzn0VuJ6GH4JXC7U8/wduQuzuUXEhEUwHMjIww63tyUpGTm8E7kbg6dTSfYw40XRw+mbxvDHFx+tW0HT/Dql1sICfRi/jOT9Tro5mZkXizgoWkLaN3Wkw8X3WO0PSVNjQr7Ju5cWjaPzVxIhy6+vPPFXZgbeO36tYpKK3jivz9x4mw2z98znPGDuxj8HtVaHd/9FscXuw9SXq1hXJcOPBjRm0D3utfbb0pSs3JZsOcQkYmpONna8PiQvtzRM9Tg+xYAVm89wkcrdtGtnQ8fPD3R6D16jUbL0/ctJf1sLgtWPURLH/Uzv1kq7JuBqJ+P8uHr67nz/kHMfmio0e9XXlnNC5/8wsGEc8yZ3Jf7JvYxyk7VgrIKFu6LYVVMPNU6HWM7t+eBgb3qdRK3IUm+lM1Xe38jMukkdlaWzOrdnXv79cTZ1vAT9DU1ks9X7+W7zYcZHBbE6w+NxsaAE73Xs+CDLaxfdZCX37+DgcPqdp5xc6XCvpn44LV1bN8Yz2v/m2708XsArVbHf5ZsY/O+JMYO6Mhz9wzH2so4q05yS8tYeiCWVTHxVGi09Gvjz6ze3RkUHIiZWcMuh6AvXU0NO1JO8+2hOGLOZWBvZcWs3t2Y3bcHrnbGqRdfUanhjYWR7Iw5yW3DuvL0XUOMsiz2Wru2JvDOi2uZOK03Dz0zxuj3a2pU2DcTVZUanrpvCRfT85m/fA7+gcY/Wk9KyZJ1B1m07lc6tW3Je/PG4+HqYLT7FZRVsDo2gVUx8WSVlOLn6szkbp2Y0DWEVi5ORruvKaTnF7IuPon1cUlcLCqhlbMTM3p1ZUqPzkbpyV9xMaeIZz7aQFpGHo/cMZAZY3rWS32hUymXeOreJQSFePPel7OxtFRbf/4pk4e9EMIP+AbwAiSwUEo5/0Zfo8K+brIvFfLYXQuxs7dm/rI5OLkYvhTBX4mOOcnrX0ViZ2PFfx4bS/f2xtsRC7WbhrYln2L14QQOnU1HAL0D/RjdqR3DOwTh5lA/z9vQsopL2ZFyms3HT3D4/AUE0K9ta+7o2YWh7dsaZUz+aocSzvHKF5vQ1UjeemQMfUPrZzVUXk4J82YvAuDTb+fi6ma8DkNT1hDC3hvwllIeEUI4ArHARCnldc/AU2Ffd4nx53nuweW069iKdxfMxspIQyvXOpWew/Of/MLF7CLmTO7HXeOMsyP2WhkFRayPT+KXYymcyy9EAD1b+zCkXRsGtG1NOy/3Blv5sqZGkpyZzYG08+xIOU1cxiUA2ri3YHxoCBO6huDtbNwVVgBaXQ2LfjrA8l9+o42PG+8+Ph5/7/qZGK2sqOZfc74m/WwuHy6+l6AO3vVy36bI5GH/pxsJsQH4TEq57XqPUWGvnytjn4NHdua5t26rt3KwpRVVvPf1dqJ+PUHPED9efWAUXm7GDyuoHVJKzcolKvkU25JPkZpdezi5u70dvQP96O7Xim5+3rT3csfS3DRL+aq1OlIyc4jLuMjR9EscPJNOQXkFAB1bejKiYxC3hATV61LTjKxCXvtyCwmnLjF+UGeemjkEW5v6qRWv0+p445nV/LYvlVc/rJ+5pqasQYW9ECIA2AN0llIWX/O5ucBcAH9//57nzul/lF1ztnrZXpZ+up1xU3vxyLNj6q13K6Vk495EPvwmGgtzM56cOZgxAzrWe+86s6iEA2nnOZB2nkNn0skpLQPA1tKCdp7utPNyJ9jTjbYebvi6OOPt7GiwXbvVWi0XCkvIKCzidE4+qVm5nMzOJTU7lyqtDgBvJ0d6BfjSv21r+rbxx8PReAXR/kpNjWT9rgQ+XbUbMzMznrt7mNHOjf3r+9fwv9c3sG1jnNFLdjcXDSbshRAOwG7gP1LKn270WNWz15+UksXzo1j77YF6W5J5tYysQl5fGMmx1Iv0DQ3guXuG4+1umklUKSUXi0qIS79EfMYlTmTVBu+VXjWAmRB4Otrj7mCPm70dLrY2uNjZYGtpia2VJTYWFlx5vZISKrVaKqo1VGg0FFVUkV9WTl5ZObml5WSXlHL1b5ObvR3tPN1o5+VBdz9vuvl607IehmeuJz2rgHeWbCc2OZ3wTv68fP8IWtbjz0ZKyZcfRrJ+1UHuenAIM+YMrrd7N2UNIuyFEJbARmCrlPJ/f/d4FfaGIaXk4zd/JnLDEe5+ZBjT742o1/vX1Eh+2HaUBT/sB2DO5L5MHdEdywawI1JKSV5ZOWm5BWQUFJFRWMSFwmLyyyrIKy2nsKKCwopKKqo1XO83w0wIbC0tcbSxooW9He72drg52OHj4oSvizO+rk4EurVoMBPGVdVaVm6J5esNB7GwMOexaRFMHNKlXt91SSlZ+ul21izfx6Q7+/DAU6Ma7JxKY2PysBe1P8nlQL6U8omb+RoV9oaj09Xwwavr2LnlGPfPG8Htd/Wv9zZcyi3mv8t3sD/uDAGtWvDkjMEGr61jLFJKqrQ6qrTaP/y9jYUFVhbmjSKopJTsOXKa+St3cyG7iCHhwTw9a4hRl8lerx3ffhXNikW7GXNbGI+/cGuj+P41Fg0h7AcAe4EEoObyX78opdx8va9RYW9YOq2Od176kb3bE7nnkWFMq+ce/hX7jqbx0XfRZGQX0a9rIA9PHUCwv/H3AzRnyWmZfL5mHzGJ5wlo1YKnZw0xeNXSmyGl5OvPd7D6672MGN+dJ18Zr86RNTCTh31dqLA3PJ1Wx39fXUd0ZAJ33DOQex4ZZpJeVbVGy+qooyz7+TfKKqoY0acDc27ri5+XqoFiSGkX8vhq7X52HT6Fs4MN90/qy+ShoUatP389NTU1fPVhJOu/P8SYyT157IVbVdAbgQp75Xc6XQ2fvbuRzT/FMmpiDx5/4VaTVRQsLqvku02HWb31CBqtjpH9Qpg1Now2vsY7tLo5SD2XzTcbY9h+6AS21lbMGN2TaaN7GL2A2fVUV2v58LX17NqawOQZfZn75Eg1dGMkKuyVP5BSsnzBTlYt2UPvge148Z3bsbE13cEbeYVlfLMxhvXRx6is1hLRoy0zx4YRGtxKhcJNklISm5zOd5sO8+uxs9jZWHHbsFBmjg3HxdE49XNuRllJJW888z1xMWe499HhTL17gPqZGpEKe+UvbVwbw+fvbSKogzev/W86bh6mrS1TVFLBmm1HWbMtjuLSStq39mTKLd0Y0bd9vVRbbIzKK6uJ3J/MD9viSLuQh6uTHdNG9uC2YaE42huvfs7NyLxYwKtPrCT9bC5PvTqR4WO7mrQ9zYEKe+W6Du45wTsvrsXewZrXP7qT4JBWpm4SFZUatuxPYu32OE5n5OFkb82Ivh0YO7ATIYFezb5nKKUk4eQlNu1LZNvBE5RVVDe4F8bE+PO8/vT36LQ6XnpvKj16G/6QG+XPVNgrN3Q6NZNXn1hJcWE5T782kUEjOpu6SUBtqB1NyeCnncfYE3uKKo2OgFYtGNUvhGG92tVb7ZaGIu1CHjsPpRL5azLpmYXYWFkwJDyY24Z1pXOQd4N5EYz6+SifvP0LHi2deePjGfgFqDmY+qLCXvlb+bklvPnsapLi05l0Zx/uf3wEFpam3/h0RUlZJdsPpbJ5fxLHUi8CEOTnztBe7ejXNZD2rT2bXF37mhpJ8plM9sedYWfMSc5cyEMI6N7el7EDOzEkPBh7E861XKu6SsOCD7aw+adYuoUH8tK7U+ut6qpSS4W9clM0Gi2LP45i/feH6NjVjxfevh3Pls6mbtafZOWVsDPmJDt/S+XYydrgb+FsR98uAYR39qdHiB9eLUxXikAfl3KLOZKczm+J5zl47CyFJRW/B/zQXu0YEh6Eu0vDK/97MT2ft1/4gZPJF5k6ewB3PzxUnRtrAirslX9k19YEPn7rZywszXnq3xPpN7j+imP9U3lFZRxKOMeB+DMcSjhLcVkVAL5eLnRr70OnNi3p2LYlQb7uJllffiPVGi2n0nNJPJ1JUlomcScucDGnCAAXR1v6hAbQLzSA3l0CTLqi5u/s2prA/P/8gpmZ4OnXJjXofy9NnQp75R/LOJfLOy+s5dSJS4ye1JMHnhqJrZ1p1mnfLF1NDafTc4lNSic2JYPjJy9SUFJb6MzSwpyAVi1o6+tGoI8bAa1a4Ovlgq+nCzbWxp3QLK+sJiOriIzsAs5fKuB0Ri5pGXmcvZiPVle7obyFsx2hwa3oGeJHjxBf2vi4N/hhqdKSCr54fzM7Nh8jJNSP5/9zGy1bNa95lIZGhb1SJxqNluULdrL2mwO0bOXCv16fROfu9b/Nvq6klFzKLSYpLZPktCzSLuRxOiOXrLySPzyuhbMdHq4OeLg44O5qj7ODLU72NjjZW2Nna4W1pQXWVhZYWpojqA1giaS6Wke1RkuVRkt5RTVFZZUUl1ZSVFpJbmEpuQVlZBeUUlBc/ocmsB1wAAALvklEQVT7ebs70dbXnTa+boS08aJTG288Wzg0mAnWm3Hk0Gk+fH09+bmlzLg/gun3RqhhmwZAhb2il4QjZ/ngtfVkXSxk3NRw7n10eIPv5d9IaUUV6ZmFZGTV/rmUW0R2fim5hWXkFpRSXFaJrqZuvwvm5mY42dvg4WqPh6sD7i4OtPJwxs/LBR8vZ/y8XBvUpOo/VVpSwaKPoojccATf1u4888YkOnQ27hGUys1TYa/oraK8imWf72DD6t9w93Ti0efHNtlThaSUlFVWU1xaSUWlhmqNlkqNFo1G94fHWVqaY3O5129rY4WTvQ12NpaNqod+s6SU7N2exIL/bqawsJwpM/sxc+5grOvpRCvl5qiwVwwm6Vg689/6mbOns+kT0Z4Hnx6Ft28LUzdLMaL0s7l88f5mjhw6TVAHb554eXyD2Hyn/JkKe8WgNBot61YeZMWi3eh0Ndw+qx933DPQpPV1FMMrK61k5eLdrF91CCtrC2Y/NJRxt4ersfkGTIW9YhS52cUsnh9FdGQCLdwdmfXAYEaO767CoJHTaLRs/vEwKxbtprioghHju3HPI8NxdWt46/uVP1JhrxhVYvx5Fs+PIik+Hb8Ad+5+ZBj9BndQ9cobGZ2uhj3bElm+YCeXMvLpGhbInCdGqCGbRkSFvWJ0UkoORKew9LPtZJzLJTDYi5lzB6vQbwSuhPzKxbs5fyaHwCAv7n1sOOH9g5vkZHNTpsJeqTc6rY7orcdZtWQ3GefyCAzy4o57BhIxvKMa3mlgNBotuyKPs3rZXtLP5tK6rScz7h/EwOEd1Qt0I2XysBdCLAVuBbKllDdVUlGFfeOm09Wwe+txVi3dw/kzOXi1cuG2GX0ZOaGHmsg1sbLSSrasi2XdyoPkZhcTGOzFjPsH0X9oiAr5Rq4hhH0EUAp8o8K+eampqeHQ3lTWLN9HUnw69g42jJzQnVtvD8fHz83UzWtWzp/J4ZcffmP7xnjKy6roGhbI7bP7E9Y3SA3XNBEmD/vLjQgANqqwb74S487z85pD7N2ehE5XQ1i/IEZN6EHviPZYWVmYunlNUlWlhgO7UohcH0tczBksLc2JGNGZCXf0pn0nH1M3TzEwFfZKg5KXU8KWdbFsWRdLbnYxjs62DB0VyvBbuxIcos6d1ZeUkpTjGWzfGE90ZAJlpZV4ebswZnJPRk3qiYurvambqBhJowl7IcRcYC6Av79/z3PnzhmtPYrp6XQ1HD2Uxtafj/DrrhQ0Gh0+/m4MGdWFQSM64x/oYeomNhpSSs6dzmZX1HGiIxPIvFCAlbUFA4Z2ZOT47oSGBajx+Gag0YT91VTPvnkpKa5g344koiMTOBZ7FiklfgHu9B3UgX5DOtCuow/m5iqsrqbT6khOyODArhQO7ErhUkY+ZmaC7r3aMGRUKP0Gd8De0bSHjiv1S4W90qjkZhezPzqZA7tSSIg9i05Xg7OLHWH9ggjrF0yPPm2b7VBEfm4JRw6lEbM/lcO/nqa0uAILC3O69QqsfWEc3IEW7o3zlC5FfyYPeyHEKmAw4A5kAa9KKZfc6GtU2CtQ2+M/fOAUMQdOcnj/SYoKa2vDt27rSWjPALp0b01IqF+DPD5RX1JKsi4Vknwsg4QjZzkWe5b0s7kAuLo5ENYviPB+wYT1DVI9eAVoAGFfFyrslWvpdDWcTL5IfMwZ4mPPkhh3nsqKagDcPZ0I6eJLcMdWBHVoRXAH70Z32HVhfimnUjI5lXKR1KSLJB9LJz+vFAA7e2s6d/MnNCyAbuFtaNu+pRqDV/5Ehb3SJGk1Ok6nZpKSkE7SsQySE9LJulj4++fdPZ3wD/TAv40H/oHuePu2wNvHFc+WzibbzavV6MjOLOJSRj4XM/JJP5PLuTM5nE/LIT/3/0/Q8vZtQcdQX0K6+NGhiy9tgr3UDmTlb6mwV5qN4qJyTp+o7R2fPZXN+TM5nEvLoapS8/tjzMzNcHN3xM3DEXcvJ1zdHGjh5oCzqx3OrvbYO9hgZ2+Nnb011jaWWFmZY2lpgbmF2e/LQqWUaLU6NNU6NBodVZUaysuqKC+rorSkkqKCMooKyigsKCMvp4TcrGLyckrIzy2h5qpTsGztrH5/QQpo60lwSCvatm+JQwM+YFxpuFTYK81aTU0NuVnFXLpQQOaFAi5dKCA3q5ic7GLysospyCultKTSKPe2d7CpfVHxdMLN0xEPL2e8fVzx9nWlpY8r7p5Oal+BYjA3G/ZqC6PSJJmZmeHp7YKntwtdwwL/8jHV1VqKC8spKiijvKyKstIqykurqKrSoNFo0VTr0Gr/fCyhhWVtr9/axrL2HYFD7TsCF1c7nFzssLRUv1ZKw6P+VSrNlpWVBe6eTrh7Opm6KYpidGpqX1EUpRlQYa8oitIMqLBXFEVpBlTYK4qiNAMq7BVFUZoBFfaKoijNgAp7RVGUZkCFvaIoSjOgwl5RFKUZUGGvKIrSDKiwVxRFaQZU2CuKojQDKuwVRVGaARX2iqIozYBRw14IMUoIcUIIcUoI8bwx76UoiqJcn9HCXghhDnwOjAY6AtOFEB2NdT9FURTl+ozZs+8FnJJSpkkpq4HvgQlGvJ+iKIpyHcY8qcoHSL/q4wyg97UPEkLMBeZe/rBKCHHciG0yJXcg19SNMCL1/Bo39fwar/Y38yCTH0sopVwILAQQQhy+mYNzG6Om/NxAPb/GTj2/xksIcfhmHmfMYZwLgN9VH/te/jtFURSlnhkz7GOAYCFEoBDCCpgG/GzE+ymKoijXYbRhHCmlVgjxKLAVMAeWSikT/+bLFhqrPQ1AU35uoJ5fY6eeX+N1U89NSCmN3RBFURTFxNQOWkVRlGZAhb2iKEoz0KDCXghxuxAiUQhRI4RoMsukmnLZCCHEUiFEdlPdHyGE8BNCRAshki7/25xn6jYZihDCRgjxmxAi/vJze93UbTIGIYS5EOKoEGKjqdtiaEKIs0KIBCFE3N8twWxQYQ8cByYDe0zdEENpBmUjlgGjTN0II9ICT0spOwJ9gEea0M+vChgqpewKdANGCSH6mLhNxjAPSDZ1I4xoiJSy29/tI2hQYS+lTJZSnjB1OwysSZeNkFLuAfJN3Q5jkVJeklIeufz/JdSGho9pW2UYslbp5Q8tL/9pUis2hBC+wFhgsanbYmoNKuybqL8qG9EkwqK5EUIEAN2BQ6ZtieFcHuKIA7KBbVLKJvPcLvsYeBaoMXVDjEQCUUKI2MulZ66r3sslCCG2Ay3/4lMvSSk31Hd7FOVmCCEcgB+BJ6SUxaZuj6FIKXVANyGEC7BOCNFZStkk5l+EELcC2VLKWCHEYFO3x0gGSCkvCCE8gW1CiJTL77b/pN7DXko5vL7vaWKqbEQjJ4SwpDboV0gpfzJ1e4xBSlkohIimdv6lSYQ90B8YL4QYA9gATkKI76SUM03cLoORUl64/N9sIcQ6aoeN/zLs1TCO8amyEY2YEEIAS4BkKeX/TN0eQxJCeFzu0SOEsAVuAVJM2yrDkVK+IKX0lVIGUPt7t7MpBb0Qwl4I4Xjl/4ER3OCFukGFvRBikhAiA+gLbBJCbDV1m/QlpdQCV8pGJANrbqJsRKMhhFgF/Aq0F0JkCCHuM3WbDKw/MAsYenl5W9zlnmJT4A1ECyGOUdsp2SalbHLLE5swL2CfECIe+A3YJKWMvN6DVbkERVGUZqBB9ewVRVEU41BhryiK0gyosFcURWkGVNgriqI0AyrsFUVRmgEV9oqiKM2ACntFUZRmQIW9olyHECJcCHHsct13+8s13zubul2KUhdqU5Wi3IAQ4i1q66rYAhlSyndM3CRFqRMV9opyA5frGcUAlUC/y1UiFaXRUcM4inJjboAD4EhtD19RGiXVs1eUGxBC/Ezt6WKBgLeU8lETN0lR6qTe69krSmMhhLgL0EgpV14+S/iAEGKolHKnqdumKP+U6tkriqI0A2rMXlEUpRlQYa8oitIMqLBXFEVpBlTYK4qiNAMq7BVFUZoBFfaKoijNgAp7RVGUZuD/AEyXwNSAT4aGAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "import pints\n", + "import pints.toy\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "\n", + "# Create log pdf\n", + "mean = [2, 4]\n", + "cov = [[1, 0], [0, 3]]\n", + "log_pdf = pints.toy.GaussianLogPDF(mean, cov)\n", + "\n", + "# Contour plot of pdf\n", + "levels = np.linspace(-3,12,20)\n", + "num_points = 100\n", + "x = np.linspace(-1, 5, num_points)\n", + "y = np.linspace(-0, 8, num_points)\n", + "X, Y = np.meshgrid(x, y)\n", + "Z = np.zeros(X.shape)\n", + "Z = np.exp([[log_pdf([i, j]) for i in x] for j in y])\n", + "plt.contour(X, Y, Z)\n", + "plt.xlabel('x')\n", + "plt.ylabel('y')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we set up and run a sampling routine using the Neal Langevin MCMC" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": "Running...\nUsing Neal Langevin MCMC\nGenerating 3 chains.\nRunning in sequential mode.\nIter. Eval. Accept. Accept. Accept. Time m:s\n0 3 0 0 0 0:00.0\n1 6 0.333 0.333 0.333 0:00.0\n2 9 0.5 0.5 0.5 0:00.0\n3 12 0.6 0.6 0.6 0:00.0\n100 303 0.961 0.971 0.98 0:00.1\n200 603 0.975 0.975 0.985 0:00.2\n300 903 0.98 0.977 0.986755 0:00.2\n400 1203 0.985 0.98 0.988 0:00.3\n500 1503 0.986 0.982 0.988 0:00.4\n600 1803 0.986711 0.983 0.988 0:00.5\n700 2103 0.987 0.982906 0.988604 0:00.5\n800 2403 0.989 0.985 0.989 0:00.6\n900 2703 0.987 0.984 0.989 0:00.7\n1000 3003 0.987 0.985 0.988024 0:00.7\n1100 3303 0.986 0.985 0.989 0:00.8\n1200 3603 0.987 0.985025 0.989 0:00.9\n1300 3903 0.988 0.985 0.99 0:00.9\n1400 4203 0.988 0.986 0.991 0:01.0\n1500 4503 0.988016 0.985 0.991 0:01.1\n1600 4803 0.988 0.986 0.991 0:01.1\n1700 5103 0.987074 0.986 0.991 0:01.2\n1800 5403 0.987 0.986 0.99 0:01.3\n1900 5703 0.987 0.986 0.99 0:01.3\n2000 6003 0.987 0.986014 0.99001 0:01.4\n2100 6303 0.986 0.987 0.99 0:01.5\n2200 6603 0.987 0.987 0.99 0:01.6\n2300 6903 0.987 0.987 0.99 0:01.6\n2400 7203 0.987 0.988 0.989592 0:01.7\n2500 7503 0.987 0.988 0.99 0:01.8\n2600 7803 0.987 0.988 0.99 0:01.8\n2700 8103 0.987 0.987 0.989 0:01.9\n2800 8403 0.987152 0.987 0.989 0:02.0\n2900 8703 0.987 0.986561 0.989 0:02.1\n3000 9003 0.987 0.987 0.989 0:02.1\n3100 9303 0.987 0.987 0.988717 0:02.2\n3200 9603 0.988 0.987 0.988757 0:02.3\n3300 9903 0.988 0.988 0.988189 0:02.3\n3400 10203 0.988 0.988 0.988 0:02.4\n3500 10503 0.988 0.987 0.988 0:02.5\n3600 10803 0.988 0.988 0.988 0:02.5\n3700 11103 0.988 0.987 0.988 0:02.6\n3800 11403 0.988 0.987112 0.988 0:02.7\n3900 11703 0.988 0.987 0.988 0:02.8\n4000 12003 0.988 0.987 0.988 0:02.8\n4100 12303 0.988 0.987 0.988 0:02.9\n4200 12603 0.988 0.986673 0.988 0:03.0\n4300 12903 0.988 0.986 0.989 0:03.0\n4400 13203 0.988 0.986597 0.988 0:03.1\n4500 13503 0.988 0.987 0.988 0:03.2\n4600 13803 0.988266 0.987 0.988266 0:03.3\n4700 14103 0.988 0.987 0.988 0:03.3\n4800 14403 0.988 0.987 0.988 0:03.4\n4900 14703 0.988 0.987 0.988 0:03.5\n5000 15003 0.988 0.987 0.987605 0:03.6\n5100 15303 0.988 0.987 0.987 0:03.6\n5200 15603 0.988466 0.987 0.988 0:03.7\n5300 15903 0.988 0.987 0.987 0:03.8\n5400 16203 0.988 0.987 0.988 0:03.9\n5500 16503 0.988 0.987 0.987 0:03.9\n5600 16803 0.98804 0.987 0.987326 0:04.0\n5700 17103 0.987899 0.987 0.987 0:04.1\n5800 17403 0.988 0.987 0.987 0:04.1\n5900 17703 0.988 0.987123 0.988 0:04.2\n6000 18003 0.988004 0.987 0.988 0:04.3\n6100 18303 0.988 0.987 0.988 0:04.4\n6200 18603 0.988 0.987 0.988 0:04.4\n6300 18903 0.987 0.987 0.988 0:04.5\n6400 19203 0.988 0.987 0.988 0:04.6\n6500 19503 0.988 0.987 0.988 0:04.6\n6600 19803 0.988 0.987 0.988 0:04.7\n6700 20103 0.988 0.987 0.988 0:04.8\n6800 20403 0.988 0.987 0.988 0:04.8\n6900 20703 0.988 0.987 0.988 0:04.9\n7000 21003 0.987575 0.987 0.987575 0:05.0\n7100 21303 0.987 0.987 0.987 0:05.0\n7200 21603 0.988 0.987 0.988 0:05.1\n7300 21903 0.988 0.987 0.988 0:05.2\n7400 22203 0.988 0.987 0.988 0:05.2\n7500 22503 0.988 0.987 0.98747 0:05.3\n7600 22803 0.988 0.987 0.988 0:05.4\n7700 23103 0.988 0.987 0.988 0:05.4\n7800 23403 0.988 0.987 0.988 0:05.5\n7900 23703 0.988 0.986 0.988 0:05.5\n8000 24003 0.988 0.987 0.988 0:05.6\n8100 24303 0.988 0.987 0.988 0:05.7\n8200 24603 0.988 0.987 0.988 0:05.8\n8300 24903 0.988 0.987 0.988 0:05.8\n8400 25203 0.98786 0.987 0.987741 0:05.9\n8500 25503 0.988 0.987 0.988 0:06.0\n8600 25803 0.988 0.987 0.988 0:06.0\n8700 26103 0.988 0.987 0.988 0:06.1\n8800 26403 0.988 0.987 0.988 0:06.2\n8900 26703 0.988 0.987 0.988 0:06.2\n9000 27003 0.988 0.987 0.988 0:06.3\n9100 27303 0.988 0.987 0.988 0:06.4\n9200 27603 0.988 0.987 0.988 0:06.4\n9300 27903 0.988 0.986777 0.988 0:06.5\n9400 28203 0.988 0.986705 0.988 0:06.6\n9500 28503 0.987792 0.987 0.988213 0:06.6\n9600 28803 0.987815 0.987 0.988 0:06.7\n9700 29103 0.988 0.987 0.988 0:06.8\n9800 29403 0.988 0.987 0.988 0:06.8\n9900 29703 0.988 0.987 0.988 0:06.9\n10000 30000 0.988 0.987 0.988 0:06.9\nHalting: Maximum number of iterations (10000) reached.\nDone!\n" + } + ], + "source": [ + "# Choose starting points for 3 mcmc chains\n", + "xs = [\n", + " [2, 1],\n", + " [3, 3],\n", + " [5, 4],\n", + "]\n", + "\n", + "# Set a standard deviation, to give the method a sense of scale\n", + "#sigma = [1, 1]\n", + "\n", + "# Create mcmc routine\n", + "mcmc = pints.MCMCController(log_pdf, 3, xs, method=pints.NealLangevinMCMC)\n", + "\n", + "# Add stopping criterion\n", + "mcmc.set_max_iterations(10000)\n", + "\n", + "# Set up modest logging\n", + "mcmc.set_log_to_screen(True)\n", + "mcmc.set_log_interval(100)\n", + "\n", + "# # Update step sizes used by individual samplers\n", + "for sampler in mcmc.samplers():\n", + " sampler.set_leapfrog_step_size(0.7)\n", + " sampler.set_alpha(0.95)\n", + " sampler.set_delta(mean=0.05)\n", + "\n", + "# Run!\n", + "print('Running...')\n", + "full_chains = mcmc.run()\n", + "print('Done!')" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1YAAAEYCAYAAABfkWdeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOy9eZQc1Z3v+bmRmbVKpa0kJCEhIbNpAzVIBiwvMn74nbZfQ5uH2/ZAvzeGhsGyPT3u8Yzd79hz3BwxPX7Dwx63wY2M3RLGwgubQW2wjBZAINCGJEr7VqpFta+5Z0Tc3/wRkZGZtReqTXA/OjpVGeuNyMjK3/f+NiUiGAwGg8FgMBgMBoPh/WON9wAMBoPBYDAYDAaD4WLHCCuDwWAwGAwGg8FguECMsDIYDAaDwWAwGAyGC8QIK4PBYDAYDAaDwWC4QIywMhgMBoPBYDAYDIYLJDzeA7gQKisrZeHCheM9DIPBYDCMAvv27WsVkZnjPY73w4V+P2XcDF3pLqaWTCViRUZuYCNNtNH7OXn2+I7DYDAYxpD+vp8uamG1cOFC9u7dO97DMBgMBsMooJQ6N95jeL9c6PdTbbSWl06/xF9f8dfMnTR3BEc2wmz/Z+/np/9xfMdhMBgMY0h/308mFNBgMBgMhglGSIUAcMUd55EYDAaDYagYYWUwGAwGwwTDUt7Xs4iM80gMBoPBMFSMsDIYDAaDYYKRFVYT2mNlRJ/BYDAUcFHnWBkM48FjBx4bcP3aFWvHaCSGscS2berq6kilUuM9lA8cJSUlzJs3j0hkAhdpGGOywkqLHueRDICewKLPYDAYxgEjrAwGg2EI1NXVMXnyZBYuXIhSaryH84FBRGhra6Ouro7LL798vIczYbgocqzyRZ8ImM+FwWD4kGNCAQ0Gg2EIpFIpZsyYYUTVCKOUYsaMGcYT2IOLIscqX/RN5HEaDAbDGGGElcFgMAwRI6pGB3Nfe3Nx5Fjpvn83GAyGDylGWBkMBoPBMMG4ODxWRlgZDAZDPibHymAwGN4HP/rziRE93rduvWrQbR566CE2bdpEKBTCsiwef/xxbrzxxhEdRz5r1qzh4YcfZuXKle/7GMeOHeOrX/0q+/fv56GHHuLb3/72CI7wg4vC8+JdNMUrJvI4DQaDYYwwwspgMBguAnbt2sXmzZvZv38/xcXFtLa2kslkxntYgzJ9+nR+8pOf8MILL4z3UC4qQpZXvEIzgQVLgZiawJ41g8FgGCNMKKDBYDBcBDQ0NFBZWUlxcTEAlZWVzJ07F4AHH3yQVatWsWzZMu6///4gfGzNmjV861vfYuXKlSxevJg9e/Zwxx13cOWVV/K9730PgOrqaq655hruuusuFi9ezJ133kkikeh1/i1btnDzzTdz/fXX88UvfpFYLAbAd7/7XZYsWcK1117bpzdq1qxZrFq1ypRSHyYWF0MoYN7YjMfKYDAYjLAyGAyGi4HPfvaz1NbWctVVV7F27Vpee+21YN03vvEN9uzZQ1VVFclkks2bNwfrioqK2Lt3Lw888AC33347jz76KFVVVWzYsIG2tjYAjh8/ztq1azl69CgVFRU89lhhr7bW1lbWrVvHq6++yv79+1m5ciWPPPIIbW1tPP/88xw+fJhDhw4FYs1w4WQLekzs4hUmFNBgGAk6ExnerekY72EYRgAjrAwGg+EiYNKkSezbt4/169czc+ZMvvSlL7FhwwYAtm/fzo033sjy5cvZtm0bhw8fDva77bbbAFi+fDlLly5lzpw5FBcXs2jRImprawGYP38+q1evBuDuu+9m586dBed+++23OXLkCKtXr2bFihVs3LiRc+fOMWXKFEpKSrj33nt57rnnKCsrG4M78eHgomgQbIpXGAwjwr+/18CO4y3E0854D8VwgZgcK4NhFBmswMFQChYYDFlCoRBr1qxhzZo1LF++nI0bN/LlL3+ZtWvXsnfvXubPn88PfvCDgp5Q2dBBy7KC37OvHcf7Eu9Z7rznaxHh1ltv5emnn+41pt27d7N161aeeeYZfvrTn7Jt27YRu94PM9niFRM7FLBHg2CDwfC+SNveZ8l2zQTFxc6oCSul1NXAb/MWLQL+L2AqcB/Q4i//byLyR3+ffwTuBVzgfxWRP43W+AyGkWLX6baC1+mWka0WZzCAF65nWRZXXnklAAcOHGDBggWBiKqsrCQWi/HMM89w5513DuvYNTU17Nq1i5tvvplNmzbx8Y9/vGD9TTfdxNe//nVOnTrFFVdcQTwep76+nrlz55JIJPjc5z7H6tWrWbRo0chc7ARGKRUC9gL1IvKfRvE8KKUmdvGKD2FVwJZEC0knyWUVl433UAwfIEKWN5HiaDNBcbEzasJKRI4DKyD4IqoHnge+CvxIRB7O314ptQT4MrAUmAu8qpS6SmQiB5gbDL3Z3/3bQbdZ29nl/bJ9Rt8bfPofR3BEhtFgrL2NsViMb37zm3R2dhIOh7niiitYv349U6dO5b777mPZsmXMnj2bVatWDfvYV199NY8++ij33HMPS5Ys4Wtf+1rB+pkzZ7Jhwwa+8pWvkE6nAVi3bh2TJ0/m9ttvJ5VKISI88sgjvY7d2NjIypUr6e7uxrIsfvzjH3PkyBEqKire340Yf/4eOAqM+gVYWBdRKOCHwyD8/YnfA7B2xdpg2emWGDuOt3DP6oWm2bXhfWH5wsp4rC5+xioU8DPAaRE5N8AfnduB34hIGjirlDoFfBTYNUZjNBiGx9k3AJjXney1qq7ihrEejeEDzg033MBbb73V57p169axbt26Xst37NgR/J4NIey5rrq6mnA4zFNPPTXg/rfccgt79uzptc3u3bsHHPfs2bOpq6sbcJuLBaXUPODzwEPAP4z2+SxlXUShgB9eg/DFA+cBiKYdKkpM9UvDMDj6EpROI2x5HtCM8+H9HH1QGKviFV8G8oPzv6GUOqSU+qVSapq/7FKgNm+bOn9ZAUqp+5VSe5VSe1taWnquNhgMBoNhtPgx8H9C3/F5I/39ZKmLyGNl+lgZo9gwfBqr4OwbFIU8czyaMsUrRhyt4dDvoWtsJvhGXVgppYqA24Df+4t+BnwEL0ywAfgfwzmeiKwXkZUisnLmzJkjOlaDwWD4sLFw4UKqqqrGexgTHqXUfwKaRWRff9uM9PeTpSxkIgsW47EqoCtpk7JN9oJh+BRHPHP8fGfvCBjDhVHX1ESi4Rgc+cOYnG8sPFZ/CewXkSYAEWkSEVdENPBzvHA/8HKw5uftN89fZjAYDAbDeLMauE0pVQ38BrhFKdU7fnIEsZSFqyewoT6RhFVnDbjjO9v/4oHz/PqdmnEdg+HipDgcAqC82BTrHmn+cKCBg3Vd4KQG33gEGIt38CvkhQEqpeaISIP/8gtAdqr0RWCTUuoRvOIVVwIDB+8bDMPgsQOPDbpNfkIy2/+57406D43QiAwGw8WCiPwj8I8ASqk1wLdF5O7RPKdiglcFHIviFXYSQsVgDTAPnGiHd38Nc1fA1X85OuMYIt1Je1zPb7g40f7n54NaFdDVLjvqdnDDrBuYWjLVWygCyQ4omz6q51bZv6FjNEk1qh4rpVQ5cCvwXN7i/66Uek8pdQj4NPAtABE5DPwOOAK8AnzdVAQ0GAwGw1iglLpmvMfQkwlfvCLPUMk4aZoTzSN7fBHY+WM4/seBt7P98KlY08ie32DoAxHhsQOPsa9pX+4Zrb0wP0D2c+58QKsCtiZbOd5+nG21eX0O6/fDO49D1+gGpykZW2E1qh4rEYkDM3os+9sBtn8Ir9qSwTAshuKNMhgMhgHYAgypOZGI7AB2jOZgwOtldbEUr/hj3XbOS5r7rr2PiDVClfGygqnxPVg8UMswX3xOZBE6isQyMQAmFU0a55EMQjoG3fUw8+rxHskF4fpz/u80vMMN05d6z+mprTD/o4Ps2T9ZR5XtfjCf4T7/jkX94LVEK0zpVatuxFBj/Dd0SMJKKbVcRN4b7cEYDB8U5nX3m9/uc8WYjMMwivQXKvp+GULvsoceeohNmzYRCoWwLIvHH3+cG2+8cWTHkceaNWt4+OGHWbly5fs+xq9//Wt++MMfIiJMnjyZn/3sZ1x33XUjOMqho5T6SX+r8JrXTygsZV00oYDnE01QOpW2ZBuzy2ePzPH3b/R+DtYbKiuoxtCAEpER7Vl1sOUgYRVmaeXSYe/75JEngR6h7EOkqrWK2eWzqSytHPa+w+atf/F+fvL/gNDFm0tUIBL0yIR+au3lB7of0FDA7Gel4N5Z/jOgRzc30sr/G2qnIFIyqucb6pP9mFKqGNgA/FpEukZvSAbD+FHg+RrFXKoXrVMAvNvZjwv8wGPv60vS8MFl165dbN68mf3791NcXExrayuZTGa8hzUol19+Oa+99hrTpk3j5Zdf5v777+edd94Zr+F8FfjfgXQf674yxmMZFIsJHgroz9zHtA14yfcZd5Bn8sQWTyhdeevgx092+ucZ5B5kswbGUFi54hJW4RF7f96sfxPgfQmr4eK4mrSjKS8O83rd68D7E2XDIv8+aXtYwsrVLlo0kdDE6BHm5mepXEh4mc49r8ovrODoCTyRcgFkBVVBlVMr5K8c5WvO/7uQ7h51YTWkHCsR+QRwF17Vvn1KqU1KqSH8VTQYDAbDSNDQ0EBlZSXFxcUAVFZWMnfuXAAefPBBVq1axbJly7j//vsDY2/NmjV861vfYuXKlSxevJg9e/Zwxx13cOWVV/K9730P8BoEX3PNNdx1110sXryYO++8k0Qi0ev8W7Zs4eabb+b666/ni1/8IrGYF3703e9+lyVLlnDttdfy7W9/u9d+H/vYx5g2zWtXeNNNN413s+A9QJWIbOz5H4iO58D6wrJGr49VU3eKc23xCzuI/5y1usngd2ew2ef6fVC3d3jnmTLPO0+ylaZ4H3lU2Xv0Pu9VbbSWA80HhrVP9jOWuQhzYp5/t571r58hmhrDQhv5z4U7vPNuPrOZn7/38xEeUG9s18YexAO1p3EP/1b1b8FruZBKlHnPq7iuP4YJPJFyAWTFaMFEhPIlyPstp+DasOcJryJoP4hIrngFjLp3DIZRvEJETgLfA74DfAr4iVLqmFLqjtEanMEwUajtTPb732AYCz772c9SW1vLVVddxdq1a3nttdeCdd/4xjfYs2cPVVVVJJNJNm/eHKwrKipi7969PPDAA9x+++08+uijVFVVsWHDBtra2gA4fvw4a9eu5ejRo1RUVPDYY4U5i62traxbt45XX32V/fv3s3LlSh555BHa2tp4/vnnOXz4MIcOHQrEWn/84he/4C//clyrtt0J9GlBi8jlYzyWQbHoLaxq2xMj0itp0zs1PLf/ApPG+xAyjoyg4VLhTRzgF/H43fHf8ezJZ/sYx9BCAdO2zVNvn6Kuo3Di4KXTL/HW+beGNbRsiOa+cx0Fy8PWIOGBTtrrp5PpPXkBsPVoE6eaR1fj13V431t7qltH9TwF5Hsyh2nc1sfGpvPOE1VP8OThJwfcZk/jnoLXjptXwnu4npc8QSFBKODFJ9SHQuCxkr48VgP/PUs7LlsON/b+u/fmjyHWAqdeHeC8YMkEFFZKqWuVUj8CjgK3AH8lIov93380iuMzGAwGAzBp0iT27dvH+vXrmTlzJl/60pfYsGEDANu3b+fGG29k+fLlbNu2jcOHDwf73XbbbQAsX76cpUuXMmfOHIqLi1m0aBG1tbUAzJ8/n9WrVwNw9913s3PnzoJzv/322xw5coTVq1ezYsUKNm7cyLlz55gyZQolJSXce++9PPfcc5SVlfU7/u3bt/OLX/yCH/7whyN5W4aFiLQDaaXUr8dtEMPAUhYSbQyKOLhaeGZfHS+827+h2RhvZP2h9STsvg33EcU3iA6lWwGBTAI9kJGUDe0bhNOdp+lIdeQMT+1wpP1I/zsMserXH069wp/qn2bbsQuvXpjtL/bOmfbh7Vi/D5qOQG3f4bCH6rp46WBDn+sGY6hhiaVFnkHbFh+bvj7ABQmrLIN6Q/vi7X+FMzuGtKmIkHb7ihLOURIuDCOz83sjHdsMB3879LHpfGHlPcMDeqySHbmCLhcDyQ7Y/XNIR3Meq/xQQOULq0E8Vi+/18jh8928faatcEXWWzjAhIoeB4/VUINc/wV4AvhvIhK8qyJyXik18BSlwTBROftGwcvx8D71e853t0BHP6mMQyhyYPhgEgqFWLNmDWvWrGH58uVs3LiRL3/5y6xdu5a9e/cyf/58fvCDH5BK5b7ss6GDlmUFv2dfO473JdMzCb/naxHh1ltv5emnn6Ynu3fvZuvWrTzzzDP89Kc/Zdu2bb22OXToEH/3d3/Hyy+/zIwZM3qtH0tExFVKLVBKFYnIhE5SU24Gt/YdYBKs+Aq2H3bW0NW/QbyncQ+OdmhONLNwysILHkN9rJ5ZZbP6rvTnGzR1TgzSUWg6gq74CMxY3PfB/Op1A+Fohz9V/wmA/2JrJgF0n+dU6xCE1SAeq5roWW+zEQivLDAQ83C0FBa2qHrWq4Z3w3/1d/T366PwxUCFC2q7a5laMpXJRZP73cYRh4gaPA9p5qRiatoTzJxcRMsY6G+gMPyvv1DA8+9iH/sjry+8nuvmrOpVUCPhJKgoqhj6ObN9ks7tgkVrhj3kvrB6+CNsJ0+INR1mWBTkanl/i/stty6Cs+sx3nLaueHTD1IeKR/euUaJnx38GUtnLOWT8z7Ze2XDQYi3QsMh3CmzgJ7Cyr+Xg0yInG31QpYTmfz75d0nRzShZCf9+YldLYVVAceg5PpQQwE/D2zKiiqllKWUKgMQkV+N1uAMBoPB4HH8+HFOnjwZvD5w4AALFiwIRFRlZSWxWIxnnnlm2Meuqalh165dAGzatImPf/zjBetvuukm3nzzTU6d8oquxONxTpw4QSwWo6uri8997nP86Ec/4uDBg30e+4477uBXv/oVV1111bDHNkqcAd5USn1fKfUP2f/jPaieWKI9MyTphZtlDe+BitGl/NCkkUj070h18IdTf2DX+V19b+AbLNcUTffEA6BjA3iDugf3xGyv3R78/mJnTkzVN3iVViOu3TuMTg+veIUjfRv2g3l88te7A8yyFzR5bTkB3efzDuKPUeXMr2yY1NnW/oXnS2de4qkjTyEi7G3cSzTTO1zQHmLukg7yw8awVWi+AOkvj6nmbWqdKMdbD3s9onrQkmgZ3jmHmcs1FHpOOtnuBXj9dB/Cqj9xneqixolSFT8/pLDVxw48xs76XORBVX0X50/sh8aqgu1cLWx6p4Yzxw5C+5lhX4KIsLfhILqvcYeK/JNk+g4FDDzS7+M5zESJa5tH2w+xc4C3WUtPYTVxPFavAv8ByH7qy/B6fnxsNAZlMPTE9KkyTDjG2HMYi8X45je/SWdnJ+FwmCuuuIL169czdepU7rvvPpYtW8bs2bNZtWrVsI999dVX8+ijj3LPPfewZMkSvva1rxWsnzlzJhs2bOArX/kK6bRnIK1bt47Jkydz++23k0qlEBEeeeSRXsd+8MEHaWtrY+1ar+pYOBxm795hFi8YeU77/y2gfxfAOKNEo5HACHf8MCHV7/xsDncEZmazFf4a4419b5BX6SuiLGxA4xlPiYxLeXG4z+0H4mTHSW+WG+hyPY++iEDE97bW7oEUsPrvOd5+nK01W7ln5k2UwKAhRUEqVj8l7LOV/vojP39sIBHmaiES6ncU/s/ce5h9r1qiGS6d7GKpwp3zK6q1JFvY3bib2mgtX7jyCwXbDVZ4IXe8rLAaw+IVybxctP6eTTeDhQKkz2spDhX33mcghmFED7VITM/PnuP04fQWGbxFABR8HnTWA9OfsEq04fjv21BDPg+1HOLjl3qTZH8+3MhNtZuYu2gGzF4WbFPfkaSpO0VT1a9YtGjGsL/XtBberenkpch5bl/RoxdVIKzsvkMBA0+zi+NqGrpSzJ/eO5x88ZzJHG2IYuXfU9emW2dojKZ5NXWWT2g3l7OVPz4BlX/OMXjmhyqsSkQkmEoRkVjWY2UwGEaHx/or937gMXad9mKNr6/4Uq/V37p1wngFDCPIDTfcwFtv9T1TuW7dOtatW9dr+Y4dO4LfsyGEPddVV1cTDod56qmnBtz/lltuYc+ePb222b1794DjfuKJJ3jiiScG3GasEZF/AlBKlYnIWAVDDRtLa88I9oWV7RtfQ7HZ3lc+Sg8G8soAgZBxESJK+cJKeKWqkWONUT63fA5Xz87TrfnGcj/GZ0iFcJuPepuEiqBiDk5XXZCP4aCRdByF1/sJIGpHfWE1NOO4v1DAwYzr/PXZezOpOEws7XBJRQlN3Z73wnY1JT2VVfZ6+zCKsyKivDiExsWicN/89/JA8wHQDu2p9l5jGrqw8n4WeKxS3Z5hWjRKIWbH/j33e3/GrXa9iYT3+f703mHon4G+2gREM1Fqo7UsmbEEgLpoHTG70KuodR/CKtkBZdOHML7c/e/KtJKSCGGnn3mebDNdNXigWV+f/crEqT63tS+wWIbrP89nWgorjDra4WSslmtEUG0n0dO9QjQFojDP0/zCgfPUtif4LzcvYMak4h7Hyu5TKJAc/3V5phVe++/wqe+AVXh/vFDAvOf8/VYgHAZDDQWMK6Wuz75QSt0AXEQZdAaDwWAweCilblZKHQGO+a+vU0pNOLe4pV3PdPBnYrOhgNnCc3E7zsaD6+k4uaWXwT5UI3sg4pk0jqv7b4TrG7pahIhvTmgR4n4uRK9y3vkGdV9Gb9NhFtS+m7dAQ7gEW3TOOyaCi4CdCgxtlb30QYzE7C3qr+nyYGI03wuYPfeUsghXlXbzny/P8KmrZxYOQw8QgpR3T7OesKllRWhxKAoXmmb547qkeBqc28Wl6WTBOGAIPcSC6/BuhO3nWJJJwK5H4c3++md7ldn+fKRpRCpS9hcKeDzdzivxc9573XwMooWe0kGFfq/zDF1YdaZ7F1Z58fSL7KjdEYRYvnj6xV7buH3d86aq3sv6wr+elHbYF3udI7E/cjD6Ut8eqXCJ5ysrKu83vy9LX8+BlXfvnj72NK+cfQWAtP3+hZWIBN7Pnrzb/C7bm/dxxukGKxy8dwXiWDTRtM3R8x10Jb177PZxvOzzmnby9nUz2OKCX5pCRMDN8G7zuxxtO1owxgKP1QTKsfrfgN8rpd5QSu0Efgt8Y/SGZTAYDIaxYOHChVRVDdEQ+ODwY+A/Am0AInIQ6CP7enyxeoQCZotXZIXO2a6zxJuqeOf4cxAr7O801LLnfeZG+GzaXc2e6o5+1we9q9BE/DFqhMklXjBMOGR5VcyyxtJgBQyOvIhbECokECryZqZF584nGtLdgYEZGE6DeZyCY78/j0jasb0xdFSj093eZWjhI7XPUnz495T51fYC4zBfCPS6Xl9YNRzCeftxEK/ohcYNQj6DXfOOk/HPqzvO9hpzz4p2p5pjQXRDPlnD3c4eN9ZPqGceVfVdVNV39Sovn4/jav71zd1sOzuwF7s/wbM1Xu2vd5HWE3CgsHjn8D1WQ2/k25bqfZ+ylTXfbX6317osfQqr8pnDGl+rTgXPdtpN9F3EJFt9sI9wt54cacsr9GKnQLs4VlGwqCPVwZkuL5/qT4e99z40WJuAvoYvut/e3SnHu6aYtqF0Wt8NgrVLVX03pxq7g2eyr2vPVkosOJd2SIuL6xdrcUVA2+w6v6sgT7N38YoJkmMlInuUUtcAV/uLjov0k/1pMExg8r9k5nUbp6vB8GFFRGp7eGLGMJN/CESbsOr29pljlSVshSET44ydxBVNJuOSsbO5GoMbEHWpd6mLlXNZxaWkbJd42sEKJzjUcohPzPvE4MfQ2VlowXJdNIWSxU7GYOfPYOHH4fJPgLZxtXihcv0c2ymY0RYIF3vLRHNp+WzqgbS4vHhmMx3aMzbVEHNOAr0jurByn09Pj8hTb5/DUor/6cbLiKcdHn/9FKlQG7OitegTW+CjD+Do3HGyPaycrKeqwLDPmkw9wpqOv4xjx2BSMQJocdAiaC1Y/vEKxJNv7Gv/mcgfc09h9dJBr2jGTYumF1xr1nh1XRfH0ogaOHfJ1S7xfvpu5dMay/Bm45840BHiE5f9Ra6ASk9RM1hT3ew19chfuqBQQO0MKEryq/1p0VjKCry+e5v28tE5H+37FH0Jq6GOM8g78sNT/bfI0UK451Cbjw7ip8qRXzFw15Ne4W5rxhrvME4CpKJXGG6gq7TuFU5HsEp4/t16Vi6cxoIZ5Wh0vx4r73kTT0ilu3HP7YJwj/viX7+FS2u6lojM7PU3DnK9vQpEl2v7wiqMwsXVQti1vZL5eZ4tdwKXWwdYBSz097leKYWIDNxJzWAYBwrFU2FloXljPRiDwTARqVVKfQwQpVQE+Hu8Po0TByeJhe9d8I2g7nQMR6cp8VOcwyqcm+m24zz+zmmOxVu4bqE1aIW4o/FXSLpdvHCyhW9e/3V+/U4N3UmbhQsP0xBvIBJtpDQVD85zoinKvx9q4O8+cTmTSzyDuTMTZVPnIcqsCMkOTUMyicyTXKhZ2jfGGw74wspld7WXG3RzPwaOTWGoEKFiz4slQpGfZ9UtNq3JFij28lH0EL1zOU9Nmp8d/BmfmvcpllYuza7EbTsNc/4iuN8t0ZxQSWRctGjq2mLMKgLtCxzX1YFRmk2uDyIAxaUjkeFYY5Rl1yWYXDKld88tpQKPnEjuWmytKfaFQL6gSPkl6zV9iK5+ejC9eqyWNVfNCYRO1j61tcuJxhhWtBtmTYK8SpIp2yVkKSIhi9frXmdL3X5myucLCwj0g1KKlJvKCavsszh9kVd5Li8U8EzXGV45+wr/85Kv+mFbFAix/LC4CxZW9C8gC/LntIsVsphcNJloJsqU4in97udkhdWnvgPpLq9vlnZxtENbso1Lyi/ptU80ZdOVtJnnC4uzdhdIpEBYBRz7ozexYic9kdLzHqRj8PZjsOw/Y0+9jLAVxvJFdyivCErIvxevJGpAZuV6SPkEt1nbYPV9nzKupqY9QVM0xdo1V/ihgH3fF4XKjTXWgk41wZRKJDIp76Te+i7dzYnYG0wJLcLVC3odK+uxKggT1A62aLQKo3G8cWiHxu4U1a0JWq5JM3NysZfaOBHLrWGTCfUAACAASURBVCulfgU8DHwcT2CtAlaO4rgMBoPBYBgtHgC+DlwK1AMrgLXjOqKeRMpRKE9U+IbSr45upCr+UmDIh6xQYIxlgobA2XC5/sWGox2SblewddpN0+3nOGSNsgPHX0A6Xw7OU1Xvbd8Wy83QH47VgrJIaJt0MolC4biZnLCyfQM6mNXPM5L7qKZ2tjVGU7QwkkCscOCxygorJy8s0DuY7vv3HmR3SWvvHAUhXolW9JEXvAa+/e2PDnJVtC968j1W2XCqwADULs2+OGvp9ATRlqrznGqO5bwyonGD6xE03vuWPztfIKwcT+zafazrz8P45JGN/O7E7/KOlw27cuhK2rhZD5IvhBIZh5/tOM1Pt3kFD462H0W0F6Y4UMhY1lNn0SPHz3//W0oXYGvxRE7babCT7G30KoT+ctdh2mLp4L4Fx8x7ji9cWPVPvucvO/YFFZ6RP6d8Tv+ncNNghT0vjxUOzvVG3Rs8e/JZopko52PnqYvW4doZnnzhjzzx+hl+v7cuEBZV6TYQCT7XQS8rJ+P1gjr/LpROCyYYCog1gXaJ1bzFz9/7Oe+1vperwJd3H8O+dzemMyBu8MxOTdZQmmnPeZ4GyNPLbhM83lLoscoPK1bKE1bBs0ZWHPUOz3QkgwAZHQ/CnfPJfhYKwpbF9YSVFcbFn8xxbbqT3vvcmfCuwzq/n9mxvP5iE8hjtRJYIkOt8WgwDANTSr1v+mseXNdHzLzBYBgWV4vIXfkLlFKrgTfHaTy9KSr3PFYAKOo7kzR2eYZn1mng5Sv44WdOBihFi4uIxcHadlZUur2r01GY3C7RRtKtJ8CrqxcIK4Ckb+TXReu4RK4vODdAWmf8SnfeDLVCYbt2nrDyz5M13PMM4027zvA3n5lVUKihsTtNu8pw05SZKBQnMh3ocFEgrIp9YZURt7BUtfQIuetjxl2LDvI7XD+TwdGON+PvpEA7OAJEG4NQsML9PWFh+YZ+zmMkeUI367HqnWOlfIMumUrREkuzwM5wuPkAS7Xreel8j5UrvfsZFYYCet8LGXoXA+ivYElx2KIr3cXpztNcVnFZztj1x6dEE9UZdnbX8WknRUu096y+RtDi9Fvq+2zXWTrj3vujlPccnGqOcklFCZNdG0F4+Ug718UTXDcvAYd+B1Pno0s9M7Qr6ZC0HSBScN/yr6+/oiP9Mowcq4LziKYr3RXkWImf/9YXrmtDyDelA2HlcrazjnjawdEOL5x6AYB7J1/HlW3b0CpMR9lCrwpiEJ+qCVkK7UrgocHJswGiDZ4A7xkQ6F9Xl5uGMJzuPM1HSmdBy3H0tIXBZnszb9Ou2oN9SkOl/Otrp7muxSti4R1ZUAN4up0eAkeLLnCg5XtZ/RtHs1tYZKVAWAWhgBqRECihJZbmyksKKyNmxVahx8r73CjRuGhanRTlTjr4++SKwPl3KT77KqW2l5coykKNgcdqqMKqCpgNDN7dz2AwjBn7u3/ba9ljB2YUvF67YmJNxH9QGOkJgaG8Tw899BCbNm0iFAphWRaPP/44N95444iOI581a9bw8MMPs3Ll+w9Q+MMf/sD3v/99LMsiHA7z4x//uFcD4nHgX4Drh7Bs/AiXYCmFRki7Gao7aoNVQchZJuEVhwBaU628F9uBrVMca4wQdjr40+HG3r1lkh1kGnKeGqvtFKn3fg/8rbdA8nJxlFCZOIU4FcHi/D4+x+L1vjfNJeSvcR0nEFaS8CqtNdsxnjnwGH+rciFV6UyamvYEV8zKCw3CM+AjWEzxexZpFI6liKUyuNn8sbwqgdBDWNkJCPcWVq52g7Al1xc5gsBb/wJ+aws96SMcip9n16Gfc8+ye4J9RQRHCyIalRU0fh6KoyV4PwKPVSYBna00Ogm2ujVcxyUo7eV/hHzx89aRLRyeO4tMuoWpVjH4YVWOeJ6F/FyTrFGayDhE/SIGdh+Gqu7hrbO0U5A4+KfqP7HykpW4egZH468QSnveL4WmKtPO2XQH8zpOMMW6AsjljHnHFlycXoJvy+sPsmLhf+DljkPUt3v3VSlIOxleOtjF5JIwf7eiDFcLWoXpzgBpv7lx93mssoW4WgJB6R3YDYxo18kZ+n2Jm8Pnu5haVsSlU0t7rSv0WLl9CuYsBfcRza+P5gpnCNJvRUKt7Vy/JiubU2bz9pkWkm4cuS7Pi3N2BwAhyQTj69Lp7MURshS2K/3k6Lm+x6qHuPSvUWc/n0rh1u+DWDM64lUQVChSOsY51c2ni+ZwSjRhK0wq3TOHLRcy2Pe1+p/rYPtCj1U05bC3sYObF83wKmiKcMb2PN19e6yyVT0leNbCfeR39e2x0iS1gyUOKeXybOIki2q2BJMctp2CU68UOPgkVBRMcIwmQxVWlcARpdRuIAjiFZHbRmVUBoPBYChg165dbN68mf3791NcXExrayuZzNDKK48nn/nMZ7jttttQSnHo0CH+5m/+hmPHjo3LWJRSN+M1tp+plPqHvFUVwODltsYSy/JCAbWwo/Mkb8Zz1diyYTw6L2ztVHc1th/uUxy2sG2XsqI+vuLf/lfq0m1YUo5WYS/ZW9y8frWFoV4lThdFyQ6kVJicaqCouRVmfAyAGZFy2nwj2cp6rBwbVwRXZ5ha9+8wbwZVdjswh1q/9xJ45Z/zo8rEN7I0nnC0/HG4loWjFLXtceaefwGmE3h4cvv2NtZ6Yms7MLIcnfHimbQuMNZT4nAgXoM7ZW7grQA415YgZClEHKam6qCkNPBYuW6esPJ/Fp/dCqkzPFdm0SpJmohzqXZI2RrL95bt6qynQjWQKa7EIeuJEJoyR5lZdGXOuCZXSe1gbRdT7S4WF/teO3qEAvYQJx+t+yXtRTM4OT1nrLal2tAynaTbRZlfIUGJ9vJCREhl4pRGfE9Wnph2tOexyg/VimWinGk/TlPnGZi7gpqOXC+juO2ZitGUg7bT3u22wrgq7OUiQRDiqkUQcoUcgsbYQOLo87lL6iMUcMthrxpmn/0b84zoU52n2HLq99y95G4qiioA+NGfTwT7FnisejxDnoDocW7Xhpq3cUvnQLFfBdAKeTfNtXF6vj/RRrQu8q/Ru27RTiA4LgnNxJp0LUc7DmBniy/0EAFa+ggF9IW6VgpcB2k/iytZz6lLGpcSwpTbrbljaBdXXG6s/QXgTQi42iuYEhogFDDwWPlj6Fm84tUjTTR0pZg9pcQPS81/NrNhhJITuHkeU69fH2Sc3u9x9rwFxSu0S7tO0V08l5mJE4hAQ7wJhSewXT8MOX98YkXGJBRwqOXWfwD8NfB/A/8j7/+AKKWqlVLvKaUOKKX2+sumK6X+rJQ66f+c5i9XSqmfKKVOKaUO5ffNMhgMhg87DQ0NVFZWUlzszcZXVlYyd67XdPHBBx9k1apVLFu2jPvvvz8wFtesWcO3vvUtVq5cyeLFi9mzZw933HEHV155Jd/7nlctqrq6mmuuuYa77rqLxYsXc+edd5JI9K4AtmXLFm6++Wauv/56vvjFLxKLeTkj3/3ud1myZAnXXnst3/72t3vtN2nSpEAIxOPx/nsijQ1FwCS8ScXJef+7gTvHcVx9YgGN0RTv1DcEOQOQq+Cl88KC7LyZ/UjIQvdT5DAtLq8n64OQNqGwYITQ+/1Ju575t7T5JUrPvhosL8IKjGMLTwy5rlehq7brt7ykT/vj9AiJoP1wPkscWpPtwbNa3Rr1zy9YKELZUDtlYWNRnmkl7Jssdk+PVYFnou9QJicvjM0VB9rPos9uJ6NdMq7G0cLOZC4oZ+vx3O/adaC7gYjTnVuW7go8WdlH2vIbakXa/IkDnbvHyrVxtJejpRG6lCc8wsoKcqxEIKOTXq+uPCMyf5bfkbR/D9zASA22yxeYjYeoKAlTnGmguEdfrMDz4J/CEh0IWcdJ0Z3yxp2tSqiUb3iLU+BJs/zrs0VD3R5mhb2/CZ0Jm2g6V0jjYNNZau2oJ+RVCNJRz/uWzlWVlILKbW4gOA417c8t7iFugpys/si7b6f88uJNcU+IdSUKn5OeHqt8NLq3xyoT9/fLM/aV8sIBz73F1IT37Aefy9aTgZEf5OlpNxAclzCDYj/HLe06nOk8Q2P0fI9xQFBpL4uTIeNqDpzvxmk7gzQdxvWbCWvtclZ1FWzvoEHcgusJB9UnBe3Y9Fnund7Pjda6oHhFQ1cqWO+K57Eq9sMj3bx7Gpw72enfDx2c83wfKRBOULwib6G4dLppnEg5jZOW+YU93OCZTdv+WLKbo9BWmAnTIFhEXgOqgYj/+x5g/4A75fi0iKwQkWwsyXeBrSJyJbDVfw3wl8CV/v/7gZ8N8fgGg8Hwgeezn/0stbW1XHXVVaxdu5bXXnstWPeNb3yDPXv2UFVVRTKZZPPmzcG6oqIi9u7dywMPPMDtt9/Oo48+SlVVFRs2bKCtzcvXO378OGvXruXo0aNUVFTw2GOFYY6tra2sW7eOV199lf3797Ny5UoeeeQR2traeP755zl8+DCHDh0KxFpPnn/+ea655ho+//nP88tf/nIU7s7QEJHXROSfgJv8n/+viPyTiDwiIifHbWD9YCmLlONiAR2+IRjRSWa1vuOFjlk5j5STlxvhimcEJzK9Z2dT4pmsnrDKFroYOHfFFl0YbpetrqcdNIrazqTvsfLyllwtaLspMLp0kBQmuMqbtZ/b+kf+eObpIOSqud3vz+QLqyDcUYVw8MLVsk2I96Sa+g8FzJtxT2Zc/m3nadpiaVy/2XKJ0838hpegu57uhMM75zpoiqZp6E6xKFIRiK+jDV3BcUpqX6O86ilKbO/zIoCb7MT1vTfZsYazpm9w4bkxKm17lax9YVUatqBkCmGsXFVAIKzTlGQa+wwFhFxp+ayo6tdjJeKLZunt5Mim9fgrlLiBnG5462nSf34IR9J02OcAr7qcCF6Prbxrcu1CI7hU5zxWx5pyHtbHDr3E5kQ1jnjhgNgpDtZ1caCuOzvU4D0UERDHzyeCWbP/IndJPfKLjjVGGZC8e5P9pLgtx6H9LLEen418L1VPASciBR5MIOdt65nz5C8vSzdRnmkllVdaPrulJQ7dTgN/aniLd9PNAIS0psj3IGYcm1eqX+G56j8WjiNbvMJOwfZ/ho5qcFKca4vTGE0TS6bQCK5fHVK0ZpJECnrDub7HSosmGZnqLfSra4rA9iN1/GRr7z+FsbRDxu0tOLNisciJBX8XlPLzF0WT8ScAXL84C0BHPM3plhgks89ILkz3SOspDrfmik14gt5b2Z30wmnfrH+TI11n/XNZaGV5+0uuQuees02cbY0Fz7ioEKLCaNehprum35y5kWCoVQHvA54BHvcXXQq88D7PeTuw0f99I54nLLv8SfF4G5iqlOq/FIvBYDB8iJg0aRL79u1j/fr1zJw5ky996Uts2LABgO3bt3PjjTeyfPlytm3bxuHDuS+m227zIraXL1/O0qVLmTNnDsXFxSxatIjaWi9vZ/78+axevRqAu+++m507dxac++233+bIkSOsXr2aFStWsHHjRs6dO8eUKVMoKSnh3nvv5bnnnqOsrKzPsX/hC1/g2LFjvPDCC3z/+98f6VvzfpirlDoCHANQSl2nlJpwVXRCFZciCKG82d7K+Elmd+wDOxlUpgM/id7Hcb1CC8lM7/5Bad/LYInLlPAliBQKKxEVeGKynGiMknJ8Y803zAAy2g5C4rIeK8fNoEWYlGn25tYDowoc7eL6jUrj2JBJ0J3xjGvle5oEz0Ni+eFnrUkbxz9HKN+bVhAKmGfwRRv9czk8vPtRtjVt4qWj+3DFRQQmp5sCD1084xTMpJ9ojNHY5YmDfI+fRJsQhCI3JwSEbMGQXMicFYSzFRav0AiRrmqs4y9hiUNQRkM0YaX8+y9cXXETl8SOcHXTcwX3X46/jHRnPWiFnqx8z0OBxypS6nnAlCqs3JaXFxMY+uiggWx70rum2uReziR20ZpsxW+vQ0bHyOQJPvGfiazhXpRsCdbFMylmde0nmTgcFGGxcXGt3uGp+R4rRwsdsWTgyQnl5UTlX1/Kdtl9tp2B6Eqk2XWmjXjGIVT9FiTaSZ3ZBgd/kwu3yx473yvYKwRPs7N+Z95r4Xyn95w4CMxblbexdxxXCdNS50jmeZKz/ZjCOsOZ5E5ORes4a3cjwLRUHSVhz2PVGE3iauFUUzfnu3LiVfsC3E36113zNrhpkraLiEsoFEKL4GqXxu4U0WSaJpXwQ03zjtF+BicdQ/zo5yLlV6IUob6tUKx2pbtojDfy89fP8Oy++tyKWAudOx7lXFMHlthcf34Tl3XlGkPb2vYLsgg2uqCi4QsHanjxwPk8oZwbX4Ozi9fqcpOGTo+wzM6EzcGWg+xoOwhKURIuR7D8opo5D5rtZGjsTue8ayqEI4pDsXNsPrOZ6u5qRouh5lh9Hfgo8A6AiJxUSs0awn4CbFFKCfC4iKwHLhGR7F+IRiBb5P9SoDZv3zp/WUHBDKXU/XgeLS677LIhDt9g+ODQszdXbz47JuMwjD2hUIg1a9awZs0ali9fzsaNG/nyl7/M2rVr2bt3L/Pnz+cHP/gBqVQq2CcbOmhZVvB79rXjZJPNC8O/er4WEW699VaefvrpXmPavXs3W7du5ZlnnuGnP/0p27Zt63f8n/zkJzlz5gytra1UVlYO/waMHD8G/iPwIoCIHFRKfXI8B9QXauEnSJw5SoXrGWshS1FeFEKnAW0HTWIBMnnCqiWapizkkLR7CquM57ESwRKXSyPLkMy2wGOCskAUTV1J7O5U3o6axu44V+Mb49qBUBhH3CBfJPBYuW7gbRHxQo8cP8TJ0U5gwGfwxjG9ZDoA7d1RppCblbdQNHan2Hy4mZW+Xi8UVnkGfr6H4dRWmP9RXj9znLoOLzRta81WPr/0yiCIykYHxk++x+Gk6iATjTAZmDetGLEjdCVtHNcz2CQInxSvxLNf9TDIsfINxPZ4hqbuNJGF3sBdNEWdp7DiISKu7VfYIxBetmhCKATlVUgjr+Q24LafRWLVTOKGgmanrrj9e6z8Sny2KvRYaZ1XBCIvFNDxCzBkjXBH0ghQG63F1p4UbbZP4LjX5k7hF9LIepeyohmgLXke6f4zsVCCiqkfQWzBVXgeK7/aZLa/kM7zWHWnHLrcJDPL/QbIeaGd+R6rPx1upC+e3VdHczTN19Z8hPPtnvhpiaYJlSlIdZL0z/Pq0aaC/fKFVcbtWdRBk3ByHqvWWJqmriQVrosu7tFQt4coS+V5xrJazsuzUwXPcKmToNivLri3upWzdheSSnMu7lAaCTGtrCjw+gSaW7vQdpqQUojYNHbblOgk06eUoFxFazRFUsVYLNNz4xEX3DRu8xGQ+YAn9MB7bkPKn+AQr43Ar4/+2g/Tu7WwGXDdbk41NFNSYpEJl6MRpieqqZl6I44rvrDytk+LiyOatlia6WVCVyxBsVWS17A7r3qmm4aOc2QbFbvNJ1nQ8Q7dUxcT1cVI8xHoOEcibVMsipCKIMoKJnwkmMTJVnT0b5UK4RAi1nkOij9CZ7qT0WKoOVZpEQmeNKVUmPxpk/75uIhcjxfm9/WeX1x++fZh+eNEZL2IrBSRlTNnzhzOrgaDwXDRcvz4cU6ezIVoHDhwgAULFgQiqrKyklgsxjPPPDPsY9fU1LBr1y4ANm3a1Ktq30033cSbb77JqVNeX5t4PM6JEyeIxWJ0dXXxuc99jh/96EccPHiw17FPnToVfNnt37+fdDrNjBkzem031ohIbY9Fox98P0xC4WKsSFHgnVEKQiHL+9J0MgW5RakezWE1nsA53n6c5kSzv9AmKU4QChjBK17hiCYkuWTv7mShYWmJDkqUiwi13dUcbTuKo3NBRpYov9iGgxYhEZmOAMnKazzDOx3FiTag/cppGVy01kSsCNGUTW2rlwuirRCIVwhCAFcp2hLedYbyTZaeoYBFvvqqvBKAN062ksh45dGL3RjHDu/LFa/wxYPtSkGYFEDY8g0z16W0yO9V5Wq/5LbvgZo0x7tvjlcEIyi37h+3I2F7oVN+Ar1DTmiGdYbWsoUki6YH1e8cNGEVAlEo5Ym9Ao+V/+/6riNBKCB4nglXu2Qc7edB5YdE2oE3siCBH4JeWVmhEsIl4xv12XujJY0W2HV+F5WllYgIU8KXcq4tQTTlPwtOvviGkJ0LBTzdepwkDmF04FF0EfbKGXZ0eZ4PSxy0H+qVNTFtV2OhA7HmZK9JBN1yLPAInWnJnSufmvYEKX9CIaT80EwR3wOmSPqhqtFU7rOTcQpzqHo2WhaE+ZPnFyxTokF8b53qv+5NKuuxCkW8vDgUIW2jsIIJARFvYqIM7x5oNPG0GwjPuN/YODvpEDyzoiHR7h/DxhGIZ1xS2iVCKMjlsvOe8WQ27080Z2nkLVVPJOQ9wPUdSSxxCLtJZPs/w54nQDu9vEbeIF2vUqZSKCnM+3K09sVpTli1JtLUdcRpjWVYcf5JVtVtoCuZFc2592JS/Bx01oCfX2YdfoY50fdY3fECy5ueJ3T0D+iOGs61xWiNZwgRwQsUzvbNyr5n6dw9wwsFVNEGwsqC1lNcM/2aft+zC2WoHqvXlFL/DShVSt2K10jxpcF2EpF6/2ezUup5PK9Xk1Jqjog0+KF+/l986oH8J3eev8xg6MUu08upf86+Ufi6o6vw9af/cezG8gFmrMvYx2IxvvnNb9LZ2Uk4HOaKK65g/fr1TJ06lfvuu49ly5Yxe/ZsVq1aNfjBenD11Vfz6KOPcs8997BkyRK+9rWvFayfOXMmGzZs4Ctf+QppPyl93bp1TJ48mdtvv51UKoWI8Mgjj/Q69rPPPsuTTz5JJBKhtLSU3/72t+NdwAKgVin1MUCUUhHg74Gj4zymXljKQilFxDf2S8IhSFuel8JNo7NGp1Ik3TT4BlixVY6IZ/hsrdkK+M+r6/BG8jwinmEYUWFcFA6akLZxrWIcnTPoAJRkq3ZlhRe8dObfIVJKRDS6h8fKdXPl1l2riJT2jdbzB7AjsyjLeH+7HZWrDpayvfML3sxyKqOpjyaxFDhYiO8RyIQnwcLFUL2zMBRQXM+4La8M4vKyBtWs+DHCOk3XoRiyaCHgeYhKsBCE7VYNAPFIJRVuGivsCytxiYQsIiGF6/gGW1ZcqhAugtgZFJqd9nmWZqaxqEfRA1unvXuC16PK8xQ6EA7juhY4adywFyoZRpERC0spT2BmkkAFaI2tNRlHM0UUyvdoKfFKgJ9pibLvXAdhVcTqRdNyJ/c9PS5uocdKNDrbi8tfrrSm1k5Q15lkFp5ArQjNJJVpZ1m0g8ZQGSJCRaoWHVnCvpo21lw1GzdW6PXJl6iV4nmvQpZCa+17L4VWibEnHePjLEAhbD/WTEJ3My+S8zAoXBKi+deuKpaWroKSIiTWTEvTexx0Ycrln+AjsyZxujlGf+ypbmdaVrj47wFKcdLuZJlbCXnV2bcfb8aapL2CFOKJgq6kzZHz3ayYPxUtmlCeeFIoJqkyQnhhljFbqK7vYtmlU/xryN2JQFipELHpV+O0HGNaqgarqNQTnEohk2YT6nApU9k8M79anv88WeESIOm9krzS9NrJay3geY81Qsb1PKBZYZUf7poUP7A2E+ekdFISdpFSgah3n0LaYVKmBR0RrFgL6DakYkHvkjZ+riAopifPoMm1ddhyuIl4SSfzrQhxPGGV0RqFUFz/FprZAHTqNCmcAo+zZCdr/DDTbMGMSMii2ImR1mVoEZQIKUcoDU0HWhC/ymBJrJaKtIuEPeGUKZ4BxNEqhCtCRlxKlEVpuI/y/CPEUIXVd4F7gfeA/wX4I/DEQDsopcoBS0Si/u+fBR7EC734r8D/4//8g7/Li8A3lFK/AW4EuvJCBg2GPhk8LM7wmN+jJaBH/yXT5+ri4IYbbuCtt97qc926detYt25dr+U7duwIfs+GEPZcV11dTTgc5qmnnhpw/1tuuYU9e/b02mb37t29luXzne98h+985zsDbjMOPAD8f3jh5vXAFryQ9wlFSIVwRVFWZLFi/lSKIxZdJ73SxR0d7bx5qgmUUBKKkMxLki+yyrCJYru29yUfb6N76z9RcdXnmGwVEXNsFJqQACgyWhNSNkVODOk6R76JXOSZj2jJ5ljhiRrRXglz34yoV1HfY+UJurAF4irijkOTHYVIKbbWgbGoEcTNhbKFddqrlld8KXXt3VRQhAqBqyzSfpOeciZhayGiLBDNFRXXsePcLnRFsRfGGIoEzYiz4iGs04TFoqIsDK5nVDq+EWr7Ho1ppRESbgiUFXhXHO0SsqA4HMJJ+GXZs+JShRBsXMdGiXDG7aIxEePKfK8HbqBcHOXJvMAJFbLQrmeou2Q9VhbZLmEamHTyeVjwAGiHs21xWjMZZqOYlGlGl5YQEo2jHc61xwjpDOXYvFtfg32tTeTAb5B0jMO6lQ7sgnBHEXBxsIJINEGJzelolxeCGHjXHCpS9TjdxbiSpjgd55JoKyedBnaWX8aaBV9Fnyv8e6SV540sD83Ads6jUOhwGeIX5jiWeoMKlStMArkiKpe3vsJZ5Y3HEwRhtBWiJtUMJfOIxjM0dqfYd+5tZhJlnvrr4BiTS3qbsjtPtvJXU3IeIdf3WLmiEQtiTjPF1mQiVin1HUnmlrtQ79VkSy+8ldZotly8TdpJ825zrvfbR2d9gtaWGlqdU7gIb5xq51hRE1deMolicl4/wSKZbZItmo6UQ0QnubSilAUdu5Hyy0BZ6LJKLJop9e991jsclJ0PFwNJb4JBNKmspzCaFw4pDpLte6ddQlhca0c4bkH11JXQXe/fCy/Ez+tuJZQVhQs8UpbYXNPyClI2jbTj0hHromSyJ/asPHGp/UqhgiKs0yy9dDIxKWe/OJxO7iTa3cKSKTlhpfHbEkjOt/Vc8hSdymGpnkFIbOZ0HyTuRKnr9CpxWkCDEyeBTdjyhNBxu9OrzojHJwAAIABJREFUkKq8Dl1hPAGvCYHWlCTOI7YLpd49TOqw/16E0FgkXZfz0Qzn2uIsmFHe67kZCYYkrMSTkz/3/w+VS4Dn/ZnJMLBJRF5RSu0BfqeUuhc4B/yNv/0fgc8Bp4AE8NVhnMtgMPjU9lGuNMv8qaUDe7SMN8vwIUBEWoG7xnscg2FZlt+TRlMasUAplPKkSes7vyEl5YgSKiLhglnfsCrFVV282/0HVk6fhOqqIVM0h8SJV2hzk4HHw1KeYeSI119pbuwA6dR+QpHZwbGKCXkeLNf7uyKI1+DVN0IlMhXwwvZCvrDS2kuL1yj21rcDAlaYpO0yOdvQFEH8fjppx6XcbkMQ0qFJnJlxPde37cIVr9x6Jts/xyqm3Kok4xtoe06EqY0nsSdNRqM43pRkwQyLMihoOOviVwvzi0QkcdBx75gVJWHKi8PMSE6nmxqK/B5AjnaxlKIobAU5Vso3eDvTgmsJ2slkg5C89ws3CFbM4CLZMtH4oYS+SalCVrBXq5skhCKsFIgKPFah7npPEcSb6U7ZYBGURLdEAZ7HKmTBJfGjTNMhqkuv4/kTz/HRM8dpjac4Srsn6goq3glabCxLMSV8KfH4YURBKNWOTU4UVBan6WxvJa1noxEqEueoVg5pXUw8k+ZnW49wS8/S9uIyLTKfsCrB1iexgIibJCzdEBG/W5dVEJpYZrcTD4XI5PexynpYrBCOdvyqhL4nz38W8vsd5XJ1vF8s7TAnepCTcc1UsoUzvJIhaUezw63jhNpOWKe4fvKXSDuhgqqA6XhLUJBE8Hp/AaQdl6tL/or5k6bRyTlvIgEhYQsUeaGlxYAtQjxSSbndSiorrNAcbYlyBZ4XzwJUOgpK0ZkWQigiZEMmfWGFJ6yy4bPZKqDJHiGY3jUnqXAacLFIuI73TPnPSyovFzNIzyqrhM5aFBYVpRGO0o0gQRsGLUJ1W4Jmx2V62qFMnAJhJdoJPFaAlwdWXkZnex1Rx/NkTrYiNAB7a9tpV2mKykK+sM/l1sUik9EZYU70EGVSSty/74lUgkkivJg4S4tKsyx0HQANsSRJR2OFPW+f5QsrxIFYU/AwZD3shzu7uQR80WmR0Zp0RkjZA1dCvRCGJKyUUmfpIxdKRBb1t4+InAGu62N5G/CZPpYLE3DG0DB+mHA/g2H0WbhwIVVVVeM9jDFFKXU58E1gIXnfgxOt6b2FJ6wcSxMSDbEWQk7KK3OMAnEJhSzCVrgg3CusirGVpijdhLR4Jnxau7TaKQRojqZZU3YzzaJJZzROqUYkTU16P+Vhm+50imwW3PyKctrj/z977x1sWXad9/3W3ifc9HLqfv06T4fpmenpyQEYAAQGBAiAoFBiFEXKJE24bMlF0ZTtssslkqWyJLvskiXatARJTGXZpFwAg5lAgAEEQBDAYDCYGUwOPZ3Ty+Gmc/byH3ufc8970wAa4jQAQndVvQ43nLPP3ufet779fetbG+xd/nNW6LKSR3DttfJcicQocEjHOStrXgqonrHqYbjS7iB1B8bSczlFKuFQnPOsS7vne944IDcxKlHgbiBH6KlgFJyJ+c597+d3z/4+Z5Y2GB/1S9fL+mz2DaeXe6y1OzzwAJzpeHbVqpCLb4KsFWnYVr+QXcH7mwf5V24PLjvrJXShdsmIkEaGLM9RtHQuvLSesdnI6Pe64Fwpbd3qbTDe9aV7hTkHQB8JUkA/Z2JtCazO9r0L2xwebImASDAouPw07S//VllTM0uDIzrBPekUn9YV+lmfFy+vhGTYgirXNi9yfrXNWdYHd/YOYJVpDyMwHR1lxm6ywUtcTQ4z0nuOHMfsSMruRs4Knm3I1bs71iLDqsSsbPWZ1w3+5OpFqKgPUUct77Cw9QrPSY/Z0Rqb3S5JbwmNElQEFWGp0kNqevN5YunTD9q8U26WjuZc1nXAkLsMMKy2cyYZzGGWOw5MNxivJzx/2c9hUZc2v/YEC2uPkwdAoqps9jNWt7qsb3RpRzlpss7M1gvcu/Zr/OW+D5KrX2+nSufZ36EtC0SuQ7S5AaP7gVDXFfUQ3cK6DNEAVAOcznOF/Q+Rn/5kaeTR7rc99lBHhvDszHdxUP/c80UuBzGcXmxjMaQo452zRJEHJqKOS9JhXzh+0QOul3XoOEOt4rAY5ZsgnnG8utmlhi1rEk2yvQYsEUtPw3aIsRgRHrMXcQoPFu6cGmoLEfq541r/FXalt5bHyLIsbBQUmwcaNgUGrG1LYrQ2znMT95Ov/C5pkPkVd6Oq0jMNHK/vPde5/AL2ud/j6kYXFYhs2bwPgHq2jIotgZW4HLDslhavsIZqj0ts8jlZ5h4ixphBe5tkztHsr5U1pTcjbtS84l7gvvDzCPAvgNfrRoYxjGEM49s4bmbvi/+Y45swr7+F7834C3wdTe+/0aFqUBFvD64Orr0I4pOY9eYB0BzBEhu7jbGKpUZkhcn2adi4Aqq8vLjBi5c2WNnq4cQGYYyj0/NWyNey07zGCpf7bdJK0lEXS6Idkv4if27O8qurz9GtONadqO/jfe4w+xkFscFMYYtGYlCEkWYUCmeMdyQDDk43iaxgsi2c5mz1Cotqi89CTcnOrOsKPeeFSwK+l44Y2l1vAABwZnmNf7P8ec6xCvn2hOlWnUKATtlUWEGLfXZ/702d/EHeed+d1JMY7W3CxSc8U2I8Y5WHGiGlj1XfBPblaxt86oWLKP3yWL/y4v/LUuaTfC8FDOYB4g1HSkbFGnI1bHQz1rtBshgYK8FPQe4Ut3qOX157hqettzE3CLfqFP2OT2h//Y//e45f/s3B+XDQ73CaVb5krgx6+BTs3YUnuPDFj9J1GxgRYmmSBEe4DfHAJkOxRhDnpXBd5/mFTjyGEWGsex4EXur+JWdk0DC5mMsj3eeY7Vyklq2R4cFK+fEWoXCR7NkmT8tV1qSHoKwH44aaRsRYn66L0O73+ewrK2z1giyuAKu5IzIGY6Ss6SvcKJPgCCfqyMU7O55Z3uLisn+83c9Jc1+f5VsCONpZu2xAfX6tzVo7Y6J9hnT1lVJeWlxHL3fsXf08EuoTS2ClCofeRv7wf0nRaLvTb0O/Dc4b+G/Fk4GxEqS/CWKwpoFBqK2fpdW7wubS/1OO/zFzmY1wT2swGEFzPtMZyACVQU2hEy8ttZjSRfOuwxNMNgqQCbEYNjuhhilU7ZW92MK6V5sZn13a4kJ3e0nBnz13KfBVxUaJP7ghLl/TzjtgYjajOjmONAB0F9hDp36NC6nqegVgffSFj/La4mbJ6MTWsEibs25gBy+al8CquNfrGoXx9FmnhxPDqvQA4ep6l7Orm1iEkbN/ys2KG5UC7qQO/jcR+QLwD9/4IQ1jGIMY1lAN41slarUai4uLTE1NfSuYL3zbhKqyuLhIrVb7Rp62o6r/4ut5g4jsBX4NL3NX4EOq+s9vxuCKUPUgo4+jVjgDAj0cmvWBHGMMsUTbwGkkNaJgVdfu5zRTZbnbBYQ8GeXWfp2JzhmciVgKUkDRLJhWKIfb12iTsCY9UmOxIvRkIN+5st71smJ8bYNP4BSIyLTPy+0/Yx9KoxaznvXK5GsrJPhTzQTWgI1LLL7wGdon34PVLAArQOKSsTrfe5YF9dVHm8kUz15cAzGIOgTDSPcyL64uohMJX3anOaVHQZUD2QZr8TwxBmuEjstQ55hljDU2yhGrQhI3qWmbbq7EgPa2yFJXkQIqziq4PgZBJSFH6XW7kGalbAx1vNj7AvOsBZLCEWPpGd8HygWZoZcCGpaDK9pIGgW79SD3NMJWbYbX2lfCmvvRlmBzK8OljvbWBp3wWIpFnIOsO3A9lBSjXbIs5/ziGnu662hbyEa6AVjVMK6HIuRSMIT+uk3mgUfH+Yo0ca68TqdKN19mwhpIR9Duegku6/kmBiHN14lkAhFKlsKDDWFMUzKb8Iqu0rNNknyTtgycHyOELBkDEZbbbYzYEsQUAKKfK7EVrHhg9eS5FTbcOTbytVLOphhUjHd/lEF9Xy6KqGPPWI18I+dK71nSrauFqIzlXhcS34wbxLOYNuKe6UdZWaXsD+dy7zbYVw+silqlF6+sejMFoNvvIlceAyBOLXGrRbzuV3Srl9Ml59bmO2HlN2isDZhgv+6+XfZaloFl0LdOHbuiQc/AjWicV3rPlf/flD6TWisZK98nTSrHFZbWNkiAvtrANvnnknwrrDHUYkt9c4WVvAcVK31UGe1eYhMtjW6e6S3xxfZr9GWhfNkYlsgkZNrHiDLZW2bVemb6cuMIa5Mj6OJV4sjfIFWTjad7Sxx0EyX9E1vDX5jz/h6s7MPF4n9v9JIxwDPyRoHgMpljKVwH/2TyB+he+KcYBDd3OzcrblQKeHflvwbPYN2o8cUwhjGMYfy1j4WFBc6dO8fVq1e/9ouH8XVFrVZjYWHha7/wjYt/LiI/izetKL2VVfXxr/KeDPgZVX1cREaAL4jIx1T1mZs1SKeht5FQbpeLePMFXN8XlGOIJEJ1YBFtJSayPiNZ2urTbORkoeJirXWIya1N0myd+bUv8aIIWehrJWhwZSv4IYgxiPgeT+W4qvbSrmj/Cmoi2v0OnXwZMYo1hs28T8v6XfK28w1528feRfvMsyBwafkCH37ll3jYtcjCcbOoyWsjJ3xCidDPfUqeS8RLVzbwGM93fWr1rhCTsN7rgTQRzaGzwsjWaUbMMhaDwffvubrWZhbPHiXW0M0dzTgisglGDKP1hHbP9ymi6RkrayxJ+yqulQB9D4AkxqGMdC+xGqWDfXZ19LXDE+YKt7opcBAjSL5VgriwQOiOzZko6xJlgzo2213jD09/tlxzwroYgbFazFq7z2avYncf3onL2Ai9iDKJSehi1NE/9zg6akMPrT6xjRExJK4Tanj8ePriWKSNhBqmrnOIy4jw/bq6tkU/c6TO1/lsUmdp5QpTjcQzGDZFihmRQU88F4xSVEwAR0LPNksGq7x3EWxwbCTU0tXdJqO9K/TJy0nMnCO2BmM8u/fHz17h8TXP3t3tJsKc5GRSMBha8GAAjGZXMZIw0Uq41nmaeTdB38b0un06rpjNotAqmJykE6yQs1HYzTu4uNqm1QpSvYALnr+8Ws5nL+tS+PZlwPx4i/UT/wD57R9nrZvR7/fY3fIsz+5mHQKN0egv0ewvkkvC6aVN7p9TnCE0a3YYhHY/Jz/wNl5becI7E1TiGm3mafkxFE6AQH/3PbjlF7HO32tJmuLUleC91fNgXlVJIoNRYU/vFZZaj5THnmy/Ws5pEU91r0GU0HGDmu1pEiIRunRJgJoqV3PPV70y9SZ68geoCJHXDW9rZAyDxtPg69JEKgYwISLxs7sycpT781eY1zFeZIULvRfZNItkOj+4dtsgR/1mS3L9ZvZvRNwoOKpKJDK8hOL7r//SYQxjGMP49os4jjl48OA3exjDeGPiDuBHgLdTkfyH/183gkvtxfDvdRF5Fu8qeFOAVaefc2mlh0owMi+lfn7fXfM+4DDGEpsI1UFBu+KIrZRpibocFb9T3FODYdCk1SKs5F0WNz+BVYdTL1MyCFcbRzHNBrJ+mQI8dW2rlFEBoT9QOI9EtMnY013E1BVrLFtZxtpGmztGEs67jM/KRb507bNoBVdkueMz+Re5XUaAOoKwNf521tav+XPmmd9lDq5zuYY+QiJeNieO1XYPF7VYcxuweo4cR01zkBhjhGeyRSSZJA0nNgJWYKpWA2OJTIQVfy2dzHF56wneLPfSbF8MUkAlkpy5kRpnJUFRZjefp7X5NM9OVBNwv07PmkWm3DgJlh7K871l+uvCCAliZRugaPdzosVXOHbtDFeDGlKyNhJtL243eEDoXE47K+zUgyU3hjzP0azHOfFyqTzMl2iOdT1U61yVNkv91xiLPQMRu275uquNozT7i3ys/xqT7d0AXFxrMzeREYf+0QZHP1carueles6W1wDbgVU+gCYlW6eBv3QaeiDtKN83wXTBiYAYjCh7Vp/2jaYxJTjt50pkDXG2ydGrf8QLkw+Xxzgk51mhcNULYB2lqVFZAVQLLQx88V7mnSxxXF7vkkvlni7XFWpxDORsBBmdwbDe69OUAWP1+09d5PTiZkUK2IXM9xK7Yi+x1wjGGromBu36VQ3zn0YJNbV0JC/Bi4SuY7kqmneJMfScd9l74uwKX1p7iYZ9vRHDbpnGBiatR78krJxNieIWRv0G4Ui9jqPsUkAeZIROIVcPcG22VZpBAKRZIaOsWMKHE4w1lGs9/6zN+kRJQj98N8Xhnv+90Un667/FdCvBg+0w1zuEINXeWIk17Hga8JtI4AHX+1uHeGJ5GYMw2vWm4pkajAyuzwNsg01unkLihmqsVPU7Kj/vVNWfVNXnb9qohjGMYQxjGMO4efF9wCFVfWvld9tXBFU7Q0QOAHcBn71J4+PiaofPvLyEBkMD+n6H2e8rK+Q9lBzBEBtLta/TeLRAbCtOYC7nZVZ8cupAKnUQBmHFdYlcFxWfUBU9qVQMxliq5EoBbmomQoF2xWK8ltToSo72znlhmzF0ycgVxiSmS8aitP2ueyV5zVXpa5cn5WLASr5/197aPQBk9BAEF9iHRxrHuNXswaflvgZNQqLe1g76zP9Hpkrq+rTMCGrT0uQ9ZsCgWBE2XA/EYsSg+eBanHoTiVq+iVPKPlapNajE5W56LTED+3B1lQa+gMuJQm+hj2+d5RNyJky6LaVi5ViqPKF4xmDeDuygN5JZBCGyBnEGWybC/nwRQpblLG8MqIssyLdk294B5G6D1PrnknwArKL0AO1oHKfKmNkoj5+vXaAZ2LSiCbKE2iJjPXAxYcy1bL1MsnMG8sECaKj4+biSn8EYS6owqwP2IAmmC049sFINPZkQlqUbaqKUfu6IjdC68jk+1f0451d+YzCfVVojDCDDMaJx5eEwMAPiMvq5Kz9DgmOifRqrvslyUStnNFxr0ZhbPYwuwJtz8PyldZzmqAixEezWRa5sdLm22WMl3yAK8sWs6LcmgkjEkbkRcDm3jU7QSrdzHou1ed/kOB3x9VHdPn3nyHA80f8iX+y9Ph0flRpJSPE7eWcbKDnSmEdQxusxGMti3innY9237mbL9elHdVQ8KC5cNuuxKRnrqnlFVIDLIMFr9haxKiSrZ8kCmx5TvC/UpDlFMZ6JvE7sbN59PQm+FMdU4K3/LZfG7qQRReU9n2ExQYoLBbASbJS87lhvVNyoFPC/+mrPq+rru0IOYxjD+GsR2/pc7ehxVcSw19Uwvs3iaWCcQYP6Gw4RaQEfBv6+qq7teO6DwAcB9u3b91caoAkAo6iw4coz4RxBguMyXOgt4xkrnzjcunuEu6em2D/5Qf7ixS/zZbOIqmPF9RBZI3NgQzIy00qJtgacgdEM1YFxhCLUtq7yJjvPH2fnAG9/DjDtGvzlymVc3mGvwP0Hp3h+fZVLoduDwQOdrvZIgVGJCP1Qw7GLYnv/eCsS9oy1uNb1dTgANgCpTHsYBkAhX29yAMNTYX56miPi61EMOdnuu3Cnv4AFWg6IatBtI6rMNRJe2fBgzpbJdYQVWzJWAHG24es04ppnWJyvFIpthDhLXqSq1Vyvs15KKP1F5kREbEUtXN4pUDHGDpLLYq1t6C3k367kTmlWXO2KU0VWILfEkdDFJ5+zrZSj3XGewtHZHNySuUn8ewqg4wpDggxHD+t61LMN8tSfZyo+wJXuKzjne2+BByRZ7ogx9CX3TWkJxhCY0rjBIeQBrBaOh5nfFvDPh6kV8XLEDl2sNWR5uzQ8GNWEBOubxoa1xbkS6IfJKB0WI2vIQ+3fltuEIH1rpBFrnWAbLpYnZ99Pd/EXmNeIFYpxhMOJAn0/NyWwUpr9Rd7lDnLZrLGoRX2hv1YbQIavt9u+QeBXz9c0GRHybGC2UJMmRgQRpU3u6/nwLRSS2M/BetxlwsZsdAftApZr83Tufief/JN/w2ynxxlZ53wUExMHG3F/MQd1jFfFS/FqeZc4iBDbwZDiAbebu478KPrSh8v7CRPxuc4FL5eNxtCe8gW5zJ/Xj/CB9cI506HaI842ee/6Rzi33A5rruVGgvG7ASxubZT3WCQGcY5cPNiK1fhNg/Ad0ssdKlKa2uyMQmrYsy2YvRVz5vU9E0upKQrGcG7sHuqbv0ejVeP8aieAwEENWY6/n2ycvu5Yb1R8Pa6A/zle9rAH31zxbmAk/AxjGP/h8eonr/szNK4YxjCGcZNiHHhORD4qIr9T/HytN4lIjAdV/05VP7LzeVX9kKreq6r3zszM/JUG6BMw4wvxd+zUKkDex2mfiCjUWPkkZH50iu84NktkDIeZ4H3ucLmDvyxdMqeMZMscnWuRxr6GYhvJEhgrxSdAkRhqMtiD1bBbfWW5iwKdTMvxbVYUSYficQyWXpAcjoS6mXY6C0CnUnzvVLHiEGMxAiYkXlYCkNKO3+U3Xr7TqCWhJsyn3GVDVvE7685pkKEJRjMOp3sAz0SMhd3zzCkiePBiPGM1mhrikIHNbDzHxMVPUojHFjd7KEpkIoxY8jDGbfKljcuMVGpMIvV1YBdat3KxdUdlcc1XYKxCBCe9olmvUzC1MU4tjJM7ZaObcbf181hPDbW0xh2NKfbGt1CLBsfNJUYEEq241gFGHZl2OXXhN/xZw/pJcGVsphEdzdiMp+hGTXIlOOb5+RQcJshGC4nfRlCKbXYH9TxZnAwkZuEei4hwKLFajDHsdk3qkWW2lZIGwG+D9byfBy3ZPICku1g61kXWd5Iq1r6IhckmCxPeXEUR1tIJMlMjBZLAOo0EkK6iSGhqXWKkAKTSwJ7185xnL26w1g6Aqgqs0NJJL3eFnX9eMs15wfSp0NOMyBgv1Q3OhQXAtlHoURWA63QzYbpZNL/N6Kfj5KpkfUVwtLOcJ+UqabZZrsEtOvC+n26kpfSuk3dwrV20x95OZFIIgF1EPMrH3wKb8TQYuCSbqBh6FWYuc1uc2fh9OgwA39RIEpo5h40SVRamglzXJKDQnTlVsl2NqGjWG74vujkgZAEcW4GNZIZ2NO6PEe7/1doeztRHShDVjmfC2lVZ+QDCiPy9WjKCtmxMXBzTIMTxgL18o+NGgdUCcLeq/oyq/gxwD7BPVX9eVX/+po1uGN/28c8+9gJnV9rX/RnGMIYxjJsUPwt8APjH3KDduvjf6v8WePYbodIwRhAMTiKMwAdah/mu5oFtjFVOjpGIpc2MxfUOrWiGHznxtwGwQStmApNQROaU1BqmmqkHbwxkMuATpIKvAiE//Cjxtgaj/t+HdZx9Ospes7dkQl7pDAwuFkyNqVajlPnU+1068TibIwcAaBx7M+vJnGc+nGLUeUme8YxVbAVLwVh1vftbSAgzrE/wxderdCTHGiFyXTJV3NXny1oKgD01D0KavWsle3OxdQd3mhn+1sixkrESlEZSJH8Qb53HVmRKnTwnNhEdt8ZFCVI53V7fUu8P5iBRATVkouXYwdutVxkrJwYrBtGB1NP3m/J79mdH76HVaNFIIpIg8aw5i5qYqb23YOduJ3NKgqXbHyS+jcjLB3dt+XqdgUu+Y3djH7FrI0DX+v1xg+WW5B4Eb/axMDWCw+KcliYm4KVwgmesFkNPqkKmKQHuAmRxHdfaxUEdK1mVWL3X3VrjMEYMd+oEqTUkkSnXy1KwdwbUYUXK2VIdAMTECNHmxfBMAIfBpGJyNLB9Ysk1Q8WQqqMWwFut2CDQNo3+IlvdjK3AElXrvkRhaaPLettxPuQlBbDqRePkaJngF/PrggufiBAHW/QaEX3Xwxg//4MT+HGnIdE/lIwBvuFuPQ4SQ/VNt3PxdUpGHZ/vX+aqbLGZTJcscoRhqX7A/3vuJBEGWzRWnryFS2N34pyixINTh15YIuLZnTDROYYvGH+9MZYk36LXeZHTYeOgFhlmRtJScufvVMdM91Vu42UmzCQpEXkyAHuF67+KIY0GBiGbtksrjRitxazU9rHP7qGVRqyObpWv+d2Lny7vP6lPkR58mAutk+Wxixl1TunESQnundgAyPyaLtX3kNnRbVLpNzpu9MhzQK/y/154bBjDGMYwhjGMv1ahqp+43s/XeNubCIYXIvJE+HnPzRqjFZ+ituMxBBirTzJlaxQmzOIynGZYIs4t9Sj2gQvJS2G3Dr7nTxGF6x/htQahX5va9jwM7LGj0T0lsNqMZ0pmIMVySmexFRvm24Kz45im3GoapDZi95hnDkxu2OjmbHU9UBlpCLOjdV/PsvIUcd4GY8rrrsW2ZKzWbaN0pAPo5ILRHOMyorDjnquQZhv0yWlvrJKLln180tizY1b7GDF07ChOLLfaKX9tJvIs2eie7eSgOBprr5T/dYA1FlUPPx26zbyjiDgwRDG+l5dT725YHtaCMxEjWvTgkTDWgbzQmwe4ErRKAAIjtYhcYjTPsQJOwJiIrW5G6jKy7sBYRE3dM1YBTGz1CsbF0YxGWWocRBDa8Xg4reGBQ3NEoSYljhNULFu9rOzxVMxjIQXsZQVj4Z+fs40B9xbFzNdmuUNnSilggk/CHzq+CzGGWNkGqLpRq8JYGVAlqogBOzmcW2r7mqOzf8Da1vniarGux9zW83y6c5FfWX8WNcr8RBOnfRRD4rRkxQoW9rn+MvVshQvLm1zb6m5jQYowOEyFtS2A1VLjMIutw1xrHAagl1UYK/G1VP3C+IKIPv1gpOAn43Y3zaNyF7EVosDmPDp6dNu5Z0ZqODJ6uSuNJaojzExSMlYWYSue4tzoPfT2vz3Mt0XENxGHYBpSMFYwYKzwIKSQNiqGp2tjbMVTKMr01ovU8nW0cvIc9S6c4M1GVMlWz1J3HU5GnqHNK/OWYMlMzd8rpRTTM5MT9YGTacNlTNRjLtnCJMO/pmCsGjYmSZKSPTcDQorMKZulUNd/pgQvZzzT+TyrySynp96GNdUP+hsbNwqsfg2Eq0QbAAAgAElEQVT4nIj8nIj8HL5g91dv2qiGMYxh3JT4SuzgkCEcxn9MISIPisjnRWRDRHoikovs6Ha6I1T1U6oqqnpSVU+Fn9+/WWMcSOIE25oizrNSLuYCo+G0h3MS+vyoZ5tKWdfgWCvtgaPXvto9Jfiyxif0mRnUG1Tr/lUscZSytPAuLrVuY7m+lwEzMKjDKkISb7Zwn+7CGoM1Ecb4XfOljereLHTzLsZv32Oyth9vkO0Iht1jdWqhDmK1toer0w9yfP88AMttR5qtc/+5X6Ie+u7kEtE3NZxCL0iyTEg448hLCCPX5WCjxUrzGEeb7xgwdYGxYmQXSXP34PrJqK+8OJgbHFYMDx2eYmak5uuPdjBWRqRM3iO1gCHX7U2LnfheWI/oArPRAdqZ8xI6DbI84xPgDPXgAhippeXxF5uHcbli8K8xJmJhosHBjVe2n8fUMFCConZWLK6jmaSgSjcaq4zdcmzXAGRbzUjzNdqZr7EqJGRx3qbosVT0MerbOo+6/bxpbra8I8QmJWDohHP34lkcSj42D2KCvbogU4dZbJ3gSvM4Fimbx6o6otKi3ceV9S6K44/P/iaf6Pvav/HOWXZvPEWab/JU9xoCLM6sc2C6xZnOY6gIqboSZHaDpC0YS5YsldthPSDqQWYVzpTyN4nZTKbKNeqWINMzVgm+Bx34jQhUcfQRUZZr+z2zZyLPngTgE8XbbcCNeGB+ZXOZLfXNbQnnvzByytcoIkzUEt50aLp8XxrMGWpYEPH3N77Obr0j5bGRAWOlYnGijGjCq4ttVAydaJR+kOrNNSOiyL93kTaPda8SizKaRt6MI3yerAh71h5HFZ69NMgtYkwJQitX+LoG8ZEb9OwbLNJgBSRubjOySGxK3Ux4Nk4pwaIWoNHAOh2u9V4Jx7253aJu1BXwfwR+DFgOPz+mqv/4Zg5sGMMYxjCGMYybFP878EPAi0Ad+E+B/+ObOqIdUUgBAcRYojzzlSZSSMVAtcfyRo6EpK1aLBWb6/96H412l0lJp+/715xbr7jhSaivQnFiiY0lGz8a6ptkG5DaGSenbmOxfogED5Cs8XU0uSiL6z3q2Ur52sxlWDuQ3YkIZB2MARFDPTH83bcdZ7QeAYKJGzx6Yo69kw36OuijVRhQXG0cZaWxn0wdTvzYC8aqXimOn0prvP/Q36EZapT8ZPsaK0ToVC5PnSsd/zaSmcBYReX6XKPNRd0ojwG++fFEM8FJFGpcKj2/iuMaEIl4Ztf3cXHsIdp95fTiVslZnWGLL+plMnX0506G8xW780IuEc4pFkeGYk1EEhlGXbb9PBJ5Y4QC6IX5fst4zl2zJ4KcMg62195hzVYki5G4EkREauhOHQdgovMatUi22aU7DKcP/iTpgz9ZNpMVMcS2AO0BWCXTnB27h346QmwiBCESgajGRvOgv0aEtXYf8FLASKSsNxtIz/ISFFWjmnCf7a+jVtjMF1HMNtZtRbtQn0DqEzhbKwFiac6inmkVBZN3iV3Gg2f+NYezlzGac2i6iUhM32XMj3vg3s0KkwuHIiRiS+AdYVARtvI1jBRW8x7MxNZ4GhPAWMbCnO2OmmBjHDlfvPp5FGiTDeZADK1oOqzV9pmoB2AVB2AVmYET35PnN8Ncsa3GygVjEcHL9a5t+ObRx92kP4cdnOOTnCMX4dB0ndF6HDiiUMMnQpJvebZVBvfTaBwPHAUrWCoJssDi6HHxeS3qpMIno2CZsmSMKuH0wOT3cqzxKFnYFSr6wYGhb2t0GvO8NH4/AHOjKfcfGADQmxFfj8iwAayFTvPnROTgTRrTMIYxjGEMYxg3NVT1JcCqaq6qvwy8+5s9pmoUzA34ZFGCtAjgQtLiIhs47WMkxkhcSWt8TDQTTuweDceqHjdmafx2EKGZWlbxdtt1jbjdTZeyoivNYwDENia2VfMKoR5VU4fBwe+Zu4sH6u/x0i2vMypZKUHYiGc4MD3Yka9Fte1H6axiRDB4C/PEJEhIdOOQAMZWrivXaiT7UUk9GFFHLjFHZlrcs38C0xqwUKY+xm3zYyAyYOcqSakY65v7AhKS98XGYTJT81IssTy6/1GMGFaky8sEs4qQMEZGIHE+YcZQTbNGaxH3HZhAjMGIZSuZ8kxFQFRFg9lr9HiFVV7MxrjaDYyCGTCRTqKB9AmHMREiEPH6gnwRyroiFUNkhO+LphhtL1aAVcGGbQdWydg+2iMHSKzgojE09lLMrm3RiH0vrnY0joplM53BpE0YmcOWpgdu29wCLIyPMt1K6OSdUp5mA6jNt5F/ylK7z2a3TySGbqh1m9QaoKjmaG38uhbcSViL29Ip8tCvSsX4xrBhPd6R7oWZ4xAlWNESIKpYYiPcp8U9I6Sb59m3+hig3Lr2SX7sob0eDEiMU1cCg5eXX6XntlC8211iTPmh7DXupB1P4LTnAaF68aQT6wFIsRFibAkA37TwCDp1Aqc5f3n6NL4KThgt7PElYSzaEwxFgL3388DBSR44OEk99CkrNheKud7oZmgAvibI8Py/PYDJUfq48jPWMiOMFi2OxVCLDLMjCZMjdXAZsrU0kBRWGCvwfb2kIgU8ONkq5XsFS7Vvso4VoWni8lYpxlys7NxY3bOb4TOQyMigxQFQiy2Zg5eu+E2Oe60Hgiawqiuz97IWvmsWJhoc3zW+85Z5Q+NG7dZ/Fu8MeAz4ZSAG/i+85nwYwxjGt3n84lewYa/G0JJ9GH+NYktEEuAJEfmf8Y1/b141839A+FqMMKTwt8GDrFdtj0Xji+Jz7WGkRVEVVYZzjNaKugpK4GWJ+FL9Ad7+yCHSj/0TjugEz5mYtmSIwkY8Dd0OSRKD8zVFia0m7PKV6xNMBKE/UmoNK9k6Kh5IpVgyW+PA2D66+OakaTSQIIoAcb0ElNZ4MBlJBPSIQr8ka4S+DFigNDEsRoeYinazmS+So2TOYXDUIktiDWZu4MhnbFQWrlclSKs9D5BG4xbjeJc3tI+YGlvxJL3uK7TJsGI4NHYIMaZ0PAwHpvC5OJlO86os0dW87HEEPuE0ImiFjSxYQA1uZRLmURWW2xmX1e++F7VtJbDyXh/0VanbqHSRrN4CGiwjUrUg0JeEGj0iMb5uSHOQKBiG+LQ9qqx13Jiim26im6+x3DyBmHUyk+IkJrW+jig3CY25n2Ymv1rO60tT74DlX4GxveS9fnmVAG8+vIsvXb3MWneNyMRAYAWD7LUK1C+u9hgN89ITP7lxkB9e6b3AnuvYdAvQ0xySpgfZCBPNmLwbEWM5quNsNu+gcf9PwNVfB7G8VXbx60WtEJZWGmEzP452N0drA+lrZI1nVkVQE6OZEhnPij1+5uMYsexKboPAWDkgMzWWRu9C258m1z4ijr5tIHRYru+nl7sKYxWV7FN+5DtpvfQHuOWsEPoCMGNqnAVmk+NYYrbiSdpRD/bej3nW97RKo4gz4/dzduMjHGTgtLnVy0sWyYOTirRXBCdKVvJWeCfD8jXe0EbGHXEngrwica18Jgvzks1ujtR8g96l+gHY8yAnui9iRHj24lp5P4P/zHwiuwDA2fGHGGv+BbJ+kYXxOgt7j3B+7TTWeNnyseaDXJOBCrswwvjol/13ot3xvRlZoR8+R0b8d9rNjBsVGn4A3wzxcQBVvSAiQ5v1YXzN+MUnftHbp3+FuDKs7RnGMIbxjY8fweOUvwf8NLAX+Jvf1BHtiKoUcACsBDd+gN61QUK/2T/DdG0GAUaq5RnOu+bZCtOhWgFrxmKNMEcTiee4z63SIWM93cXZdIrjhyeor1ylEcelQQT4ona7Q2Y4UjQ0NRF/66FDyBcCkyBCYiPudDMkWN6UvJlj03fy+Wt/BAzqQPz4BJqz2B7gBuxcYhNgi7ioQTG+QWktMty1b4LPLZ5F1WDF26BnqvTVGxkUzEWajoT03CE2IravB4Ynp09ycfMiR9xBnjnzu34Ktc+mGtYl4yn3AnXx9UyRiajZmE3apXMblTk6nkzw22aFVC1bFbwuAlfyNs4I5joSQSn+MBYF+qIYsTjNK7VzUjJWgrdkN8E50rqco0zwydYuMlujRU63OY/t9ZjQlJeTXdQ7L4eGu96EQUxSMpoiFmsHa5LYBEzEhfF7sclRDF/w9gmaE4mWhhUj0Swj0Ww5r+955CH+/fOvgTGYggFTZXY0ZSz1NV255qVVfSSmvMe3T0gAfBVP+zG8E93l3nPsZRMXJVAA4WrYhDxXMlGO7xrlqWVLgjdxmK7dObDbzrrM0eD+jfPs0t38eTBMOLUwzpPnVlHn692K0cVGYGsJsZbMtSADaxzXei+Feyb3jBVCGu6/9WSOUfGbCF23yZPXnqRnG3x57i2MpQeZbyWD+0csIybhMluICI04wWnm6/TEBGmnP74Ri5UYJxG9yWOQjnBq9hTPLz1PZIULo6dYMmc4CKXl+VYvRyVhvB77dQ9zfF86x5O5IVNHkhQgFzrJFDawsoI3rNhwfT/euA6dUJpqtm8gAPylvRshZ/d4nUZ8kLlT38Xol04Xt4N/W3hPXSJ/Dyh0k2mYvgXWLyJAPW74GisR7uMguU1KoAuQxts/S91dd8OVPyo/M1aElf6ZcEsJLy6/yPHJ46+/Z96guFFg1VNVlWBlIiLNr/WGYQxjGH8N46uAYAAOPvKNGccwhnGTQry92j9W1R8GOsDPf5OHdN3wkrjwK7oCrJLWBHptsXzdKZ3lomaA0q40Iy0auVoRHszn+by9UFp1+2NK6Rx4W+t97F76EK+yghNLO5khiR2zo7VSQnSs+SiqOZfzD2OLZq/A+0/NE5952T9gY+qjU1AkOmJo1hIO18bIOoBJtskKTeXfW7vuZ2SsgVzdxIQEEiAKsqXYDqR2KhGdUM8i4iVphpgo1LQUTmzFzn8S+b5Rs64GJi6Tuk46DUV9hwjvPvBuLm99ukzZPrp5higWerKnZIwKkOlEScaVWlFDUtmxnzI1TkaHOCEdPqUDECwIH9l4iVm9bQBwK1FYlW/0/fgzHFYSnLYHUkCChXTBMADWxr6mTfvskhH61iPs9ewq41FKTodTyX3Eo+/iLb1f9UwgGY3+MhLtLWVVBoOpMFaJSTB4SZeRCGuE/TOj5Fkf47rbekf5uQn1Sa0aYw1/nJn6JHAaQanHtryfunmXVtQANjzDIQZCdZ9fu4QehYnB4DyxertxJ8EFM99uilKGseRZr6zNujV9ANl6wjdilsrmQNYmsSPcqb7m7riZYl/zGs0kopVGmK6QOy2T5dgauPIMkraQLEgZLewbXWBx8TSpaaLkEKSHUPSD88Dq6aUvMNkNbpAmJbbCu2/fDc8NGKu33f1fMH/5C8w15khszK4xw9K1LkYM8+N12pt5mJWBc2bxeXl4/mEenn+Yq+sebO5JTwEvVIBVhkpcsjwFgBoxCcZF9HBUvyYUx7nxN8ParwPeqdIW6xU3Get3Wc272+7/KNzbmUkR6ZBGhoWJQR8qqDS9ro3AOjQk8i0X4HWbDlEA+w+ku2i3R1g0QqUv8/bvNUDqhQFLAFZG6OHbIBiBd+x7BzczblT68O9F5F8B4yLyk8DHgX9984Y1jGEMYxjDGMYbH6qaA/uDFPBbNmzFXriU6wS5l40GiUcidSbNJKLKWK1CWTkv07EGZmkgIsy0tl/yTklfIQ0yZpD4WLG+ka6d4u23HOMDx27nvTVfYq0QbNHDcUzsd7HL8AnYeFSYIyhpBUxJhfkyNip3zwVDEtzHkh3AKldvTNFMKlbLYrESEVtffN93OUv1g6WBR2IN7+Ao9+suMBFTYR7GHvlJeNNPbZuDsUZUSpmSxJuFiKQowtxIijEF2JVgDV9eAMeTSf6zsdsREfbGu0jUbgdQ4cUbebtkI+MglZyt+xoQgxBHBXgb2IwX4LqQAg6eCa6Q5a2yY788ij34cl0wMY3AINXOfAKAer6JCOybbPD99x4ogayf8xgJtU8mGJJEUUzNgtEBY1UPaxGHZN1UrvnhXfcGOaJQj+qBgYR21i6NQKxKeX2FWcbDyZtK4LakbeZGUibqMbH3DETU+bVvVkxIKhHbhEv5Fud7nlHRADaN8cA0MsLJmZOcmLt7W73OHrOL72zuA2D3WA3BAyupJOn0txCbVGoglaWtTnkMVYdgyzYFimAlxojZVu8oYnjbsVnG6vGA8TGWZPcd3H7qP/EA2EQYO7BAn48aQcIpWEMJ2EaT0W3XX4CNAnhpmNetXo6aaCC/DGNc0y6CpUcOAuPxnnBOh5ikFGnmJmx6uBzWL/JQbRflxIYoa6xMimCYHUlLV8JyjsLfJkpgzz3UTVR+d1St7b9v5AiF7f5oEjPZqvEdx2a3rdnV9U710CRR0RzaR2Tg9j1jHJpp8v5b3k9jh/PiGx1fk7EKTRF/AzgOrOHrrP6hqn7spo5sGN82MbTyHsYwhvEtFq8AnxaR3wE2iwe/EY1/bzSKvGEmuYWHJ7uwHBqhiil7GgGIbWFDS9VHb7lzcADnE6lubQb6l8mcYkQ4Mtfi4LQXnVSTkwujd8LWZ8r/F/bWkYmQopZIhHeMn2A1Ps8qhTt9JVMskkMbQ97nby58B4vNSaLTHwFgpbawrV5rd3OO54u3SnHeAKwCkIpDol8wHc9cWGNWbMVwwTc2NeJNNnKUvnN04lEi8eOOrSGRFEsPTEQjifjpd27vF1REPLl/WxKdO6UrflSJNaHmC+5u7uPxztPl+z648CjRlecG62Li4IpWAZLh782svOX4O/c+yNnP/RlHsojzWx1EhXoSBXHbQDJYNQFRMYNqJBGMseWYDVEp+xyJ5oijs6E6R8O9E5ao59nN1PURhD0TdfaMN7Fu4CDh1JWvN3jpKCbiUNTipd4W83YPGu2ikVjavdzL5GBbEh2lLSaaCd+1uZ9k7w+Beuagl/eIq/2URFAcl1q3MdK7wuXWrbD8F34czgMFESlrrERCa4F0e1VKNx6DfXcxvbXKRXeBx9ZPQ+0oyMCwwYm/ljfveTPseoCXXv658v0aLP/B1+YYoJs7tsm08gxTGwCrC+0XyIKlftdt0tVNRCw1W5iGeC7SEG9jbQQpnewKu3V21P9EJqLvfEsBa2o8UJ/j1ZUNFCGOhET9psmB0e025oWDXywesLvA/vkaK+s/bxVzkYWohXGWruYIQiqt8h6ITKO8DzITKq6yLkzsZ69rhYup1FhJkKmahGaSBOOdHcCquGwRSBpEJ96OXvgUvLa67XUztu6NNOIGpjXLXQ/9AIyk2wDqyYVx/uS5K4P31A7Qqs1xduNSORc1a3l44T72juzlZsfXZKzUb1v9vqp+TFX/a1X9BzcCqkRkr4j8qYg8IyJfFpGfCo//nIicv16DRRH570TkJRF5XkTe9Ve6smEMYxjDGMYwrh8vA7+L/x04Uvn5lokiudtbu4dTE8cGT2xjsuDlme/GmpQfaB7nrXsrUt0gBVyavofH9vwol5snYOFe3ndy3rvihWiF+qgz4w/w8p7v8ec2cGTiCODrbIrzqQLWy4hy83oHukEW7pOoufo0J+buQgQujJykF7UYTwfnnq5P8V53KJyzOIcimDIxtEFqF1cSTieWvGI8kUuMJSa1KRmOrnMgEdHhd8CpHyKOTGnzvDNx3Rl2ZK7s7ST4dejJwDwiNYU5x/brt9GOXXAbhea+FRBckk+GrdwDjKNz47xjZj9pGFeEYPvBDltdyXhtq5VDghSQUHtSZcUixoMMby45ThxFnJqcLJ8uDCbK+pPKuKzYQU0UngUpxyzi5WMm4gE7wQ+OHOWW6Bi3NN5KLS7s3IuxVuY4rpfsp6oyVa/0yTJFDyV/HScXxuhHTZ6ZfR+ZrZcGCrert8c2MjCvEHXh8g3nRu8BU+egjtG3dbAxtlifAjhMeEZH8Db0JVtr4yrZwtXmEWgGC3NjSvay+LsZPi8SJfTVr9OLa1/CVYw0VvrnMBLTKNlZQ2TSUAdYWSpM2QC6MH1hBwARERr1DpH1myJJMjB8Sa0lkpQ7Wn+Du2bu3fa+EliZRnUago09le+QcF3G1yien5inO3YAEBqpZXokLl0EAXJjcapQn2Df7MkBo1pZ874qxgi5ScsNEnMd6at/PMzv1GHumLmTA/UHS8B6NJkYjNUY9Ph7Ycw3If+h4z/MHa33+7Gn2+fstvlx7kpnSsZKwgZLzdb4RsSN1lg9LiL3qernv45jZ8DPqOrjwejiCyJSALJ/pqr/S/XFInIC+EHgNmAe+LiIHFW9ju3LMIYxjDc8vhqzuHe8/hWfG8Yw/rqFqn5L1lVVY5tMr5rEi0GjlE40xtTcHczP7EY3nqYpkU9eCsARgJXYhMzWePuBH+F77lx43Xnu2DPGxwMhNVvbx8vrTzFfO8aDu+/m/l33h3qnynfDrpNEec6VlWfZvf70645XjLH8W4RXbvu7nDnrGa64KmOMEnoYTroZThfgDS+RMmXiH4BVSNB++IF9/OGfvszc6CBJ8jUsCbFJuVKbZzUd9zVHu09CfZokc2gBcMzXSHtEOH/we1m6sMmCXEJQusG2uRgzsM2WHEDi7Umb2MjbTdsKsKqwe/fMH+N7j4f1UDdw5lMDSRPYxGqvdBUsjCEkSB+rjJUVC3GNqWaCNXWOzI7wuVeXGI128Z5938u+V3+TK+t+/Bu7H4LsqTLRXq0foOiNbSqMFo1JZhuzHBu9h8fbTxJLw4+xt0EtHqVmohKsNpLtYyzYiWbchLjB7rE6VzuW23aNMJIM5r8EVkEKONWKWLkGY/WYVhrx3KI/3qHxFs9wGUGIsMxsvcCl1m1hPvx1vYWjjOkGkuzn1K77uHL6E2HSw/PH5xlpj/P85XUclevcsS7vPHUY9j0Kz/8B5vRj5XO1yPLgwuQAkEYJNTMW5g2QQS3dZDNhtjbC6uqrfnkLBlRiTKU4qHreEljtuD/PrZ+jFlvuOzDJ+w69D578CJEaFKGVNOm1fT1atKPOqJDBFp+fRtSgqMBcS+dJxwOADM5+zSTmvl3T9DTmynoXWfefwal0F64bMY3PAXJjyPMc4hrvOPBu7KV/GS7Gm26sux5dzbEi5DJo1bCTsSqiALWxiXnb3rfwpRdeRFV52963cWjR15LePXs319rXODh2cDDH9XFi491FazvMKyRpYhG6qQfIOb3yHN+IuFFg9QDwt0XkNF42IXgy6+RXeoOqXsRb2KKq6yLyLLDnq5zje4BfV9Uu8KqIvATcD3zmq7xnGMMYxjCGMYyvK0RkBvhv8Bt5ZUasqm//pg1qR2wrf9oBrEQs1xq3MJGOYUTIsBicB1VP/N+wehZmT/jjRAn0YCQZZSTZQcrN3wWaw1n/31bS5I7W+2lGoQnujl1mRSFKiPY/gH7uhdftFFcGGS5iYGJRZLJR5cKiYLd+gDHM2CEWe2dL58KS/ApSuoKxmh2t8aNvugWeemLbGSOpsdkxrNbn+Fx6Ctv/fJlIxVbKxq9fE1gBHzi1wFp/FFm7hODd+YpohF3v1yWKO45bSAG1UlOWTxyG3IOY7zx6OwsTgeUK7Av4RrJrY4dpr/ZZT3YxbWfYcksVSZ63ZzcE5rJgrHad5Gj/c2SNSR4zg/3oNEi3ChC0Nf8QnHmqPN9r4w9iwp53yWIs3OeZHDEcHLmd3uZ+IuOt4lFX1g4VxxypVe27vXzt4fmH2Te6D6KUsSMP8chb7oTa9sQ2CuvjXdHMtqaxu8Zq3Jbcx3HbZ99kk/f2D3A5b9NwCaxDs7cI0aBOz/vYCbuTfdy36z7+8MxfbDtXM62VCbjbuXbhsvdPNZgfD4zQLY9SG9uPu/ChcG1VlsczVuPRAqPRLqzZQCvW+0fnWszUJqithwbYMgBWIgOzDRE7MF4oPuNfhVFNbQo24RiTdKXBeHMfp9vtMJfbP6umZDiFn7jjJ7BE/MJlbzKzZ6LBtTjURgVgFWGYbjW4tLmGEZiJj3CkdZD947O8tn6Gt8peXouWyJ0jD7LSKB1BkoKpVRomYt316GuONZCbhLT4Ltkxvt3pCW84Y/yXj28m7se8b6rJiakFML8NwHhtnO8/9v3br6/y/ZhU+uodnm1B0kDe8jNc++3/CYDlzhK11NcMfiPiq0oBRWRf+Oe7gEPA24HvBt4X/r6hEJEDeLv2z4aH/p6IPCkivyQiE+GxPZRf7wCc4zpATEQ+KCKPichjV69evdEhDGMYwxjGMIZRxL8DngMO4l0BTwNfjyLjpkeRxN25d2xgaQzb62RC00wVQ6QZfPZfwsoZD7AufxmAvO53ba/be+rYu+H4e/nuO3dzy2yLWmyu+9pqwlvEe+7YxW27g6zvzh+AoxX1fqkfC4lspfFr1cHLxg1iKyw2Dpc72xqEboMhBJOHCkDZmXyO1X3tyu275+i7Lpn26GauBD8S6mrCSV9/MTuimcaMNWvle/sVxqplQ4H9/odgxDeR/eHR42xvzwxiPbCylRqrv3HXT8GcB7zbgJm6UpI5VUsYG2my2DhEbhLm0luxRrht6rZwYHBFnUt4wIQaFKg0Vw1r4OqTkDZ8DR1V5ks4P3rKS0t3TkBc83b8lXqjMnmdPFz2CXLh2grGqirPPDV7islakCAeeSe0Xm8yUcgO56RBPWpwx7Qfo2ctYdTOcFvkpYP741Hur82xd6LJ7tEaB2dHvZlLuBeK6y7GVDjJFTevCZLSNDKoWFJbnf9yaqERpIo2xuw6wXRzUMtXDRvFiBhG7BxGPCuSmDpFM+84qvEdzT2k1nAwvdsfg3jbcQThtvnR8nz+we33dtXBzhoLNiYSwwFmaSRx5bnrfL5DpDbd1iIhjQ0P7H6AR/Y8Un5W42CUAf7eMGIZjadJooR2NIbg3f4uaJfz2YaveRID+x7yBzUxl7Ot8hxGhFwi0sBQmx1w46ff9gj/wzvfU467+Dz8+JsO8j2n5r/itRRRBblWhBPzo7znjt28/87w3ijl1tAgPXbBz+wAACAASURBVI496J0O34U3O77W1s1vAXer6msi8mFV/br7fIhIC/gw8PdVdU1E/k/gH+Fv5X8E/K/Aj9/o8VT1Q8CHAO69997rfN0P4xsef/pPvvJzK09+48YxjGEMYxg3FlOq+m9F5KdU9RPAJ0TkWwpYAQODhXXg9KfCo1ImZ5PptLePJjh1tVe2H8DGmLQBrA2c+64Tt8yOcMvsCH/wlDfI2JmkFVioSP4B6kkcLPkcTB7accTtjFXxi/rgdHObZMkmTb64/8fZ6BuOGN9nZm60jmwaZoPUT/T/Z++9w+S4rgPf36nq7omYwSBngCDAADCAJEiRFMUgkYq2gi2voi3Za8teOUm7++3Ku/v2ye97+9Zvd5+1srWUV8G2JMuWZEqUqWSRoiSKohhAkCAIgACR8wwwmDzTqaru++NWdVeHmemJPYM5v+/rr6srnrp9u/qee1KUvCF2+ph1qH31DqTXXmH1osUApP2+UO7iIHXzinaW5YfHjbGCUkudAB4+Kxc1gA8toZXNbWy3tXYcl6QUM5rZgwRxEwQGmqQBiGI8rAJojCm1BuZGaEy63LF5Kf3DQ1xyHLavbePAuUES0sCOxW/mNatvgMM/DwesyWJWwMhiFcoljsO96++lrzOM00o149/+R/T87BhQjIMS4HT7zvB+q/cNJ1TcwcZm+WDdFEeson/r5uU8PZQs1sEat2Ut6xet5/Tg6YLS2SxJfvP632I46wGDdDQnEaTSsoSNQUs4QsI1vL5pHT8SBwgKw3Y/VKAOj5wL11itPhm2z5YVrSSvWV9IBw8w0rYZBg7QueMPWB0rWg2QCvuLL6XDTSdU3GzclJD20jZxCEWrXUpcPrn+Vrjtfj71i0uhxcoev2ZxI9uXLy5YaRjFTa0pUexXy5qWFfq+ESlxgRtNsUrFyglEyVgWNSa4ZeUtADx58kf2eJyCcmOTT0QZHoXASeInW2w9q9aVnBJBmjpCxeo10H0nDF/kXa1X8vCQtYoN52zK+VQigUel9bshkSh5nkTXjn8vteKI8KbtqyrWL25OcceVxZi+BrehYp+ZYDzFKv5NlT85x0VEklil6qvGmG8BGGO6Yts/jw0gBjiLLdIYsS5cpyjKPODBPQ+Ou89Hd3x0FiRRlHHJh+/nReRtwDlgyRj715dFK+GmD0LfSejbiwhsbb6PG5ZtZTBtwro8VQZWfr5goXDGmNGOKE9sEHHjusWAcMO6xcWVizfAyaehrcrscjFLA1BM3b5lRWvJbq64BE4KxCcRWhA6mpN89M5ixr7ARFa02IGxQei7b/0YQ08dZiQLi0K3pLyxM+eJmLVo66rFcKm7JldAV1yI3CZTLdy9uYP+C828LbuJZidV3AdgyRUkrv9tkIQ995IrwUngPPUTezgJ1nU0MZLzWdzUYLP6YUaNOYmKGrc1JmlvsrIG+bZCmnIRqzwIUkj64IpbtHgMXWTb0m380H3VNpWUDrqTrsDmewh6O+GibdS1i9ZUdZNyxS20eyrhkIkECLl6TQdXL7+CF07ZRBwNifGVVigOcBPRNUOdpaUhwbtuWsuq9kaePd5TyH5YIlO0JvBwSIWugAFOFFoYKR7hftub13Ld1e8pFD5OOA5XrmwvOeelNfdyJLuJm6ooNx2hrFc6McuSny+0tyu2wHJrk8/AiIuE/TXhVFpYbYyVlWvj0hbuvipmxYv2NzHzLqWKlT1JmD4dp5CFEaorVh+6c1PBCg0UEmW0xV0yC8pU0WLlOI51NpVi6nRb0iBMz960OEzxb7e959r3YzpfZsnxovtlW2N4P0GVhCZUWrDKnzkTYbSJgXJSseLXM8l4TxgzyvK4hGnavwi8Ek9hKyKrw/grgHcBUfTrI8Dfi8ifY5NXbAWem8g1ldmlMJBWq5SiKPOL/1tE2oF/A/wl0AZ8vL4ijcPi9fa1xz5vW93lpNwkWS+NEbequx7rdpIoDPTGH3y4heQDpfsmXIdbNnaU7rxkM9z1sbK6VRHVLVbl4x/XcelocRnJpREpHVBGrG1v4aVuCkqGPW9xucFtYPvqVew60cPaditj3mTYuLS5dDBXCFIaX7GKspBFBdFzfo5Gt5GNyZjrVUl6acfuv7qY7l7cBAZI4dLenGT9kmaSiUTpNSKWXw0XD8GN78G9+BKk7RApWZaQwF5LCJyo1paA49rrj1Io1xEpGXgmHAc23klibQA/OUJrQ4J3bX3XKMcWk4iUF2G1jWDb47o17fSn89y0YXHlPqOcF6CtySrCTW1Fq8KmsBSAHwQ29Xm59TSyfAx24rZsLCjvElqmIovV7ctu4JnuwyRFbCZCLxsToHSQ7ydb6W9aV3WA3uIm+eXgSlZGGeWSzeD3lylWwqblcLa7iVxYiLdUsYpiFhMlv4ES5aKwofSHXKlYJVnSkuLisENzzOJT7fe9pKW6ItGcKlP6Gttg29tJZG168pSTKPTPyFIsjrXHRW3nx/LKLW1aCg2LS37gyxdZhXQkH0Cq0mJVHnM1FUZJOFh6PXFKJlpmkvGucqPYdDECNEmUOqaYvKJt9EN5LfDrwMsiEkWZ/gfgfSKyA9t7TgC/iz3ZfhH5BnAAazf/fc0IqCiKokwXItII/B6wBRvD+0VjzH31lWpySDhg9gMblRTFuZSw5X4SR21mrXiA92hEg7MadDBLVaWKWFbAKMbKDhbLo3lccfnlG1Zyvj/Nq8PHqp7qurVtdAdLSpUMt3TocueVS9mxYTGBWEuVZ7IknWT1FM81KFblx2X8DK1uwto5C4kIYm5YVaxPTiKFD7i4OOJX7FcyyLvmbbBuJyzegIycgfR5Um6Ku1e/jeOdpecVIosVBYuVIw6svB5O74LrKiM24t+nFwa8pRIOb9y+sphAowquuHQN2OKrFwYzvPeOf0Hez8Ouvw1vorFwrvuurl6otxpRP1i9aBEb17bTvKS9Yh/PNwS4FX3RjfUhFyn0tZRvkzjkC0V7w+8wmnGIf0dl3+/OTR2k834hJqfkeo6EVsaQQq22sHC1NOI4Nq5q3fIcTYnFtvhx/HqREmaTxRdWlygXkaWqrC81JspShPccY+3iJpYtb6OrqbYYq3JKnhUidkJg5XYSp7vDc4WxVjG3YyNuSXtXsMi64m1bfxfLu4/j5O1xI7k8zS2Vv5Fyi9VUqMVilXSSU7KKTYQxnzDGmNrsutWP/TnVXW6/P8Yx/wX4L5O9plI/tAiwAsDxJ8ferq6ASn35EnZ4/CTwFmAb8Md1lWgKJMKYiajgaQlhJr5oQFjV4lCGW5ilnuIApKyeVXs4AGxrKh1yuOLSlHLZvLyV/QN5qhHFhpQoZWUuW44jtDYkyHh2sJsPMjQkR1EYalGsygZ9xpgwg51XOL4kQ1yVAZvjuviAYAoKqy22HCpmcatJosG6VlJU6nau3Mk1Hdfw2c6jxf1WXYdxmwiOW1fAhMQsVokU3P57lXI4UtI3mmJxOfF6ZlXbwXG4MGCV1bxvisH/IlZhKR/010rUPZwwziZR6YK3tqOJ4yecUusKdhB9RbKNq1MdYS0v216e00CLk+M1V4axNgUFIFRYqlkvQxY1Jnnr9auriloRm1iWXTIhpcVqI0tVNYuVK6nRLVZheYRqBYJLMLbQd5PXXzJZUotFOmK0SZai7LbvQlFhMzjWWljVNI5VrF73r7k30QD9Z8jm8zTvD7hmQwf7+6tYrGoxM73md8HLjLtbLbde0Y4zyOxdSZlX1BIvoywcCorzi49WbJtIjavx+pXGYCkzzDZjzPUAIvJF5rm7ueuILdaJVCpW4Qx43rfv5XVuRjvf9BDFWNlB4m1XLGFtR1OFdSSuXORCV7Z71t9Tso+pNpAbJbNfPIaiNdlSujE6Tw3JK6opSglKrXCjxUgV9nckDOQzVQe9oxZMDa9jMBX1ebj2l3EDQ3Di1VAGB8QdU5byNOFXLGsZdd9yIsV3MOOVWjlaV8BgVyFhxmQxQTh8rzLo3ba6jU1Nm2nZU7bt3k/wlp/+GQADQa6g6Ly45r380c1JWL7Fnjvqg6P5odZIxWGFlJy2DyakoXgtYDA3GK4vdbdb1pqipzdR8l2U9IGGMKavcSxHMOCWD8HuLwHQ2li8xkR+u3Hr77al2+hOW0tVoqAAhoqVFK1BF5fcQkfu9NjKdNQf2tfRAPzuPXCo5xD7+6tYrMJ7v3bJtaPHPjWPHfaaSjjkvKAmi9V4v9fpRBWrBcqEFafxLBGKUgtj9aMwnkFRZpCCWcQY482Wa8h0knJThWGcdQUEMKMOLjzfjixrirFyygajk6UseUXCddi4tHJAHx/sbGjbQNdIF+taS4sYR+5SralY4otoALf1gdJ9xcERl8D4NCdHGfTXUCS0mtJzMdMDtMbiZcZWVCO5BVMy6I1iU0Yb6BXSpIeK8Zu2r2JxLFOaU/ABDK0p4ozp4hT1i+vWtnPFsuYJuUO54rKoMcFgxuNXb4l9L9veCZeOFlK8T5RVLas41HOI5ui7qKJYiQgtjbHvcPM90LKiRNNpErfQx3wnBcuLSU8KWfumqPxVWGiiz4VkIg6pZGVfSDgJGxPZZ6sIve2GNVxxMc3eviNFGeN9aMV2Oxmy8vqx5WlZXlhcFIuxmsj3Grde37v+3sLkRbFPxpU/+96/aAvLNnwAunbXfB0I46+AdYtKf9fRte7bMHlP7NdtXcbPj3RXjUUspyYL2TShipWiKIqyULixLFa4KRZHPF7c8Jzg/de8n5bsKTp7rSK0YUkzZ874hex/5TSHRXxbGsb/uy+6/cxOJZO4xeqWlbdwVcdVtDeUuqddu+RagiBg29JtpQff9ydVzxmEiovjlN9DZLGqLcYqyt5XPDxyKaue5awcN6qTZEwx3ifGaLP0UbKCyHqwbU1pl4wPoBPiYETGnI2PFOoHtq0cU96Sa4T37ojDL92whuPdwyxrjSkozUvGtSaMxbVLrqUt2cY6ScHxX9hMitWIt/HGOys2J3BGjfnZvun1DA+e4eZr3ztpOQG8oGxiwhT70bWrmznePUJ7Ywd92T5+Zeuv8K3D3wLC/nHDewpJM5a0pNhCB3tjFRFKBvtlyU/ifHDbB4uusG7Suo0uWjnpmKFE2bMiOk8hK2C4uSWVKJkUmIzVZ1nTMj68/cM0lynh06Ho3LBuMdetaR/Vdfme9few9+JeejO96gqoKMrCRFO2KzPJVOKG5wrNyWaaE4uAYVwH7rhyKWmzkoazh6vuv3PjElpSCTbX4AKWcKL06FMUcpQMZ+WUZ9YrV6qi9dcvH2cWvwqD+d7SFX0n7Xumv6bjo3pTRUqTIFQpq1tCNCBtTDr82lW/VpJFDWBRlM69jO3LtpMP8pWKZBl9jeuQVD+GsQeptbiAViCAsd9PS0OC69aOHYs1URxxWN8WVte54/eLbnAVcoz9cxUZPZlCMtHAa2/6namICUBT6AK5qOB2V7RYvfk6G5c1kl/NYG6QlS0ruXrJ1RzqOVRMgR9zW52sctGWKpvvuekDE7+RGKPFWEUp9xc1Jrjr2pVsXdnKkQtDhe1xeTe1bar5euX3DeNPTNTKWPGg25duJ+NlePb8s9NyrVpRxUqx1ODqpwkqFEVR6k98ptp1hNZFsYFXUweke2H9rYAdRN24vsY02FEitakKuGI7DP3UFpMdg5mIe1ixqIELg9nKmJMtD8ChH0DHxprO44hTcMcD7CDfAKFL4riyN9jvJNuwjOXNRfet16x+Dfu79486qE46SW5ddeu48h1a/kZSS5sBb0xZRrNk1sJ0psQelbFiimoZfM+wO+/S5iQ71i8uJv2I+kSZwhQpD/ECweW0pdp4YOMDPHbyMWB23dPijOYWHMWFOeJw/br2cLkyScv1y67ntWtfO6lrL2taVojpmg2i76FqrOZMXXPWrqQoijIW4yn3GoOlKEDRVSeIxgortoOXg9U3TCmhQGSxCqY6CNlwO6y9xWaqG4PpmrWOs3l5S/UEDWt22FeNlA/EfuXmj8JAF6y25xhP6ZC2Nby88p00LSktoHzLylu4ZeUtNcsxqnySIJFI4BlvbIvVJJSj6N6TNcSjzSijuW9dcTcc/9nEz9e+bnTr2Gh42ZJMikVXwOptEylWo7npbe3YWnfFajTZIoWnL1v0V4wmKESK9+aKO2nZ37XlXXhhra/ZIFKsAqrXyZsJ6vOtKopy2XC6Lz3qS1GU6Sca4BTG/m7CWqimGKgfeY1NiyvgGErVzpU7AWakYOevXvWrOI5UBMtPlPI4s6XNK2DtzQWz3nh1eFxHGG5YgevO3Px1NOgda5A7GYvVPevuoSXZQqM7yXTq08Vo97WpaC153zXv4/rWt9d2vpt/Hba/c2oyBWH+m6kmxZgm3nbDau67pvYaYmNxVYdN/rGyuRiPV82TdCoxmEk3WVn0eAaJJgfUYqXUDR0MK4qizG2igc10e0G5UYzV9J62gttW38Ztq2+bkXOvalnFr2/79crCqhOkfPBY7to13ox9oXbVFFzxRuODt29kOOvxRJdD1q/ulnjlilaOXhiaVIKD7cu2s33Z9ukQdWqIWOvU0irJLTbeAZkBOho7uOtKn5GcX7nPTHDdu+H8S6O6uRbae5bG8VetrN0Ct7KtsVDwuRrLm5fz4e0fpsEtKo3V+s9sJbeZDgqugLMosypWiqIoijKPuGPzUgbSHhuWTC7d9WhUZD6bp4yWGGJClDVB+QBzPDfG6PCpxDiNxvJFDSxf1MATXfZzNSXvbdevJufNnvvTjLFplFiezfcWFu/csmzmrr/tHdD5sn0HSDZC+9pRdy9Yk+eg8vGeW9ePa7kpTzQRFUi2Wf4jS/ncu7fRSIq1WJXES84wqlhdhlTNrKZ1qJQ5xljW0YkUHVaUhcbS1gbe/5oN037eSHdI52dp9n8OM97AeNw6VmFbNpUX+Z0BqsniOlLIaKdMgZXb7KtG5nJtPOs6OjH54klgIoVqLt9jOYUYK1WsFEVRyggnBx4cbZIgltxCU7IrysQJLgMDx2wxXlbA9R3N3HHlUm5cV1tGxskQKVT1SoKgVBJ9F+Ol458vxHWoFc02lmtZ0wxaCKcZzQqoKIqiKEpd2LC0mbdev5rNy8evebVQuHXVrYWg/jjjWqwc4fbNS2dKrBIZZiJtvTI5dq7cSWACrlpS2WfmI/F066tbVvOeq9/DksbJF4eebQrJKzTGSplJNEGFMltoX1MuJ0TkzcCnARf4gjHmz+os0rRz9appiE+6jFjetLxq4WKAu9beVZjFrwfjpfZWZp/GRCN3r7u73mLMCCLC0qaZnSyYbtQVUFEUZSb4yX8de/t9fzI7cijzFhFxgf8FPACcAXaJyCPGmAP1lUyZScayBt2w/IZZlKSSSKFSi5UyU0R2nvmqu6fcVMn7bKCK1TyjamKKCE1QoVwmTMrS9eKjhaQXo8Zhxfjo4voOipR5x23AEWPMMQAR+RrwDkAVq8uY2RyQTRaNsZpfbGzbyHB+uN5iLAhSboo719zJxraNs3ZNVazmKU8fvVSxbt2Aul0piqLMEGuB07HPZ4DXxHcQkY8AHwHYsGH6s/Yps0+8ps9cRS1W84u3bX5bvUWomWWtKRY1JrjzyvmTsKKcHSt2zOr1VLGaQ4xpjVIURVHmNMaYzwGfA9i5c+f8KfaijMpctlhpjJUy0zQkXH77dZvrLca8Ys4pVpdzcPCUFaeYe5NapxSlkonUxnqwb2/xw8Pvq9i/xFVQY7AUOAusj31eF65TLkNuX307z5x/Ri1WiqJMiDmlWM3V4OCZtCRVc+kbDVWmFKU+fOqxV0fd9vEHLo+0usq47AK2isgVWIXqvcD76yuSMlPcvPJmbl55c73FqAmNsVKUucOcUqzQ4GBFUWaIiSbEeLqnOOlxu/XuqsqnHvvIpGUajTmhrGkmxRKMMZ6I/AHwQ6xHxV8bY/bXWSxlATObKaQVRakNmc1qxOMhIu8G3myM+e3w868DrzHG/EFsn0JwMHA1cGjWBa3OMqC73kLUGW0DbQPQNgBtg+m6/43GmOXTcJ5ZR0QuAieneJqF3o+qoW1SirZHJdompWh7VDIdbVL1/2muWazGJR4cPJcQkeeNMTvrLUc90TbQNgBtA9A2WOj3DzAdCqG2YyXaJqVoe1SibVKKtkclM9kmc80xV4ODFUVRFEVRFEWZd8w1xaoQHCwiKWxw8CN1lklRFEVRFEVRFGVM5pQr4DwPDp5z7ol1QNtA2wC0DUDbYKHf/3Sh7ViJtkkp2h6VaJuUou1RyYy1yZxKXqEoiqIoiqIoijIfmWuugIqiKIqiKIqiKPMOVawURVEURVEURVGmiCpWU0RE3iwih0TkiIh8ot7y1AMR+WsRuSAi++otSz0QkfUi8hMROSAi+0Xkj+st02wjIo0i8pyIvBS2wZ/WW6Z6ISKuiLwoIt+ttyz1QEROiMjLIrJHRJ6vtzzzlYXy3zLa81NElojIYyJyOHzvCNeLiPxF2C57ReTm2Lk+FO5/WEQ+VK97mg7KnyNhUq9nw/v+epjgCxFpCD8fCbdvip3jT8L1h0TkTfW5k+lBRBaLyEMiclBEXhGROxZyHxGRj4e/l30i8g/hf/CC6iPVxp7T2SdE5Jbwv+xIeKzUJJgxRl+TfGETbBwFNgMp4CVgW73lqkM73A3cDOyrtyx1uv/VwM3h8iLg1YXWDwABWsPlJPAscHu95apTW/xr4O+B79Zbljrd/wlgWb3lmM+vhfTfMtrzE/hvwCfC9Z8A/t9w+a3AD8Jnzu3As+H6JcCx8L0jXO6o9/1NoV1KniPAN4D3hst/BfyrcPmjwF+Fy+8Fvh4ubwv7TQNwRdif3Hrf1xTa40vAb4fLKWDxQu0jwFrgONAU6xsfXmh9hCpjz+nsE8Bz4b4SHvuWWuRSi9XUuA04Yow5ZozJAV8D3lFnmWYdY8zPgJ56y1EvjDHnjTEvhMuDwCvYB9+CwViGwo/J8LXgMuOIyDrgbcAX6i2LMq9ZMP8tYzw/34EdTBO+vzNcfgfw5fCZ8wywWERWA28CHjPG9BhjeoHHgDfP4q1MG+XPkXCm/PXAQ+Eu5e0RtdNDwBvC/d8BfM0YkzXGHAeOYPvVvENE2rGD6C8CGGNyxpg+FnAfwWb1bhKRBNAMnGeB9ZFRxp7T0ifCbW3GmGeM1bK+HDvXmKhiNTXWAqdjn8+wwAbUSimhif0mrMVmQRG6ruwBLmAfVAuuDYD/Cfw7IKi3IHXEAI+KyG4R+Ui9hZmnLMj/lrLn50pjzPlwUyewMlwerW0upzYrf44sBfqMMV74OX5vhfsOt/eH+19O7XEFcBH4m9A98gsi0sIC7SPGmLPA/wBOYRWqfmA3C7uPRExXn1gbLpevHxdVrBRlmhCRVuCbwMeMMQP1lme2Mcb4xpgdwDrgNhG5rt4yzSYi8kvABWPM7nrLUmfuMsbcDLwF+H0RubveAilzn7Gen+GM8YKwgOtzpCoJrMvXZ40xNwHDWDevAgusj3RgLTBXAGuAFuav5W3GqFefUMVqapwF1sc+rwvXKQsMEUliBwVfNcZ8q97y1JPQReMnLLwH/WuBt4vICazr1utF5O/qK9LsE86mYoy5ADzMPHItmUMsqP+WUZ6fXaE7DuH7hXD9aG1zubRZxXME+DTWdSkR7hO/t8J9h9vbgUtcPu0B1lpwJuYF8RBW0VqofeR+4Lgx5qIxJg98C9tvFnIfiZiuPnE2XC5fPy6qWE2NXcDWMBNLChsU+EidZVJmmdBX+YvAK8aYP6+3PPVARJaLyOJwuQl4ADhYX6lmF2PMnxhj1hljNmGfBT82xnywzmLNKiLSIiKLomXgjcCCzBY6RRbMf8sYz89HgChD14eAf4qt/40wy9ftQH/o+vND4I0i0hHO6L8xXDevGOU58gHsZNW7w93K2yNqp3eH+5tw/XvDjHBXAFuxwfjzDmNMJ3BaRK4OV70BOMAC7SNYF8DbRaQ5/P1E7bFg+0iMaekT4bYBEbk9bOPfiJ1rbKaSkUNfhUwjr2KzqfzHestTpzb4B6yfbx47s/Qv6y3TLN//XVhz815gT/h6a73lmuU2uAF4MWyDfcB/rrdMdW6Pe1mAWQGxWexeCl/7F+ozcZrackH8t4z2/MTGgDwOHAZ+BCwJ9xfgf4Xt8jKwM3au38IG4B8BfrPe9zYNbVN4joS/refCe/tHoCFc3xh+PhJu3xw7/j+G7XSIGjOazdUXsAN4Puwn38ZmcFuwfQT4U+zk5T7gK9jMfguqj1Qbe05nnwB2hu17FPgMILXIJeHBiqIoiqIoiqIoyiRRV0BFURRFURRFUZQpooqVoiiKoiiKoijKFFHFSlEURVEURVEUZYqoYqUoiqIoiqIoijJFVLFSFEVRFEVRFEWZIqpYKcokERFfRPaIyD4R+UcRaZ4DMt0rIndO4rilIvITERkSkc/MhGyKoijK3EBEhsL3TSLy/mk+938o+/yL6Ty/osxlVLFSlMmTNsbsMMZcB+SA36vloFhl9JngXmBCilUoTwb4P4B/OwMyKYqiKHOTTcCEFKsa/sNKFCtjzIQn+xRlvqKKlaJMD08CW0Tkl0XkWRF5UUR+JCIrAUTkkyLyFRF5CvhKOEv4pIi8EL7uDPe7V0SeEJF/EpFjIvJnIvIBEXlORF4WkSvD/ZaLyDdFZFf4eq2IbMIqdx8PLWmvq7ZfNXmMMcPGmJ9jFSxFURRlYfBnwOvC/4yPi4grIv89/L/YKyK/C4X/pidF5BHgQLju2yKyW0T2i8hHwnV/BjSF5/tquC6yjkl47n3h/9l7Yuf+qYg8JCIHReSrIiJ1aAtFmTIzOXOuKAuCcPbuLcA/Az8HbjfGGBH5beDfAf8m3HUbcJcxJh26DT5gjMmIyFZsBfGd4X43AtcCPcAx4AvGmNtE5I+BPwQ+Bnwa+JQx5ucisgH4oTHmWhH5K2DIGPM/Qtn+vny/8Nwl8sxY4yiKoihzqmsopAAAIABJREFUmU8A/9YY80sAoYLUb4y5VUQagKdE5NFw35uB64wxx8PPv2WM6RGRJmCXiHzTGPMJEfkDY8yOKtf6FWAH9j9uWXjMz8JtNwHbgXPAU8Brsf+nijKvUMVKUSZPk4jsCZefBL4IXA18XURWAyngeGz/R2JKTBL4jIjsAHzgqth+u4wx5wFE5CgQ/am9DNwXLt8PbItN6rWJSGsVGcfa7xFVqhRFUZQYbwRuEJF3h5/bga1Yd/fnYkoVwB+JyLvC5fXhfpfGOPddwD8YY3ygS0SeAG4FBsJznwEI/1c3oYqVMg9RxUpRJk+6fFZORP4S+HNjzCMici/wydjm4djyx4Eu7MydQ6kLXja2HMQ+BxR/sw7WMlbiulfFe2Ks/YbLd1YURVEWNAL8oTHmhyUr7f/ZcNnn+4E7jDEjIvJToHEK143/7/no+FSZp2iMlaJML+3A2XD5Q+Psd94YEwC/DrgTvM6jWLdAAELLF8AgsKiG/RRFURSl/D/jh8C/EpEkgIhcJSItVY5rB3pDpeoa4PbYtnx0fBlPAu8J47iWA3cDz03LXSjKHEEVK0WZXj4J/KOI7Aa6x9jvQeBDIvIScA0Ttx79EbAzDC4+QDEj4XeAd0XJK8bYrwIROQH8OfBhETkjItsmKJOiKIoyv9gL+CLykoh8HPgCNjnFCyKyD/jfVLce/TOQEJFXsAkwnolt+xywN0peEePh8HovAT8G/p0xpnNa70ZR6owYY+otg6IoiqIoiqIoyrxGLVaKoiiKoiiKoihTRBUrRVEURVEURVGUKaKKlaIoiqIoiqIoyhRRxUpRFEVRFEVRFGWKqGKlKIqiKIqiKIoyRVSxUhRFURRFURRFmSKqWCmKoiiKoiiKokwRVawURVEURVEURVGmiCpWiqIoiqIoiqIoU0QVK0VRFEVRFEVRlCmiipWiKIqiKIqiKMoUSdRbgKmwbNkys2nTpnqLoSiKoswAu3fv7jbGLK+3HJNB/58UZWa5OHIRgOXN8/IRocxzRvt/mteK1aZNm3j++efrLYaiKIoyA4jIyXrLMFn0/0lRZpYH9zwIwO9c/zsk3WSdpVEWGqP9P6kroKIoiqIoijIvyQW5eougKAVUsVIURVEURVHmJTlfFStl7qCKlaIoiqIodeXVrkEyeb/eYijzkKyfrbcIilJgXsdYKcrlyqcee3XM7R9/4KpZkkRRFGVm6RnO8b2957lxfTuvv2ZlvcVR5hl5P19vERSlgFqsFEVRFEWpGzkvAOBcX6bOkijzBWNMYVljrJS5hCpWiqIoiqLUjUixig+WFWUsPOMVljXGSplLqGKlKIqiLFhE5GoR2RN7DYjIx8r2uVdE+mP7/Od6yXs5kvFsbJWqVUqt5Lwc5/rS5P1AY6yUOYXGWCmKoigLFmPMIWAHgIi4wFng4Sq7PmmM+aXZlG2hMJy11gfXkTpLoswXTvUOcvLSCMNZjzvXaoyVMndQxUpR6sB4ySkURakLbwCOGmPmbWHi+chw1lqsko460Si1se9cb2FZXQGVuYQ+xRRFURTF8l7gH0bZdoeIvCQiPxCR7dV2EJGPiMjzIvL8xYsXZ07Ky4ycbxUrX2OslBqJ3P8ak64qVsqcQi1WymXHg3seHHP7R3d8dJYkURRlviAiKeDtwJ9U2fwCsNEYMyQibwW+DWwt38kY8zngcwA7d+5ULaFGfJu7Ai/QJlNqoyFp343RrIDK3EIVK2XBMR2KlypvinLZ8RbgBWNMV/kGY8xAbPn7IvKgiCwzxnTPqoSXKX5gNSs/0rAUZRyyno2r8o3BD7SwtDJ3UFdARVEURYH3MYoboIisEhEJl2/D/ndemkXZLmsifcpXg5VSI9mwKLBLEt+oYqXMHdRipSizyU/+KwC3n6ockz2z4SPTeqnxEmR8/IGrpvV6ijJfEZEW4AHgd2Prfg/AGPNXwLuBfyUiHpAG3mu06NK0EcVWRZYrRYnjBR7nhs6xoW1DYV3Ws+5/rjTgBd5ohyrKrKOKlaLMQzSroKJMH8aYYWBp2bq/ii1/BvjMbMu1UIgUKo2xUqrxvWPf4+zQWd53zfvoaOwAIBMqVg6pkmLByuXD2b40q9oa510ZBnUFVBRFURSlbhRcAeexL2DaS/P4qccZzg/XW5RKjAFv/iZ4ODd0DqDE5S/nW2XKoUFjrC5DLg5m+cau0zx1ZP6Fsc6oxUpEFgNfAK7DFlX/LeAQ8HVgE3AC+BfGmN7Qf/3TwFuBEeDDxpgXZlI+RanGeIkpZorbT31u1G3T7SaoKIoyVwhCS5VvDMYYwnC2ecX5ofMc6jmEMYb7N95fb3FKOfwonH0B7vn3UIdaYbs6d9HR0MGWji2TOt5g+0fc5S/n53DEAeNqjNVlSC6cbTnYOcDdVy2vszQTY6Z/YZ8G/tkYcw1wI/AK8AngcWPMVuDx8DPYjExbw9dHgM/OsGyKoiiKotSZyAXQGJiv3oCRO9qcrKl0Npyj9jJ1ufyuzl08evLRKZ+n1GKVR3DxA9EYq1ngbF+av3vmJN4sZe6MQlij4uHziRmzWIlIO3A38GEAY0wOyInIO4B7w92+BPwU+PfAO4AvhwHBz4jIYhFZbYw5P1MyKsqMESapUBRFUcYmXhjYCwJcx62jNJMjGtxH1pU5iZeBVPOsXnI6c7yUWqzyuJLA9xeWYhUEhs6BDGsWN83qdX9y8AIXB7P0jORYsahxxq/nzWO34Jl0BbwCuAj8jYjcCOwG/hhYGVOWOoGV4fJa4HTs+DPhuhLFSkQ+grVosWHDBhRlPvKIc2Tcfd4eTM5tQlEUZT4RxMxU/jw1WUVxPnNasTr6Y7j+3bN6yayfndD+xhj8wJBwncLniHgsVc7P40gCP3CmTbEKAoMzxxMlfO/l8xy5MMT7btvAqvaZV3AiZrtX5+dxTbuZVKwSwM3AHxpjnhWRT1N0+wPAGGNEZELfl1a2V+YDD/btrbcIirLgEJGkMSZftk4L+c4APZkevnbwa/zaVb/G8uapxUDEswHO18yAvvHB9zCvfBfaroFlc3BirPswBD7MokUwM0H3wx/u7+KV8wN87P6tiJRaoyJ3y4yX41LuFEnHBeOSDzwCE9iYq0nSn87zt0+d4JduXM2Vy1snfZ6aMQbOvwSrrp/Q93HkwhAAA5n8rCpWhAquMDuKZ34eW6xmMsbqDHDGGPNs+PkhrKLVJSKrAcL3C+H2s8D62PHrwnWKoiiKMioicp+InAHOi8ijIrIptnnqwR1KBScHTgJwuPfwlM8VBIZEaCkI5qlilQ/y4KUxgQ8v/2O9xRkdb2IWpKmS8WtXrHaf7OGV8wMADGS8iuMji9XuzhcBcByDIwmCwEzZatU9lCUwhn1n+6d0npq5cAAO/QBO/mJChy1b1ADAy2dK5RzMDRKYmbfyzJZFNm6xmm8lA2dMsTLGdAKnReTqcNUbgAPAI8CHwnUfAv4pXH4E+A2x3A70a3yVMl853Zce86UoyrTy34A3GWOWYT0aHgv/R4BZmmJVAOjP9rP/0v4JDYbyQUBD0g5HZstilc75PHWke9oUOd/4YAz+XHYFhFlLYGGMYV/3PvqztSsq+84OFJb/+ufHOd+fLnEljJJXpBwbX5RwBZcEgQkV2ynghJkoZ20Mnw+/h/xI1c0/O/MzdnftrljfnLTWrbi1ygs8vnLgK/zk9E+mX84yZrqGtx8Ysp5foljl5plbYE2ugCJyvTHm5Umc/w+Br4pICjgG/CZWmfuGiPxL4CTwL8J9v49NtX4Em279NydxPUUZl6ePXir5vG6g9OG1Ph4UesXrZkOkqsTjsM4MfL1i+81t75lNcRRlLpMyxuwHMMY8JCKvAN8SkX/P7IcHLGi++spXARjJj3DrqltrOsbzDa0NCYazfkmM1YXBDAPpPFtWLKr5+o+eeJQjfUf4ret+i8bE6K5SPz10gYOdg6xub2TzNLh++YEPgUd+NKvB0AVobIdEw5SvNWESqWIdqxoUq0ze54s/P87brl/NpmUtk7pk10gXPzvzM5JOsuZjGhKlc/1fe+407769+H8cWaWG83Zy8rZlb+Z4TzeBMeT9PNR+qQqi2Zdg1jSr6DrV5332de8D4JaVt5Ss90LNJuvF483sd/tqz6u8YcMbplnOUvxpbJ/TPSOsXdxUEtf2vZfPc/TCELduWlJYl/MCvrjvf3PnmjvZsWLHtF1/pqjVYvWgiDwnIh8Ns/3VhDFmjzFmpzHmBmPMO40xvcaYS8aYNxhjthpj7jfG9IT7GmPM7xtjrjTGXG+MeX5Sd6QoiqIsNPIisir6ECpZbwA+iS3hocwCcSvVrs5dNR3jBzZZQWPCLXyO+Oozp/jOSxNzXDnSZyekOoc7x9wvmgWfLgOZF3hgAvKEilW8aG0+A7u+aF2/6kFc2cuP7zHRn86T8wKeOjr50MS+bJ+93AQsSY3J0lij7WvaSo6PFKuRfAZHXFY1r8IhgZkGi1WkUM2aJ2r0W5lgzbZcGHuUzRe/0+jep8VNL91nsxqfLZ1wjs5cYeENfOg9MeHLXBrK8tDuMzzx6sWS9UfDGLJdJ3qKIuWt1fIX5ybmNlkvalKsjDGvAz6AjYHaLSJ/LyIPzKhkiqIoilIbn6CYYRYAY8wZ4B7gz+oiUT0ZvjT+PlOkoETFxoW5IFd9nzGIXH4iV8DpygpYLstM4xmrWHmREhNz8Tp37jSnekZgcGxlb8YIAva2LGIgyEFuaNzdo69tKm6ST5x+osp5xz5fY9gHfvnGNeFnt2ryiqHcCAlJ0dSQsDFWxkxYsRrKenz7xbP0p+1xkWI1F+J54jKUy5P3bP+Ku8dNVaksYShMe9B1oOrmit/niSdhzz9A3+mq+49G5PJ78tLwuPsO5uw+rsyPMgw1x1gZYw4D/wlbc+oe4C9E5KCI/MpMCacoE+Yn/xWOP1n9pSjKZYkx5kfAPhH5atn6fmPMf6mTWPXhwkF47nM2A9w0kvMC9p3tLwz0qs2OlxfHjRd0HY1IsYqsFVNVrBKOjXAYb7A53eNnP/DB+EVXwP5i7q1/fuk0Z/vSs5JcoIIgIO3n+PnwKb43fAKy4ytW0XcylXi31a2rK9YVlKSRHvtfPRBaI5/6C9j3TfK+YVlrii0rWmlKuXhBUKJY5X37nY7k0ySkgeakiytJAmMmFMsFcLY3zfHuYZ4OrXKRnuIFhi88eYyDnQNjHD0NFPpCpcXq9GBRSSlPylH4bmJZ86J2mRbc0J9ylAyLhT6RHYIDjxQVsezghC4TnWc4N/4zIrJYzRdqUqxE5AYR+RTwCvB64JeNMdeGy5+aQfkURVEUZVyMMT6wMYzpXbgMhoPV4Ytj7zdBfnroAo8d6OJcf4bvvHSO/ed6K/Ypr1lUS6a2aIBYUKyqaDwTsSJEykswTpR9ZKHwpika3ws8CKwroDGmxGLlhhUAsrnaB8BPnH6CB/c8OHXBjE/O+CCufR++MO4hkTVkKkpuS6IyNqs/Fyo/Pcfse+deq+HmhuHiq3hBUKhflXCEvF/M9udIsV7VUG4YV1I0pVwC4xEYePr80xOSL/r+s17pvQ6k8wxmPH5+eOYqNGTyPiaahKjiCfjdY98tLJdPEESKVX6mLFbB2IpOIQbtxJPQtR8uHQ23TKyvFCxvXunvr62pGCgXZQrNhPGBc7pGXIxa61j9JfAF4D8YYwoOusaYcyLyn2ZEMkVRCpQn2AC4va+fZzZ8pA7SKMqc5RjwlIg8AhR8TIwxf14/kWaZMWbCp0LPcDi4MYYjF4Y4m+lh8/rSoq3RzPnmxZs51ndsQharKHFBtcG8FxiSbm33Eylh4107uow3TfVybFZAq1T5GBJ9J2HtzQA0OFaWbDZL01gnibH/0n7ADponkgCigsAjY3wQh4Q4xWx0Y5AvxJ9Nvm3ypnKw35PpYVnTsmJckQkgZuXMe0FhMJ10HbyYYtWUaMIzHnk/T3f6IoPeME1Jl1Z3OenAsG3ptgnJF33vUX+L3tP5sNDzDI3hh7MeP3r4b7hpUT8bmhk3zV7k/gjWNTOq75SP/U6mV7EKz1UW+xW1R+H3Wa6ATbDB4hMaWc+nIYyxjF/1nTet5aHdZy5bxeptQDqcEUREHKDRGDNijPnKjEmnKHOQ8qyC1Vg3C3IA3H7qc6NuU6VLWYAcDV8OUHsquTlKxsvwg+M/4I2b3khLssbsbIXYp+mrppLJ+5zvtwPyaIY5wA6s4lapyGLVnGgGqClTWzRAHMsV0A8MyRrDK6LB13jWskhpyE9TKmebvMIHETwTkLhwELbbbQljB4Z+4BOEypdbY1HYvD9VxSqyWDm4zUvBGz95Rd6L2mYKilUV97SEhEPOwmmlpK5WkM/R2FRMpR65AgpCo9uIF3j05/rxjWFl6moaky4iDq4kJ1zHKh+UutT5hRirUJYZ0qzSeZ8Vw4c4OwxrNnWQKLdIlX0umbiIKSN5b4YsVtH3Nsrzo/D7LO+/E23/WN86cmGI7Wvaw/X2vhKOFOIuM2EfmQvxb7VQq2L1I+B+IHLObcYWXbxzJoRSFGV84unYq3Fm4Ouakl1ZUBhj/hRARJqNMdULxMwjDvce5vzweV688CJ3rb2rtoMiS41T69/7+Hz2p0cLy1Gwvx8pCzHLUJQwIlIC47PtoxENEJvGUKzyflCRMa4a8UHoWBarH+47z9meEasETWsdqwDEIb9oBY3DxaxmTjjw9T2Pbz3z3+lNNvA7Oz9W03mjQfNIfoQGt6FmhaxAwWKVwLgtvHzsDJuv92hpGL1/RAP4nGeVQJlg5jooVWxXtayic7izqAAUtpniQB4wXpqEa5XyhCMFi5XruCTdJPkgT8bLEATQllhT6BOuk6yI7xtXvnBgfzasK1ne76YzrXicfCxN+tm+NBtXlSpF2bICzvF+HFdG4hafCcdYGWMV2mSVcgQFJa3cYlVq2SNZZnudZPtD8b5+uL+TkZzPlhWt3H3V8oLRbCh3GcZYYa1ThYjHcLl5ZkRSlDlElSQY6wZ2V3XNUxSlvojIHSJyADgYfr5RRKYhUKW++OPEPZTuHA6MHPv3nvV8vv/yeUZyE5tRHo2RMNi8J38KKB1Av9j1IgCtSVsX6vnO58mMUzcpGiA2jpEVsFZ3vXgmQN/40LkPDn6/ZB9jDMFLX+f2058HYwrn7k5305vppWc4xz/v65xwfJGtYxWAuOTb11tXqiAg5wUEeStX4Htc6NxD/vyems+bD/IEJuBv9//t5ArAmoAcVuG7OAJDg4N8+8WxM7jF23v/ucklcYgr1Vcvudqui/pKNHg3BmJxeYGXL7gCOiL4xuAZj4STIOEk8AIPL/DwjSHhJEhF8VgyGcWq1FJZbqGaKePI0a5ikofAUGHpKbe8xT9H1uKWBrdEyZpwBsyuffDzT8FQlTjMkXBCoEyBj65WUDjLFMCKz+MQt76d6R3hp4cucCDsa8sXNdDelKQx4bJn8CG++cpjVqRptMLPJLVOaQ2LyM3GmBcAROQWYHx7sqJMM+MG8/btnfI1TvfV1rVVuVKUOcf/BN4EPAJgjHlJRO6ur0iTJ5qtrsXyUzwoHGSFsVYHzg1wqHOQppTLfVevmLJMIzmfICaPZzyO9h3leP9xLmWsm3RryipWx/qPkXSSvGHj6EVLz/ZZxWus5BW1WpXitav8wIdD37Efrnmrfe86gPfywyzO2MQbjvELit03Dn0D8mn6Lr2OdcPH6Fx8B2vXbazpumDbISlC3nHwEw2hVSDDoQt5nDDeqMsbsdPZxtRsCfICr6Ccvtr7KvdvvL9GgXK2LwQ+vgmsouc2ACNc6htkIJOnrbG6i2HcGnLg3ADXra25fGmBuBWl0bWWkYLFKsrSG+RLXQH9HAnHIefncB3IegY/8HHFJSEJMkHGKlaBIZVI4IZxdwlJkfGrKPC5YTvR0LS4Ur5YnwoCU6G8u870xihGHLvQVyisZ4ypsPSU/9bjilUmjP9qbUhyYTBT6ENxV8DABOMrIL0n7fvAGWhdXlx/+jk4E5aQHSXGKggM/ek8LblMqQIxQcU2slS7jnC4qzRTZSoRJTCBIGaxk2mOG50palWsPgb8o4icw9oHVwHqY6RMmE899uqY2z/+wFXjn0RTp9fMCwNfH3Xbg3uW8tEdH51FaRRl5jHGnC4bsE7A3DO3iGbhJ2SxunjIvlcEl09ejlTCKcyWj+S8ksGOF3g8furxwgCwvaG9MJCG8eM/XjhplZzW0DUtbilqzXaSd1tqytwXmIAfHC8W4C1xBRzuhpZlcOCfSmKqEkGmOKAe7ITuw5zInmV45Bhvf+kQrPs/x71uhBd4NCDkxcFzw6FVPs3Tx/pYGbbB97PHaW9KgpsgF+RocBtqOu9wvljrZzg/TEuyhZ+9epHdJ3v5w9dvKWTSK2H/t+i+eICfrdjEauMBDkE44HaNx2DGK1GsPD/g0nCOlW2NeL5NFiIiLG2dXJJNL/BoS9kCv2tb1+IHhuFcFi7GxgB+vsQVMPDyZM0gX3j5mzjZ62mRDfjGJ+EkrCtgNo9nPILA0JhK4Q53sbX7cU63L61woQPgmc/a89/3J5XyxfqBF5hZs1ht6Ch+52YMi9Wtq25lV+eukt9PpFgtakzQNVBM6hK31vmBj1OtP8SJ3PhGiu6q+B4cebz4uez5ETXHuf4MTx7uZkf/We5bGtthohbDwOCI0JxyGcwU28CYgIQTuh3is6q9gQsD9rvtGhzhZPcwG5fVGG9aJ2pSrIwxu0TkGuDqcNUhY6qkfFGUKTIt6WUVRVmonBaROwEjIkngj7FlQuYlkYtPLdn1gNIaReEALVIypyuj1kjOLySu6B3JsaLZK5lVb0o0kXSLA/bymKDnT/Sw72w/H37tFYV17U3JqjFW13U9AoDn/1/jyjWUL531Lmmz83tgy/2cyjQy0ldMN+4Yr6hodR/GACl/mEBKXZVqwTc+LTgMiRtTrEbYsryZpsOHcAQKZwx8Ml6mQrHKB3k6hztZv2h9YV3k/hbxvWPfYzn3sudUH2DrALU3VRlI9xznmUwnnee66c8Ngiwnb8KYpCBHusw19Nt7znG6Z4Tfft0VhbTnKdeZdHIPz3hsad/C3euswXj/2UFOnj3FaztiadH9XIkroPE8Tg0fgBRcyp2kKbkez3g44pCQUlfAhkSS1ItfYulID51eG1m/ym/Ej7kclllgUn1HSfiteG4jfmAqY6ymKQ1/Oblcnuhbr2axivpt1Dd+cPwHhQnQKA1+S4P9Hq0CTIm7bT7Il/z+qhIqVumTuxledRfLWhsqk5qUK1ahpnm21+6Xy5SFsJ7bA1fcA4d/CPk07Hj/mCLk/YCEKzSVKVZH00/in4Yb1v0OOT9H0nUIjL3+4a4hHho5xW/csZnli8aflCjcx8HvwcY77eTKLDARh8VbgRuAm4H3ichvzIxIiqIoijIpfg/4fWAtcBbYAcxbs2zkTlVTxjNjYP/Dxc9lx0xlnBgEBkxAU66HgXQeCUZozl/i4PkBOoe7SvYVpCSLXSETXMiTh7vpHQnvyw9YNvwqm5ozOI6EYUlVsgIOXoDBror1cS7E6jO1pdrsQDARWlua7dT6wUte4doAG9L7rZthWFcpMAYndKFMB54dINaIH/g0GAOOSz4a2ObTtA2fxBGbPryQ1SxMwlDO7q7dfOfod0omGH3jV1isIqUK4Lt7z40q02CQh3SvvRdxyIWXd02OdK60Q5zusQPlkZxP3jckHCGZcAp1niZK3s8XijUDZPNCQKxNk43WJW3Euo8GxkCQR8QKuSi5BC8wPHe8m0uDNs4qH+TxAmuxanBTBV1pUc/BqnFG3xk+zp7sRcgU2wsvC/1nWHnyu2y99GMraxBUuKDmfTMjWeh8P2adAWspihH91qtZM/3AkA0G8Y3tDzk/gAuvkN/3zcLvvSa34bCPP3mxia88HboF/uIzpfuE5zvYc5Ch3FDBHTeKgWtxqyiyJ560Bcp7T4772/ED28ey+dL+NeB1Im6ovPk5nPBLTji2PQJ8vvH86dpjIIe7bb2tA9+ubf9poNYCwV8B/gdwF1bBuhXYOYNyKYqiKMpEudoY8wFjzEpjzApjzAeBa8c7SEROiMjLIrJHRJ6vsl1E5C9E5IiI7BWRm2dE+jImZLHyMtB/pvDxUqaPB/c8yPkhWzA4GoYM5YYmNGA0xuAFhrUDe7ix8yEY6mLl4F6WpE/Q4A3x3PGekv3vW39fqWI1SnbCIDD0DufYcumnXHHyG+G+1bP0tb38t/D8X48p56MnHy0sO+LYNkuELon5NJx7kUXZUuVs7fBBAi+H2fO18F5BQrtSNghqCshPe2ke3PMg+SBPo5eFRCN+dP/pXpqOPYw44Kfaiu5lQUAmO1hxrlMDpyrWeYHHT08/WVA4ywfckZtUBYs3sDbRUnT7EqE/59OccnGD/KjJTDJ5P7SEODS4zqRSrhtj8I1f0g8cSZTE5hW+m5PWgmWVWo+mcH3KcfH8gM6BEfafHSTp2pTq+SAfWqwSSMK2xaWhY+T8HGkvTd7P8+CeB3lwz4Oczg/yi/R5iLf1nq/CC18hMIamvO27vm/wq9xnTbF9PccmFJ7ge0XFfrhxdSwLn02gErn1VVOsggD2D32fJ7rsBIrnB3DyF+RNUKhPVm0SxhjDwy+eYf+5sEBzOGHjx6y1JbSugMCja7iLH5/6MV8+8OWCIpMNsxoG+Sr9Ln7t3V8arQlCOQ2uI4UsoxG3buqgOZUgMAH5II/rCFc238VNy28N78Un5wX8xeOHJ2ZNHe6m/5nPQKa/9mMmSa0xVjuBbWa+JJFXFixjJp540f7xzlaNKUVRZp2/xHpVjLeuGvcZY7pH2fYWYGv4eg3w2fB9RplQjFVZyuWvn/4RNHVwMnsUuAo/CMh4Gb584MvsWLGDO9fUVi0lGlzesiRN75DQ4A2RyofJH/BLYlFak60sblxcorgFpvrgJ+eHvfdpAAAgAElEQVQHpNPWfW9pY5gJzpFiPaHYTH4t49uOxg56M72875r38eiJR+11o4FebgSOPVGy/8alzXQPZklk+/AoFsQVEylWfkWb8vJDdhB67ycKrmUHLh2w24whGfjgNuKF7o+Zw4/ycP4IG6Wd9KJ30t97mKXY7zSTvgRsKTn98Ei3nfVfdX0h4YJnPJ45dpGO5iTXrG6rOuB+4VQvN2/oKF0ZKiDFgq8O6dBdrsn1GCkUwjUYY7PwBcaQ9YLQFVBIJoRMfuIWq2hwH1eqHVwCAoL29TgCmZFLJE2AG8Z9BcYmE8mZAASM+KRzPgYfEZcnX+3h9Egf1ywZxhjHKlYNrTgCKRxy2JT0VV1e49aTwS6Gs9ZymWm0iRuqWawADnUO8sr5Ad59y7rRE40ceMSef+OdlbWdqhCEismhZW9kS/IS+Hbioz/bzzcOfYOORvs9Vvueo1jDhCuQD9OUi2PrlIX9tppidbx7mBPdI5zoHrH1osJ93CiiJ27NSbVAYztk+sj4GboGMhzvHuamRfb8kaItfo5CkbpV19kMnPF2TvfC0AWrpFUhUt7LieIFIyXaEUFIgAn7SdGhlh8d6OLN162yiWNiSnw+yJOQhP3OwmfooWwPj/e+xK8s3cKqrW+uKtN0Uasr4D5swgpFUeYJUVr4ai9FuZwI06z/G2C5iPzr2OuTwAQL/1TlHcCXjeUZYLGIrJ6G845JNEiqyWJVrgQMX4TuV3FDN6hMPqAva5fP9B4rzHCPe9pQq3FECm450dDNCbN0RYpUFE8VH4SOlrwi7wcMD1nFqpA225GC5cCPzYjXMqXbmmxlZfNKOho7EBGrWHmhe1huqGL/1e2NiAjJbK+d8SdKuW0vljF+SfwPUJzZj7mWPXv+2VBIW/wXJ4EngAjDxsMYOCOD+Ikmupqv5MZrftWeIlNq6QNIR+6Mg8Xshl6oYEYujPEkC1GszROHqqTN9vPkCWKuZkLWBLQ1JmlxAtJh2vyHXzzLpx8/TDTGjSxWCUdIjhVjdfxJnjp4ln1nKy0A0XdearFyCYyHn09j3Ab+uudFfpQuWliDwFqssoH9rkwYxxcYn4Tj0jPk0zuS58ClA3iBbwflgY+IcJW71GZaxFRNu35+8EzJ572hzCNJq8T4gSlxQY0yAj52oIszvemx3SEjZSJmFeseyvKNXdXd1fzwd2rEIY9TUHJG8tYVszfMWNmQqGKxMpE7nv2y8r5No58xPi0Ja5msplil82XPj0ixCvJgAkz82XHTB20NvMDHGMOxi8MYU5qdD8Ax+eJ53ZR17Yx+F6kwucSuL1bIEuEFAa4jvPe29ezc1FGxPR/kbUZIx1o7jZGwDYr3d+B8Hz8+9QSf3/v5grtsYAI+v/fzPHXuKbtT2B8eH7ElBvqDma+JVatitQw4ICI/FJFHotdMCqYoiqIoNZICWrFeGItirwHg3TUcb4BHRWS3iHykyva1QLz4z5lw3YwSDRJrirHyc7yQucCzmU6bXhtrFfLSVoHKej79WTugbDr+M9j1+ZpkiCxWruPiOoJgIBx4RtadaBY7ng2w/B4qzusbvLQdiCXc0tpFAHtPFY2H5VaICwMZBjKlClvaSxcGo664BH6+aLG6YPOXxG0OEiZvTuT62ZuL4nxsQguArPFGz3SWG65cF3hWSieBZ/xwwOthjGGg7VpWr14CCC2tK+0pzr9UEvhmjLU+ACXuSumwBtbqhm2sbV3LQNYO5O+7ZgVv3DbGfLefw4tZCw1CHptFbvOlJ0j22OyRJy/ZAb0TfqdZL+BUzwjn+jIkXYe+kTwvnylTnvpOY048yfDzf89jBypj3yLFKm6xElwWZU5jBi/w7LkBhrN5juaKCmpgDK7xSPuREhxa1AhYnT7GDV3fL7hpBmE2PIyPI+AGth5WPDV9nIdf+gJf2h+6pqWKJVidKC7JNyUWq47m0uQPVZXLIIAzsUnKZz5bmAH4ytMnOduXpmugUpYgyNPRnGRFewtZYxWYSEGMU/gtZQYwQ/a3EImRcAVjAiuX45IxHoucpK3LVuVZEaUpTzjCC6d6OXi2J2zvHEk/XeyGV70Jmjqs5S3w+d6+s4VzRAXBAUzgE5g8Ry6GvwM3ZVP5R/22JZbCfRSiGKvV7U28buty3r5jDfddXTzuS/u/RHe6O7RYOXi+/W2YmMXqXHYvT5+xtfMGsrYGVvT9770Ylt7xczx/qoeekVB+v4Zn6RSpVbH6JPBO4P8B/r/YS1EURVHqijHmCWPMnwK3h+//3Rjzp8aYPzfGHB7veOAuY8zNWJe/359s7SsR+YiIPC8iz1+8WMWKMEGiGKtaFatnMp3szlygBzvI7xrMcmnQDnayXlBUrCRRmkFwDKK01E44S+6YPG6Ywc+NKXAALcliGuQPXPsBUm6KEwMnONF/ouK8wzmPVNdLCEULQcKRguXg2SPFAXv5xP8/PH2Mr/zk5ZJ13enugvuUI45VrMqIlIempMtQ6zJO0E8i188LGWspiqwmAFkTVFoBC41iZ72H4pawwMdFrGIVeFgLkc9g0xqC5jUc7LQWqktpm1DjyfMvcunVnxVPaewxQKH+FMBQaBFxpYG2VBtPHbXt0ph02Li0qCRUUKZYeUbwsTqx6wirT/9zye6RXhFZslobbAFePzD86JUu+qOkHyd+Di/+3ZjJAwqugLHEJakgz5Lhg5y8NMyFrpMcDGJO+YtWEhjIBoOkvVKLlTEBy9JnSBlDws8wlPXIegHJhLX2OCKIceD0LrzAK2aHLMsEOJwf5tzQuZI4ICeqE1eWFXBxc2mK+apxZl374PCjpevKEjZUK2ztez4Jx2FRcwPZIByCB16Fy2zSCJx9Ac6/hPfcXwGQ8yOFVfDx8AJDHoNnAlrPvwy9x6smr4h+n6mEwxOHLnK0sxc/MDiBR7PXW1Qq195Mxs8yErrRdvUX7yfugncp9wrfd47RG92fiE0UE1qIj58+zWBmlN9O1DZhjFXElctb2b62tWSfZ84/g4jg4JL3QotVrHrGkF98xkaKaTrMbhgpk0E+y7DnMRz263S+MrZxuqlJsTLGPAGcAJLh8i7ghVqOFRFXRF4Uke+Gn68QkWfDIOCvi0gqXN8Qfj4Sbt80iftRFKVGnj56iU899uqoL0WZh6wRkQPAQQARuVFExq3hYIw5G75fAB4Gbivb5SywPvZ5Xbiu/DyfM8bsNMbsXL58/Fnb8ZisK2C3I4WaNyawFolsPigMOv1aU69fOorpsjFEjuswkvPDxAf23DtHBlg9uJdM3mdrx1buWX9P4dD2hvaCteqFC5XDhR8fvMBg41prBQsTFrix5BWuicdY2XV5z6NvJMe2C9/l5nN/X9geKYyHe60ObRWrUpcfg3X3Wrb+/2fvzYMtueo7z885JzPv/vZaX1WpqlRVKu0riySQERLgBoONwTbGNj1ur+Nux0x3uKeHiYlwT0S3oz0xHtsTvXjauI09XsDgjaUB0ewIgYT2klRS7dur7e3vrplnmT/Oybz3viqgTEsI2fcbceO9d1/ezJMn8977+57v7/f97eOWe97Bg9OzfNOex/WCMjaxHSMTlNNIAZk1l5pX5IpSeH4ozTFcKxlMFgCaNkOLEolKmK7nDZB9ytbFZo+PPd6fl57ugbPsiBtEQvKWza9FCkkrDYoSikgmhXJQjhRCCG67arJoqNo/WQc69amAAcsdT7bP0kKFWja7eKL4f96nbLHl9//qXVOFkujPNewrGDVkxlHWq0OH/fpR/51yoenHPGj7XTI9LI75ZorFkaqBIHp8B1oo1uxSQX6d8HNoCS6FSCS2UM8S5YmVVpUikM0dFKWQfg4Gc0it5m8O/TWYjLXSJoyICxKtjR0iVuOV/rgT3SR6/I+8u9zyyb7ika2zGwcwPR483Fdau/rS963WKUoKjiyv8OXWwzy7tAwmvaSOMjrxIPcoX2eXp6r2dIoUubKbsdbVHJhfwzpHXcTQvHDZRZj82uY8UzrNfLOHcim1dMEvZsz4tsV/fvDP+eDZL/vU1oH7ZzAFbzk7AsC8E77uK6l71Qrf4Psz6gc4MDd8b1wyVdYN3V9w+bRhJQRCKLTx295+Vb9ZtUAUpFdbzUpvhc+e+CzQV7nTtFfUUAJ0L6c2v8i4UlfAXwA+Cvy/4alZ4Eq9C9f3EflN4Ledc3uAJeDnwvM/ByyF5387bDfCCCO8hHhs9cPf8jHqKTbCKxC/A7wFWABwzj0JfFv1SQhRE0I08t+BN+PrigfxMeB9wR3wtcCKc+7siz349cgJlXHGrwa/8JlvbWM8kLbWGlipt9anxnTTjG54bXqlfbGe+gvi5z8O+AAHILIphCDrmtIEd5oZtpZnuX/H/VRCncd6VKO+spIHrRsbZQ6fW/Z1W6JvXpGTqJLsjzGPjz/95Cn+8MHj1NMLQ/9Y6S5D6yK3zdzk9yMkdl0a38WsgyWsku+8m1OtORAS0Q5OfNUZZtU019lxpBA8os/ze4c/WqyAhwH6n4G05UHs/qn9YDUVERGpcvH8Q91zGARlVeaa7f46dEzKpjAfse7XWfWMJ1b740l+cfwGrk4miGREO9TCSRGRZRLrDNYZykE1TJRv3lzUCM0fhrNPgrPo3AgEOBpS/j6fnvbEyjrWli/QtWs83fyborbp2LwPPKuJGjIXKOqMgoX9WjcjNh1qvQuFU9xDR3xK5Ue+edxvGlIBrXUkLisI/VoywXpYFNL61L5EJUVNj8MrgTESMXDfKil8Ol5U8opVuB55Q2EGtp1RFTj3NDjLmaU2S5WddOLJPrFap1g1ylFBVie6p3GrZ+H5T8HjfwqPfdBv1Fm65ByKmr58ztYZfzjn0FoTKUF1fJUmXZ5qL0B3hWzxSP/chELEZaJA5DM8SVxJlxFCoKQgs22+/MJFPnThGRZaKWMyKeZgPfLrk6cSSqfRxiGdQTrfF4zrfsSflu6AEBid4YZSSU3RLFoG1eh07WrmJl8FW26BFb/OpI2lE01weuw2/75eXyC5OgfnfZuDvFYsx+WIlZQgkeQmlkk0uL/+Qoy2moePPcDi4c8Opfu5418dWmBopd8nihW+L8jd+Hx1QmrF5a0+BiCE2Aa8DfhA+FsAb8STNIA/wqcYgi8Ozv0ZPwrcJ76lDcsIr1R8u0D+sdUPv9zD+weDkanFCH9f4Zw7te6p78QiNgFfFUI8CTwMfNI592khxC8LIX45bPNfgaPAYeD3+R71xsoDDW01n3z0P/DxF/4Svvo7l994gEh02vNFPOOsJwZ3nPh9ms99nJV2byhF7NvBOVcQHSVgY6OEcimQsW2iwt6NDTZT47Vjt1/WNe0dV78DYKjHUO5s9tzZVaTLQppSPxVQGx9E3nzxE0zVkmIcACcurqv1CSpddvFZuHCQPcs+TU4KiRmYj4umw4ebhzjCMmby6v7rheAJG9KJhOSaeJbr5CQCT0asyTi4eHBg++CDsk6x2juxlzdM38Sry5uIY0+sLA7jLMYJhLRMVRoA1NUU91e9+GkG5iWzGc1eigwkgdY8SqiC2EkUrZ6fJ+MyqsG4ohT77fN0L57+iCcBQOZyAwhXzLEQcIo1jHWsdjIWs2Nktsdi1levwJPcse5ZaqlXYHIFNHefu7jm56CWLfCnXx+2ibd4tS969mPQXSE1lrLpYnEcm7ybE2O3e4I9HtIBeytYEWFcFykEE6WJAfMKi0R4xWqALLW6KTiLUorVdsZiO/Xz7mxQrMK2EzuYURXaWmBMxsnFNkbEWBkRhWM8f26NueUuGxolXrVzimu3jPkaLsAK5ecvb2XQvOjNReae4BKYdIhHrFesHj19igfbnyYThr2bx5FKcUQs8/TXfwfz/KeK9E8lFQhJHIhVz2pOLR7ioQuf6itWubuk8+YadRmz2s146OgF1iNXrPJrqJwujCcS3cSKCFQ/bdM4wfGLK0U9kxRw33XTbB7zyrIgZUO9REcqlja82r+2sSlcL0AItCoF5XRdndmjfwTPfgxtbNETK8dliVVQrPLbL1L9Ca6osWJBQVtN5+yTXkns9dUym7aHFKvnm+u/Hl58XCmx6jnXr1wTQkRwRbkEvwP8L/Qbjk8Dy84VmuJgAXBRHBz+vxK2H8KLncM+wggjjDDC3xucEkLcBTghRCyE+DWGMyYugXPuqHPu5vC43jn3b8Pzv+ec+73wu3PO/VPn3NXOuRudc5f0unqxYYIrlxQS6ywnmqc59W3qA+xA2lrXphjniJ3Eun5gc+jCAgfnVrzj3XfAqbVT/KeVp1k0XYQzKDS7N9SYHVNcs7HijR8CmXKX6ckEsK2xje2N7UMGFoP1KkW6n8sDuGBekXUw1hJLQbO0sQhW9y58fki1WA6ugukR3+g1zvczfxibO+tN76FpM0x1E58f28IX6atEJqpygaBISYklIQ6r6O3M0OqmJHKg3mZdKmCuDsQq5rrqViIhUaqMcaaYY41ECkshzDlJHIwqD9njhVKy0Gpx/MIa55fD9eqtesUqJ1Yiwjkf/BoyqkGxyoPTy/Vc0ipiXJWCy1+VPVPbqMSKh8wcLZtdtgYox67pGluO/SU3nvsrAL56aN4H5uFi5MqjsmnRi2gsPJep07B2jnj1HMw9Ti+zVPUyLZFxvnE9WgaynIR0wLTFirMcsceJpaIW10hDkO2wSGRQrPoB8sUVr8CJuIpC0koN2mnvJCcUb5kNaalxhcyNs7ISMbfo1TgtEyyqIFbH5ltY5xirxLxu7wzlWBGHeZVOX1pPtrwuOJ/a7X+alNQYKok3elmvWH32v72fqc5x/io9jHEOISOcc3ylfcYH/1ajjUWiQPeIQ4j+0eZhPn7kb7HO1xJJATq8r4XzKmxJKJbaGS+cv9SlMV3naiicYSGkfJZMCy3W9UZrpsytdshD9dfsnmbrRIlYSTatPcNY9ySlSKKFoNUL7+GgeOVzZUR433wLhd3kNVbzh3wtGZdX22SosUp1rmpbbr9qknfcshUhTXHfZzbjdC+8t632/cV0irVuiFjRWf7v65Z+BbhSYvUlIcT/BlSEEG8CPgJ8/Nu9QAjxQ8AF59yLugz+YuewjzDCCCOM8PcGv4zPsJjF10DdEv5+xSFPAyzcwQYb7V6mr5XJV4an99CxPhgsi5hyZLh9+xgAKRaBpWe+M7H6+BH/FX9cryFthrIZAsFrt9eZCEPKU5Uu65IXEKt4iFgNBvPS6VAr48cTSXw6VfOcL25XAqfKhWo21p0bavL73F/+BrzwAFmweU8qU+Ac8uJB7PJxv9HuN+BueS8rtZ1oWeJU82TRiNfJqCAK1glSm6CkLIK1kwtrw2YAeeC3jlhFMoKmJ3JR5BWrjsvr4yQIF5QU4f++41doR1MYUr522C8Qn11dRmDp9ixUp6C3hhKKZq9PrNpdEebUFv1+cgMAY9wlaVdaKuoippsZDJarN0wgNl2PRNAio5v2yfigdnDPvpmQktcPERdbqa8fCsdoG83H5GFOZb6uzTlXBPAX2gsglXeqO/skXW0wtkcqqxjnU8ysA+obYP/b4Jaf4nOdY+AMTlhiGbPW7fkeWzZDgidWgQiNVSLefO2MH8fE1WSRr7sxOsM6ixKKq+uz7E+mQChOLiu22ph2N/W1diLCyoh6PDxf8YCCcuuJP2D/hU+hbMahC02ePbvadwdcr/iW6sV9oY1DCUE5ln2VL2DC+ft0xlXIcEilsHgjl7mVDlprHjm+xNcOL3nFTwyE6CbDORiLZxBC4EQvKLmOkpJsVBUEDofm1GK//ss5d4ndunQGF674ePf0kKTvnGOhpT0ZcZprt3ilVTtNrCS7lh6knC37V0eynyJa8tvlxErLUjEnl4M2vlcaT3/UpzgzoFhZQ9JZheZ5pASBJM3FLGG5Z98Grt5QRwrjFSuTodsDLQhXz/jUxHNPk0X1IhVwR9wgQcBzL62p+ZUSq/8VuAg8DfwSPi3if/8Or7kbeIcQ4jjwIXwK4O/i+3/k3xCDBcBFcXD4/zghT36EEUYYYYQRvhOcc/POuZ9yzm1yzm10zv20c+4V+T2SB+1JKAofdDPL02ucc/z2Z1/gyy9cJNMdr6iMbaFTquKcQ5U2sWlcctW4wuHIMAhnaVvtLdmvoEFU5ARl7dP2AF9oH/otRTvvQsAl9UyDSGTCcm+ZDzz9AQ4uPD/Uh6kkHbddNeHPzTlmlh5n/6H/zMKZx5hzLSIpsVFpKD1GsC6oPfMoabB3Tk5+HQ49gKJfq0VS4xuLB4oUxEY5Yi1dIzUpTkTFvh89tcpK21tACwdWRAhnhu3ic0Ib5n+wX5OZexqHI1Ixmc1o665PJ5RVEAYTrMGdlZjSGJny9Wjdnt//l858EZzDaOhFNRaXl5BC0Qo1VoqIbipIIsFPvKZvs14QK+eGDBWcc2QyoiETVnvecbAaVaA6hSs1SLF0uj0cLvTD6pOKahLBxYNDrm0AT51eKUjFKdPECsUpfQzwvZJyIlGVE1RFmVgoSNuk2rLFlclUBeNSLLq4PmbT9SAVLWco6xUqZx8jljHTY4a0+jA3TGqUkygk0llqJcXP3/GDTFXyhrER87Xr/GXpLIR5lmBSnj+/xomlLiaaoq6btLsdDA4jEzaVUm6ZGlZIipoy54gxTHRPFff9SidjpeNTCfXaOov5pOYJW9bzNuZSUIrUcCqgc6SBwqxEXbo2RQbFqt1ynF3rkmb+WFJEoLtFnzh/ohnOOWIRE8kIS4/H1/4C4Sw3y40oIYmswzpTmMsAfOaZ85xYaBepjeCJVX7/AdDtp85lxoUeWxbhskKZ1Fb30yPDu8apPrF6YuEZjmerhcNgn1hdvl+eMxlqXY1V/pm3ZXmOtzTX4OILSOcQQhQ1VmD7CznCUoum4NTD6Gf+uk/icuKbtbEmY0WEtFURkzqDDYY8LxWi77wJOF/B9vvhcUVwzr0feD+AEOINwK85535KCPERfF+RDwH/GPjb8JKPhb8fCv//vHNX8Kk/wggjvGS4EgOLX7nle1JuMsII3xFCiF3ArwI7Gfh+c8694+Ua03eLPGjPLcRzEuScQ+geJDV+70tHAXj0xBK3zPYKc4Vz49dwZLnKTUaT9uZJREYPgxO+91TPGj64dpCfO/UwzN4+VF+xHtY5YttF5Sl484f6dVfbXo0Un8Z9m94wOTFMTcoDxz8LvNnXUllHRbnCFhmTsuni1+kAHzr815yWLe4UG3CyhLWOtV4gMebS1KJUt1FCooSEM495sge+Z1FSZam7VHDIcqz40ukv+bkcUAG1E4yl81DybmNWRCjs0Cp6EbCt6y+mhOJL5xOuildQ2xRL3SXSvW/CHvpbVKuBEI7MZkgpMFaijeOqaDfLvTNMhPhWnX+asXQZIfbwwKEmjd45XjARx/M+U0LRSQVKiCGyl5uKGOuG1AGLw8mIhpMIB7Olm6jGZehCNnMd2dILdLs9BLBprEx3tR9uVRMFT/0NpVhy1VSVr+f/GLgHH8zOEEUlxkoC5xwXVv2xd0xVOXrGYrUG4YPy6iP/nrLVWBEx1zvAYnaccqgN006jUGTh8MqkRDIiVpK4vobupYUC8I763bzxH72HWKnCPCKOY4zyNv+6eQ5bm0YJxcJKi2vdNGezXTTiSSTPMtM+TMZOjEzYOpYQq26/2zUwvvo8PP8Y7Oq7Ww66Ux664FNP9Ymj7J6e8gG+7kFS59h8i28uvEBt32aU9IrVUCqgSUmFph5MQQ4uHUIoiXWQCs1xVoi1J8A+FbBLo7YR6mU4dwCMxjrI6BDLKhk+/VbgUNIrZrI0hsUMKVTPnfWkabyaMB/q4qTTpKpOYvy9ZQeuazfzalaKAaeL2kltNZFwdHF9Mwglitq+r819DWpl3rT1fXA4+46KldV6SCHMjwHwA67MVDBJkU6jpCDVoVH58iE4+gDc/B6ENEgq4Cxtmw0sLPj9Hlh4hpXmxWK8YyE9secMl7fZeXFwRcRKCHGMy9RUOed2fxfH/FfAh4QQ/wZ4HMhbM/8B8P8JIQ4Di8B7vot9j/AyYuQi98rHoIHFqce/8/bbJyqwtAL3vv8lHNUII1wx/gb/XfJxWC9tvLKQpwIWphAhqD9v2mzWudOfZlPzWS7U96N1pzBX+ObpBVBVpponaJYdwjQ5XQRiFuscPavhyOd94c/29e7y+AJ9oGcskeySiH6AaXAwtRsVlRBCUJ1/Gtz9Q32DcgzWKOWlKvVyxHI7o9UdCLpWz+CN3hw6EDUnwYkSrgcHzvgAcc/CF4b2r60ls+2i0B/wihWumLNaXCMzrVD4P/BiGQ8ENoLzjeuZ6vjyOYcEZ8lWz8DGdMhlbr1iJYnILBzuTXC25c0i16oTmMmridqK1LZZ7i17Bc5563IlfT5lr7fm0xebTSYoUXWwLKvEpsNya6DnEhHNjkMpyZnmGZRQ7Bzf2VesrAP6xf8aByomto63uat5ONlDJfZph1EUkwpBp9fFCc3GRomdW6ZYWypzdqVbpBkKBFsnKgX5UNann2ksHW0xkWRTRYJZ5mOPZiATxisx1mmEhVBKBlmbkgMnFIvZcT+/YeKNNaDgYislCscsGgtbQ7R6ks1jU+hmmVu31j2pgqJO5obtUzy2Oo5yAu2sV6yk5BNPnGQfitnkOhK7SJ6gZbBombA6tpetrUeRVmPD8TacfgA6Ndh0fTGP28cUvWaZyPaVl7i7AOXroR1qepIa51d7bOcRFnu3omSJUqRo9WUWDp8+R9Np38wYvCOlKnEd0zzBRVoio24yhFPMrj6NW9lLbXy2sN75iS1385vHDnFd434i+QiGVrhGFuIpmNhBfO6IV6x6ly50NEoR82s9JtvHuW5DzAU1yVaX8dzZVU5e9S424kluaixOSOLEcPuOOufxNVvaahLbYW3wY1UKUj2w+FDbwIqsAiuY/H2vL10Icc6BzYYVUaMH+p+pgY19ymAQdhErwWSlvQBCg4uIZDRcN6kP6IoAACAASURBVBrG8+Wl5zi1doKNahM100FN7oVz50idoWJt3+XzRcYVESvgjoHfy8CPAVNXehDn3BeBL4bfj3JpjxCcc92w3xFeocitVl/qY2xb/RZ2wyOMMMI/dHSdc//Pyz2IFwN5kFEoOiGg+avmEf7HrIsAZtqH2bX0II30PGsTCYRao/FKTLML3fIu4AC2dZpnpf983hdfj8uO9g+UXr5RsFg4jMNbs5ddFzXg2GVxiFIdqRKkEESdBU/ExrZ823Oyzld25Gc06PJG2kYKn8KXx57L+3+Y5dPguk+v31Xh3JdqS+Y6JAOVDVIEYhXS6Iwz3sBBySH3QqsSFDAb1SmbBivxLLb1TZ/CJySR7XHuqU9DJmDvm/sHD+YFmc1g5TSis4JymlRVaSQN1tI1VtNV36tHlLCuy6GlQ0QyRhtv7S2FJ1adrAMmI8OwFa88ZKqCdAY9oDzIUEERScGB+QMcmD/Ar9zyK8OpgAO9u7SzoGJUpouZyTPdIiVIhaDb7dFJlhEipl6G0tQSc8tlpiuqb5VdavCL10V85dmTLK4tMZ+mnGm3aMUzRDZFWs3O8x9kMtrE41vfS7WkcBiE0QWxMtYRo9i1sc4pnSAFheFFZjM+8s1ThQsgQD0ONUvLPoje0qiwZ/NmStXB1Dj//mhUytyyq86FswJ97gB29+vAiSKFz4gYW5kmDnedxiGTCru3TMNhiGyXyZavuSss6x//04Jwbx1TTJY38uixi4VaGkkBpbGBm7FPBER3GVXaTDmWLLb8e1Yby4ce/yKpMEzGoUeWEEgpUU5iReQt0DNNyXSo61VM1iVzsU/vFYIpWeI10+9EW4tQCfNtr9hJoMGYv9bOOzJern9WnuZ4zfwDTO+eZroqoB1DqcFS7B39MpMbmgi2zVRZbsRcaHlFUltNlWzYCCIKxGqgh95KcOT7VoqVc4553UW5bLiPlUmLxaRIDF/nRHn1TwgBa6ehuhXiCkJYrFVE5Qk6mT9ORUZ08vFY35NuPpmmp2YxO+6F3km6mWE8axV1YS82rrRB8MLA44xz7nfwNuojjDDCCCOM8P2C3xVC/LoQ4k4hxG354+Ue1HeDnFhtrPrOJuO5iQWQhVSwicQHOQ7JgVMXiwDPKzOKbsVbi6em79rXcElhX+7WN1ENsMGR0L/WUqHnA9mJHYAP4pUq+eBQQFdbnp5b4Ttl71vnMC5jS8h/279pICEn6xApyZrN+vU3YxvIytMcufofX7Kv/Zv7xfKp6ZIMBLdysMYKP5cVNXlJQ9KciL6+vJXram+lGzXYu6nOhkYJJxSRzVjpZr73zkDwGCaPLGujlk4QPfIBauk8RiTcs823TVtLfePWSJQKQiOFn09tHDKkJXXTFmm6hhGO6ZJ/zoYUugFnaXyVUXRJ3VOycpzbzvwpNkuHxqidBRkjwj6u3zpWNN/1xAp6aYfMeWL9zMIzvNB8kHe9tkz5a7/l7wshwWbUnv0w96RfYdfSg5xd7fC5+ptYqlzFxnIDlTXJMJS03881mxpYZ1AD6aHWefOJOEm4ZnODOJIFedZWc3qpAwPW87W8H1qo/RFCUCqXh1oKFDWHMqJUKpMKy7n2RYwzZBpU+L8VESvJRqIQ7mocP/qq3SQlnz4Y2S67lr7KrqWv9i3rgbWuJlMVsl6PJCnz2Nb38o3t/yS/9FAeg/1v9RsPBOhZ1rukxurJ08uc7D0JwM5qg+lQ33T12HU8t/ndXKjt96/VGuEsCsHFtR6fPNQhclMgFcJkwUlPEst+A+O73W4MCmRE5BzWaTrp5cX6O3ZOcs2mvDGzvxfS+lbOrXZxzvHkxSfJgmL1SO8cxmYkwhu8aKtJ0JgBYiWkIdVmqIH5ciBWVkQ4IS6psfpk+zgfar7AWnZ2uMbKpAOK1cDz1lAKPcUk3uwjc5ZWuoZD0+l5hShXrF5f3srry2GBx2Q+7VhauqVZBCVI6r6P37dwMn0xcKUNgm8beNwRentcqdo1wggjjDDCCN8L3Aj8AvDvgN8Kj//rZR3RdwkTjBJ2j+/mh/f8MPeN7SvsvjPTBWuIu4tM1RKsiKgmpiAKqbFktksUai9Wut4xK3GSsrO0U8NqV7Nq0ss7DB75XPF76izb1p7025X9Kr3FISO/Ii2lYKWT8fXDF7y5wQBWOhnXTN7ADTM3sGNsB87BofYXuHpDnZ9//S52T/XJIlmbSAoyZ0mNZal8FVHk6yv0AGmarMbccdXkUApcas1QKqDMUwGnry5W28fUFu7f/DPsmdhTbKfjMZwDWfHk9Y037KCWRJRiSbWUUHaCXt4LSqc8dHSBU2YSgLmVkzxx/jGMs30iKOOiJq6ZNnFIFLFvggxI4dDGkRmLlD64PrL2HIcuPo8DJuJS2I8Pr/KzjqUiiVTRHDaHdZbq6a+QmBauNT+kDizbHqi4SIjdNlnlxpkb2Te5j2qccF60+bL+RkFwistgsqAaOs4pidOerOXpgdo4OuF6vLa+cSj780dvmyWJJBaD1BlUfCNgax0xEhlq+XJlEvopr7HtMlX1hKGC9GpjCH7VDe8GlQwTq/x3GVFOIlJZ5YLpYJ1FZxm7lr7qjy1jWj1DJ/GqTE/FSClpC2jbjMj6OWuUInbO1IrdX7X3RhySrXWFij3RdkE1tM6BjGHzTXDXrw4ptTbrooSgFA82brYol7GpUeKd9auLe3W6PIOkjs3f19ogcEj8e0o4y776vfzc9B1B0XEo6V0oJ8Nc1VFkTgbFylHSi7i1y/cuf/3eDUzVgpIUJXDb+3i8cjfzaz0eP7XM4xceR1uLlIq206S6Q3TsK0QXD/oaK3TR5DlcBFJji88qgOVeaJwsBDaqQm9YET+ZreEclLuHhvtYmbRIKYzCnf++sWt5z443U4r830pEnLNt/mztef7o2CdpZz0m2ydRaZtuUe8o+sTMeidFFCgRI1wMKvEk7CUkVldKjn5r4HcNHAd+/EUfzQj/4DGYTni5hrXbvpeDGWGEEV5p+DFg92DfxVcq6kmdWzbeQj2p00gaENU8cTIWnXXh0ANMrxwgqZdQzoHLsEicdYUrWCTrGCc43/Yufte7GYzJ6GpLV1sePDnPW7dn0F5kZW2NJTXDzpka+uQ3inFkwSYcKFbmLQ4VFLRcGJLOXFJi9V++eozxSsw/ed09HFs5xoELR2ibJZR0NMrxsAqUtYmUQOPItCWODciUi705Hl78Oj+GJUIyVUuIlSzUBeMcqTNUB4wopBCYrTfD9e8s7NK1kVSTiLGQwjVbn+X8suRCfS/Z/p+Axxf9yvgN74JjEfbEYUoov7qNVyIADiw4tm+EEytHihqufA60LBX1QW3dRhEhhCyUIiE8qfKpgD7Aneuc4FPHfT3bWBKTEhwJgSjsOFYxlSQi62RDwai2mke7Z/isPMy7uvP00gvsDf/7cmcOxvYzr7uUKJNEkkZS5/6r7ufk2knW8Pb5Zp3KaJzhI83DLJgOVCZ4sxhjTzKBwHGKVbbZRlHJVYuqoVmtw2DZPlXxJgM2JcpWi+trnCdWSnkyMFPeRDuyONcsVIrl8na2JX4BoCJUUScDIMvjoErD9Tq5YqUSIiWoxzuo2zm0TlFLPoVwrBxhAhmaSOdB+gB2rBzzxwc/Tbr6HO+99UdwzzSYrA70K5OKrZs3s1UtgzQgkyEyOGdaNCPBfiH6Vuv5sNIukRKUY4Vz0NOWpU6P2HSIy77pbxTUopKKqcoGdbUh3KMG4Xz6r7GO8xPXM2EEpbgKphfuG0ElqhApSVmNURJLLGmYbxuEdWxeeZTp5fO4u269tGn3YP+mxlYYn8VKX6t1Yr4F0rsCVqMqAC8sH6aBIOose7t1NF+Rp4kQXiEWmlTboZYEawOpxTaqoi7jCuiAbc0jl6QCaquRQvrPGwd1GYMq+ybYzrGxc5SLlWBQ4SxTZdh29iAiNnRq45xabPH04irXbgsKosk8DZR5Km0EUYl0YhtEZV4qXGkq4L0Djzc5537BOff8SzaqEUYYYYQRRvi74wAw8XIP4sXAZHmSu7be5UkVgDNsSvypZaYL55/xDYQlxMKQ6R4nlrocPLeKczBbupkkqeCc43DzNAAlFFXb49V2C2frN7IqlQ9+v/kHHH/gP/LXj/vuJ4Or0l1VGSBWnpQY5wr1YW76NYB37xImhVW/Wn56yQdAK50MrGVnmuGso55egNXjfn9W+5VzgKxNrCStqEpHW1biDXR0h8PNb2Cc4AjLAGxolGjZjOYdv8jpsdsw1rHUTTl5sVOkIioELqrgZFTUf2RGUEkkt228jb2Te7lvx33cteGt7Jr4UXrKB5KlSMGGfbikxqbxKmWUz64UEqc9V8/CtsJkhdqXB9xaloo0rY7uIPF22rlzn5SCzFgy4xCyjASWWj0WFj2hGIvyVMDIN5kN1+DG2SlWQ02SWkesnuzOAfCZuc/w2bOFfx+74jGQMdcor7DlLnx+vJYNY1WEsz7jbyAAf3juIU+qAKIyS7YHUcK87fK4vMBHkxbdkD7IjjcggD2b6zwydoZPHPk4iZLEeglpRWGLbW2Yg0A6N1e3siHZ6x3xgiI2ufkqxMb9CCE8sRqAkrFX3/RlFCuVUEsiiCboOI3VbVyYuSSShcqbpwJun7C09AppuMcnEjNMqvzV9Wm1VoNJWcUw0NKL/5ad5PPnHxl6xdzYzQDMXvgS5XSJclBZupnhsRPz1LJ53lCZ9UMPx1aRn/da5O3ztdZBa3V8bfNP04sadDMLKvFW7kYTCW/uMV6JMS6lFoMVii8fWUYYU+z7wcML/Zox4JYdE9D17yG23gJ77gPgbTd5tS2OQ0Nr46gmQbnTXaQQKATaalww8Fgtb6Oy5WYQ/l7OdJ8Et7IBYqXiIRU1V6SccyyUZy9RrIwzfeOSgecTJXntqd9nPB2o43eGivJpkwJBKhWn452k0QQqr+IM708jjV/ksAmomC+VFK36DC8VrtQV8F98u/875/7vF2c4I3w/Y+T6N8III3yfYwI4KIR4BCi+0V+JduuXwGpe1djJJzoX0caHhcZ5dSbGkNqUnhFsFHeztZZw187dvGYzfPALgO5RiSSb4gpNOiRUMDKmKWUIHjXt1CCCOmMGGqC24nFEUIf+47GPccvGa7Gl65GpT/tbqexgkq8hnaF64nNw9Djc9at8/MmBXj9zjyMOPcDdjT2sdr9IcvDDsPtGH/hEZR8wZx1iJXl25o2c7ZRwSLq663vYGEs1hCsCwUfGapQvfBkT1bEOzre6bHRVtHXEygdaCOnTwpz2ZEYLYiVJVMKbrnoTAKWoTU3NFL14SoF83DBzAweWjlMrJZwzbTSQBSOMVHpiZU2vcArMRR+BQw3WeonYp8UF4qKkVzC0tUhRRgiBcBaWvXlCI4o5FdexIiKSoiBWU9UK54MB3b1b38nE+CKPnHuE+c58sW9rLUiDdV7VkAiiqEQcmtJWk+FwL45jhOvQUBvZVt/CqTVvyLHWXepvFJV8Sp61hZtiClzsPeXna2wb7Hwd82mP0tw5Tq+eQEqBEwLhBOx7M0zvxXz8Nz0hzBs5q9jXyzhH16RYp/15CB8Sx84OpaiW4rIfy+VSAVVENVEI1aBjDGMnvoar3RCO02dD567/Z/Dcv+Qplnny4J/3G25nHU/aBtVT4feL0Syna/zZ8tMsuEnGxF5S5XvErZdnT46/mq2rT/qUzuZhYnUV1hk+cOD3OJdupARESQ22v4ptej9nu2dJQo1RXm9njCGJJA5oawESUmNYSgWPHT3D3u5/orJ1P62Za5mpewfGyrEW1il/zzhHO+R+WufIgkJ1z74ZZicq8Mif+sGWJ4prsW9Tg89G5xEyAwMT3AbigN9u4YhXpoVEW01mPGlqJ5NUpq6G8/493gnEqhyVWU1XqOaXiHjIUCUN7yEHZEIM11idfxZdrxOJS4lV/r5cb2pRbh5FIb0SFwh0Ta+B66uIznknTSciFtt9Ze2JC09w9+zdvBT4u7gCvgrfawrg7cDDwKGXYlAj/MPB5dL9RhhhhBG+S/z6yz2AFxWnHvYB3867fU1V7EOWzPSK2hgpBJEwnM1WcUJSVZNEosSGRolqRXJLaQNPpPPM1EvsazQ4dvoUKRIlErpquKmsshnWDvSpAboyQsosmCEonsgW2FPbg8x8jUKeaiWdRq7OQQ3IOkWzWABCQ+Ek9cfKsL4fl9UQV4BVSNtEcUxqvZPb9qkKT1x4AikFOrVoLFdvqMHd/xPtZz/IWucC43I3xnr77wjJoQtNrtsy5tURITyxspqzK10SIuabww5lUnjHs7zfUF4k//rZ13NXJvnI3B+SOcufLD/FmBJswPK57Gvcqav+uqxTrExo3ppDEOEwhcoUBXvqVFuc8CYi0hk60QQVvUzjrl/l6YcuUs0WcXjzin2b6v1eZkBNjTNd9vv7xNFP9C0WrQGr6QlBBd+rJ4nKwYY9qDcBqUlRUYTEsqd6L4k6Cq15n+qZE5qxraBiMtcO7mqhIe9A4FuLywghOZYGJSQYVgihvWlGfTOUx7zpghDUSmO0TI+SKiFFxFpX09Ua47KCeL2hMgutebZXNnIqHGeyNBlqrAauXxZUNZUQIxGygdGWnun51FggHjjn23ZuYDm5D5fX30jlCUPWIhpsvh2uHDLy/ZHaC+Asy/okY/Fentz8bpYoMQk8ev5RvnH2G/zyzb9M0y5wliYVYp5vPcbbxL0Yl2JWz1Ga/zwTlZho43Ww537ucI7NzdN02xM8d/Isiazhu3X5VgNSUNQV9jLLhbZDhHNvrB3jxi0/y4H5A9x/1RuwR/4EJwOxQlAtK0TH39uZyVNJQ81a09vtu6ndaJsV6mo5Vix2FuhhiESCynYAXpGTeJKureZcO7weRSWqgPD3Sjs0Nm4kDVZ7F9gcbtevHF3mLbv6RhvdoGY5B9ZlRIPcNJC3SEaDvao9sVJ5jeIAEdM9oqxJxDjG9V/gZGmo0YYDlFRYIp48tUIy4xsOz9ZnealwpcRqG3Cbc24NQAjxr4FPOud++qUa2AgjjPD9j1PLHR5aXODr+oXL/v+fv2nf93hEI/xDhnPuSy/3GF5UHA4mEoFYRYmvC8hMiiUPNsC4Ns90L2CTLcjwte4D1ZhpVS4klZJQpCHYKkclus7xyMWn0DYDYpTtoa0bqrvpEiGF9mYIwSLcOlsoMzooIspqTF7DYVKqiaKdGiaqcXH8KLdRdz0+89R/5r7uRfZUwmdE1iZJypiuVyJqSYTDqy/aOjIcZvoadN44VICVZXRmybAs1G7gmK1wHasDBvXeCjqSAikiXrdnw9D0emIFveDelhfJCyGI4golqciwtHtrLM0foIxCyzp/2zzKTWeARIX58PtbK20eCv6Ei7AuLdSenGC1U4OTMRaY7Pp6IC1LVOob+Mk7xzBrDXgkIcp6VEoRW2pb2LN/I58/eIEkGnaFy+34nbNgLWkiqbzqF9FH/ysxfWONaJ2boHKGe/UMZ0vKX5cLz/mGyjPhelQmweqixqx/T/TvjXKc4AhGDkCE82SRzKcCRiWcc8HNTrB9bBcHlw6ipEAiefbcGvduT9EuRQrBm7a/kd0vfB6e/xRvv+pOsvFznNNtqnE1EKssuBUKv+gAnlg5vHrZ84SyZvyYVW26GOv+TeM8eLEy1FwZqUh7zaKWrT+pojgn4yzoHiLYKxpVxlj/HvvGWV+LON9e5IXW52jLc0y5MqsaVtJ5LBYx778bYymIgtuhEILtje0c67XC/6r0cvUSfH+lcB+dXelyR1IiMX5bKTxR+KWbfwmc4wVnsKjQ0Nr38lJS0LGWLCixsZKw2G+x8Gw6z5eO/CU/c93P0EgaSJHxhdOf5totY0SixI6J69m+9gWeSxdRQiBkhHaary95Z0MrJGVVBkxoKuyJ1XPnz9HsZbSiBWpqmp5T9Ho9SgDNC/TOPhluIQcuRYnBnliqT6wGL8eZx6hsvpoe/v1cVDC15pHCp3haS1HvOF+7FmcPFy93DqSUEK7Zfdt/kKlqo3BbfSlwpd2xNuEV4BxpeG6EEUYYYYQRvi8ghHitEOIRIURTCJEKIYwQYvXlHteLAmeIVQWEIDPdIcVKh6DLCb++DCGQVjFyYPk3GQj6q3GJVMDD7TM83vWKUuQyzECdhhCCDOn7Dtm0CPasswWBWMtdr5326Wjg3bgA4UxRmwSgtN/vRdvGOMPTnXM+xQsg6yCjBO1ShBDsHN/NeGkccDgHT298C809b+eFpReKsfUix/NBLWmXt3Jo+l5/HHLHQENq0qCYRMzUh2tppPCk6OJaDyH6ipXfSUwiJKm1rHYzRGeRL8u5QqHrtZZonz3o532gxkq4gZ5GRMSiVBCqPrHSuHW1JJPC26FvHCuzZbLOprEyrysfphwrSlGJG2bHecM1G7h1xySxGiBWRf9oA05zzqZQmcRUp1EqLu6TQWL17n3vZpvW3Dg5wY9e1SHOr9GgS6TwwX2ap5aFeyJXfIQQlKNwDqHeToXUS2+K7e+/B549z1LbK1JR2M44UywAtNIe59PnkAJKcd+VjxMPEQvF9mQ8HCPxUXKestfYHC6iIlICq2rouIGLq0XqYveW/wGA2cmKr92KBuz9AYQi7V3u46FfD9ZzBqavJhpIW1vvpLjQ8u+/i9V9vuJHeG5knaYr/TkpJYniYcOErRP+70RUgheg9a6AarjG7Nnz7aKPXK5CAeAsO2dqOCGxQnlihTebMVlGZgaI1cA9c2T5CADHVo4BcHZthcw41rqakqhz7w1XkYRUwQhJZC1apwjdJe9EV4krOBwOy6klr17PN32qX9v4vFUrIp466VWu9JHf55sH/9LPqbE4l/KF05/k2TTkuJoM7XLFamARIOuw4Zn/AkBT+w+bPWO+7YN3yYyInCqIVcl0il7eLjwQgnv2esqyobztJSVVcOXE6o+Bh4UQ/zqoVd8A/uglG9UI35d46MjCt32MMMIII7zM+PfAT+LT1CvAzwP/4WUd0YuBkOYVSd8wVOuUNaP5hpijhyHLBoiVGAjipWI2Do1My2NESMbKEYem30gpStD0SQGAsilapz7tDyjPXENXJgh8ylxel2GcKYjVW2/egQAqkR1QrDJSbdmz8EVuOvYB8iXoOATFec+ZrEgFzAcQs6rP4pxjolL1BhAhxjJklGNVFMADPNb7El/oeWMOZK2ww5ah+L7Zy/g3X/wLVjoZjaR2iUuaCE5vqbFhZXvg/yqhFM53pat9+pJQRY+pudUuCy1PO/J191RV0QOL8ALFtsoN3Ln1ToAiOH/u7BpWRNxk+wpaaaBPGcpbtOdNXaWQKCm4dYe3mR9KNxTDilUrKCtHV46ShdROwbDpxcbqRn7ktb/G9skak9WEuHkh7Ez1iZWMQMjCbt7c8l6Wy9tpJb7oXxL1U+1yxcp66+0Ii7ACVIln51Z5fOt7eH7bj5EoT2xbXYMI9087y1jMThBJSbU0ziW461f9z9zk5Cu/BWkbEIXNeSQFEkVTSzppxvJaF6dKyEAmaklu874u5JWK9HINsge2W7UpRGXKAy5y6/u1PXfek4de1EDLGOk0CO+VmAUWpgREUXXodblCGosKsYgYF1Vmx0uUpT/XWOVNjftEywyyutA8d3a6ERQriXYOIRw263jjC8KCwUDNWj4PXz3zVVKTkjmfVtlONZEsUStFRNteHcYmiYREzz+Pal9E4Ng6UaGsytRKihU9x5ll//lz15Y3AvDjt+/ywxMRvZ7/TPnA8gFOh15nq11N13U43z7DF9vh/WtSMpN5km8yuOrOYrwxnlD1QuphecN1/jIBrfo+IisgKqMkLNSvYaBE1J+vVNQSv4DTGUxRfolwpa6A/xb4WWApPH7WOfcbL+XARhhhhFc+fvuzL3zbxwgjvNhwzh0GlHPOOOf+EPjBl3tM/93IOr7GKiqBUGSmxxcWTnNetDlilvuK1cBXeh7EV/MgMfNGEDtnakyON9gyVicTbmj1XdkUnWW+xmpqN5WZa0idQwro0S8Qz2xWBGdXbxrntXs2UlWucCHTaReZNpluH/H7D+lXpWBZ3nQZOF9nVShWADKibbx5wlipRGrSItVNu5TN42V6Ay5jYmAV3gVlgHvfj7z5JwE4Nr9GZgxrXd13VxxAzjV6mWXz+Dr7ZRWTDAS02rrQy0hCbYZ5k2BkwqvKO+hMX89jW9/rFR5j2d7YHgYVUYpK3LThJr/LAXJjUFyfTLHbeTIxqQf66gSiYvENnAXDhHA4FTAMt7sENqNLvwda3qRYCi4hldRD0lHWJg6E54bxq+HicwC8becPMlvbShaiVFuqMbHpKvZsnAxzF/XNIXKi1zyPfuQDxK7nnfnCte1FYyyISW7feDu3bryV+66+FRnmttnrFXMzXe/3g+pfh2T4J8DqGV9vFZ4TQiCFopU5zq+0ydKMnlNsnajwqp1T3LvfE9ilQWMOAKnopWHet7+qeHpNCI62vdti02Wg4iHFar1F/ZGFxeJ3LSKk0zhnvClHuuY1npBeejkIIXkD1/Jat4vXW8Gtyl+biWruEtm/DwcbX+eW82dXU6yMUE54lUY4TNphtesXIcbKAyYSt70POfA50dEd7r3WL75sr9wCeAfJKCxOSARKSForJxDA9okKWycqdE2XUqSY018niUN6saoRK0EUWf7n+/diZUwiDN21M0PnGztF27VJBhmI1XR0h9Lc4/7v7opvfQBsnJ6mF9W5x26nLhP2T+wtXpY1drO06Q0wsQMhBEbV+4qVy5V3ST0Qq+73C7EKqAKrzrnfBU4LIXa9RGMaYYQRRhhhhO8GbSFEAjwhhPg/hRD/nL/b99z3DwYb95rUK1YqBinRpku761d/S5GiFwKswQBssEdMIhRM+PSZWhLx9lt3UktKZAyXMyiXYnSoq5GSalwlxSGk4Evt00U6UVd3h1f/ZUQsDDYE4TrtcNvcn6FkULqCG1iUTDa5qwAAIABJREFUdREOms6nnBksDKRnfa11mpu3j/P2624uVJmcDwihiZWkM9DLKE8tA5BDfaz6KYtlOU5dTVOJ11tq9xWqdmaG7Mj9ZCSYnk/vA9DWYoUKfXEiHD3GrGDX5jewsuPNpJF3IsuMpRZS2pxTxEoU9WiNZCDVTQiu3TLGWOLHVRl0Qwvz7ACsQXSW4PlPFX2IhoiV8LQr6i5Bd5WWcEN9haxzrFW3X3LuBCMUsg5JuG5Gd4p6uHKpQRKVPLFSEcYZtk9V2THpg3CJ6hOrPMWvdZGsdZFq7yJO1oZIezczxCrmzq13smmsxjtv244QgmaaIoXipg03IdRlyv6DajhErLKOf08MPCdQIRXWEjmHFTFKCl63d6ZwREzUuntA90hzC/KxWbjnX+Iam/lwrPl08wQfqyS09r0lHCB3gHSsL8nKXIskODGkQiKdwaLpdg9inUMIT4CjeFixGoSQCVO9OW4vb6QcVNlGOZ8PUSwCJPHAHIX3fc+qIkUV4BFxnnarxR8//jnmek9RK6m+2Udtxtcc5WO3GTooVuNyd5gnSTywEBEh6AS2ckd5E2/d9daijYGSgl4wLZE2QUnhF0SE4NrZKYy1dFfmhs61GleRiUaGT58/XH2WT84/wXJvmUqueucW+4DUbXqqQbrnZ3jfbf+UmUq/dq5RGqNd2gGhXlLLOmkv9Jcr5laQZ6120nVy1kuAK/rCEUL8OvCvgPeHp2LgT16qQY0wwgivHHxMHuax1Q9/y8cII3wP8TP477V/BrSA7cC7XtYRfbcYbKype2ANSiVIEZEtHiuIQK0xWbj43Vh+ffGSQWL1nsY+fnzPj/T3F1coRwlZMBtwQVlQNsOYzKd/CUU1qpK5vrJDIAipSYdsxVExG5afQuZpVS88gMARSYF14HpeFVC9FRIhfbBuUr/6PlB38kTnLNUkYt/0jgFiJXwthfLB2yCxUlLgkMRSoAgqj3W0U8upxTYOi3Y9IlkecsXLkZ9XNzVFWlYBIdi/qYElwooIYxxbxEY2l/aDVCy6ZSIHj57LhlSEzFhS6xW6060jxMqnZ/7Q7h/iXfv6t+K7b99GrCRxCMilGlAz5MBYrIbjX4G5J6DtU+4HXQJxlqQIUeFs1iyC3hsmX8ND23+RY7Nvv+TcUbFXmrI25fDitNdXzZK4ThSV0FgQqqify6+LFKqfOikk+5JJtLOkziIEaFnjdz/XN46+Zcdwe7lY+fS9dppinaEah3Pauc4CO2fWg++Hg5/0DncDREmKCIdEOotyBjNAPnPUY09+79x6J6+bfR3oXqHIISNQES/svos0qYCUnC5XWNGhF1cgqxY9rBoBp5unqZf88VIhidM1bOciZzOv2OaW+PFgDVnAj9w6y/3XbirU5kFV89otY5RjBTjqpYi9G+vs3jag6oXauHuv3+bT7oRhohJznharzTXO9p7hXO85DJnvKSYjv2AwsGjjUwG7KBHTSQWRFERKElUDealtIBaSXBudUWV2ju8sVNgN5VnSUPtkbESsFL2gjpXL/p5uNr2id2tjF++q7wERAbqoi+pYzYmuT6cUuSLtbP/6OscPXDfLP7r7Dtj+6iLFE6BcquJsUPacg5C6TFTGObjLzjJb2841U540ft+kAgLvBN6B/6LCOTcHXKqrjzDCCCOMMMLLACGEAn7DOdd1zq065/4P59y/CKmBrzwMpLyhu5xfadMxvr4mc4bUWprj15BWxrDKIZ2grKaKl5QGCuDrMmZmMM2qMkVZlUhFqB0qT9Imo2kWMVnqg00hKakK2tl+IloIEFObDqeWSa8O5ApFniqV1wjZELAb5/rpdSb1tVZRGe2sr+sKSlMlqhSqjBSQiCpS+oBokFiVYsnZxk0sTt/Ordt97Y+2jm8cWeL0UodHji+gXZdIlIaNKQr0XfouUaziKluiGj923X3sEpt8U2RZpiLHsUL5vxG0qKAHpJlMO+6ZvQeA/Y27iznYMbaD6Uq/hmj7VOiHJRyrpS1c2HLf8PGTKreXNrK3sZ1rTRhbIBdqkHg5y1vZzdvi3dwYz7BmM1qh5u6zzyxwfq03FKz3T134+rasQzlvrDwQcCdxBRXXPFmKKvz/7b15lBxZfef7+cWSS+2bqlRSlXa11JJaUgsh9Ubv3XTTNE0DDzAz7jY8jFnaYJ7ncfDMOT72zJzzmDfzzGPM9NgM+B3bA8YYvLSXMbuhgW56Q70vSL1Jau1b7ZWZEff9cW9kRq6VpcpSVqnuR6eOMiNvRv4i8mbE/d3f735/gYlY+I7PJQNtrO4tHgImxdVtCRGEQApOxM7hLq5aX1yQNeE6OOIyOq2/z5RvBstrr4Wr7iu3N15nKiKWRtqeSBphDYWnAlb2lg9Rb159M7sHdrNz2U42dG0AyK8nRByCMODo+NGYjQlGTapgQCStnyuKxCmlGMuezTvuWROekhf/juXekN51ZG6FVMC1fa1cNtRJv2+iuo7knWTPEd68Jkq9FPrakrhRNPLswXx/WNHbydt3DHHJQBue5+k1dbG1iKOZUe2Ue0kQKVJGzAQZkABXPKayQf44vEQrrLkGulfr4sqmzyXNhEpnspOeVA8JxyMTZBGEXCAk3WR+/6mUnjSZGNcpmEM9GxjwWoAkjgrzjhWOk388Gtntp4oEN1LJ2OSI4/GutvXc0boG10uA8guRRBH2rf8oDGwFoB2fa5ffiO/qdYqZ3AKJWAEZpZMVjcCGlLvdFotlyTI08njFP4vlQqGUCoDVJhVw8ROLHkxOjPLyyXF+vP8Mvon4ZFRILtnFtOPRmna17HBslj5Z5iik4ZpPw3WfAcfRUtlKodCLzL8vr/Fk9jGCXJaMCvDdBFOZkFAFHBJty1C7HijmwlxJxMrDMUIQUFhgHy2+VyYV8Mx4hlHMwCmX0fWsnARfcyb4k5HnCkU+/daiiFXSadcFTNGOVRSxSXmudnLEpa+1Pf/ZU2bwNDqtpbw9SVV0rCJ/I1SKVGnEqqUHueKj7Nh+D+DrYxIfUIyZQ3AR3HRHkaBANgxp8Vv4+M6P0+r2FUUOfbeSg6MYTyxDksURHba8kxbH45aODTqVE4qc7XesNzWvla4R1RJ6HD2W4dhYNu8MFEnvV8I4VivcFi5N9LAracQ0etaScJN4iVbGu1fzZXeciZyuQeY5Hr1tSS5b0Vu0q9TQHujfzOTAFlMCoNAXd63uLrPBdx0El7HMpFZkjA2iSVaYt++/tHxbLGL19u1Del0XsGswzeaVvWXN+9J97Bncg4hox71jMB/tHZs6zR8/9ce8NvJavr0nXl4sJYz+L4lYBWZAH6VFZhydmplDoUzkMi8o41VPBdwx4HPlul5EhIk3fxKAzrRvzpMqCOUFWRg5Ar/4n7D/e+Y8+Ax0d7AnNQCpTkSEXKj7wMruNAdHXodTB8g4Hm+MvUE2zBrFTT1JogiIylHnBVNwjOy8iycFxyex8da8zUk3iZIc2UCr+WWCkKSbLESs0tqxOjd6lrOTWdx1N8GWdzDl9SDEHSu/kOaa1o4kq68ucqyKUkHFZbnXymq/A9f3EZUoSs+czmmhHaUULg6O6yMiJDwnX1phPqm3jtU3ROSPgS4R+XXgQ8D/mD+zLM1gvsQE7ADbYrFcIF4GfioiD2AyLACUUn/QPJPOEy+pVc9GjhCaejenJhXjySlezEzwWno5niNMt/XT2eqzLtHK3Vds4CtP6DUjZY5EslPPDBtavBRiCvUGOChTRyeXy5JVIb6b4Myk/tyfh0dJJtP5tUNQorCmdL2pg9172eG+TGAGlF4UsVI6BWc6Fxamc4NplFKEnseYMmlBZvTY6rfmoy6OQMrpADmra+YEU7Qn2pmenM5HmXJBSIvXAozx1KGzJM2CipyaQimlI1Z+ieNEIUULKjiiAC09JEJFr9PNoeBVupw+zqLyKZG+OJyQXoZKUgELjxUtiZj8eqmAhOOx1evlB9LPstRQ8WuRCt2L/1zYFotC9KRMdFIFWhY/UCRwODcVMpYd0/WkjJ1FEt1x/BY4+Us84IaW2Oe3D+I5Hp54eeW9SPghknr3pHj4mBjcDuEoE9lxRITW7DgngCvX99KZLk/LS3iOVvLLTOA5UiQhX2gUc0QSrXDD78AP/6/ycwSkfT8vBZ9WGaR0PVUJnuNB7wb25TLsHJngTKQkmS2oBEbOZFeyi9c5BkCgckWqgJFTHTnQodJy66/mRgDtYOQFRqqIVxRx9afY5afZsKKPzhafoyN6UsIR0RMPYVAo6j1qomtuEtr6SW17N8tOPs7pk3/Loczz4Lus6Ezx+MEfcznw/VNP8sp+aPFa6Ex2cm76HNkgiyLENxMZ+cmQfNzMwUP05/ppEoM786b6ro9CO1au45LJhaS9gmOVTurvZ/8bRxgJQo6OC4MrtoAk9E89ipy5iXz07U3pQegY1k5/fJ1p/PuMrad0PR+hWNRjKhdoxwoz+WHW7k1mAp46dI7da3oq9slGMWPESvSV4C+BbwLfAjYBv6uU+sN5s8pisVgsltlzAPgH9L2tPfa3+GhfDtveox+f0sU9XVUYWE8qvR5i2vXJofAdB7elI/96fhC//b2w9i1FThXoAsGitMx4gEMoDqJCMtkpsoT4ToJ2Vw+qE0N7YPlltPuFU1nkWIngODBFEoJsWcQqVIrJbMDrXXsYSa7Q7zGDqlxskXo0g92R6MgLDTgieJJCRJELc0zlpvJrZVLGWQpClXfifnbgFGGoPzcb6jQzT5KkKkasYo5VacTK4DpCt9vB24L1dLi9tLv9KLNYvy3hMZENi5ypKNVo//ExRqeyRRGrMt50L97QDWxsu5WUWzLojqslRsRSuPICFmZNUxAqfFxCHMaz4+RClVfei9tXRIWB/p1t69g+cLlWsYsNYKMUzMihir8Wfz7RuRIRONeqCw2vX9ZW+aNdBxGHnMqQDVSRIAcAV38K9n60st35Dy0MttsTLboPo4tVM4NjFf0+Jr0ER/d8kBEpDMw9x+PSnkKErC/dR6h0MdzSVMBcUFyAWUwq5NlgGjFpe/lgnVNjyL39vbBsE/i65lZni2/2J4S42hHxU/o3Uqon7vp6UmJgCzevfRuCsGn8DRwRXEfY2Kad5jfadTrmRFR0GZgKpsiFOZTStkURqzyO6DVWYQ6iSJ8h6SYJyZI1EexMLiTlFVIBfZPemcyeQomDJx5BqDinxvQ6qKg/e0lQAYwepXd6oiB3H/8OvSqOlZsgF4T0pPvwJEE6oe0YmVacHteqoqV1wfYfryCx30BmjFgppZSI/JNS6jLgu/XuWESG0fWvBtAphF9SSn1BRHrQjtoa4FXgvUqpM8aB+wLwNmAC+DWl1BOzPB5LFay0tcViudhRSv1+s21oKNHg+ox2rM6lhjg9nqHHh2zokHSFacchoUI8HPwKynf0rtd/JaT9FORLfDr5AqWvjb2mI1ZekhcO6oF3f/cqTkyeoDVRJWKFdlKmJVLQK15jpRRM91zCG2M7WTOZhODr+YX3gTiFAVQYcOOqG3EdN5/u5xgp7UDB0yefBgqD/ITn8Kauu7l583CRA3Pa5OrllP4MV/y8dHWceACpbEAZw/McvW7I8Ul77bipSxg58hIp1+WcgrGpggpfLlT84IVjPHnwXMX93n35ykJ0rK2f6ZVXwrlj5R9aKYIT5GD8JLT0FtZZhaEpEq37QIBiLDtGJhfiGCcoV82xcsqHgMNeG8Mrr9HHHXs9iiDmI1bmtSi6GDlcpyRkamAXpzNbEaCntbKD47v6e50OdKSizLFKVEmb2/0heEwXjCUm4pH2/YIAhClOXC9TwRTnMufyz9v8tnzdKkHoTnXjOroIs+8pwsm4E6aPT6fWmQG76VcjwTHaqRCprESV32moFMfaLmXCycDgWnjtZ0VpwtqIwnlI+mktHkKIr6Z1NPPAD6BlGNVaKIybdJN4jsd0bppcmMtHNyNBkqiYcmeik1bH19EjL1n0PSWcBIosmZxJBcyFTHljHJsYYSI7QbpLO3QBCiUOrnjkQkWPO4gEr9EhLiMAboLrkoOszxlHPzq+aqmAMQfV8X2ywSS3r34HRw+9QmvCZTIT8NrJgK4omugV9/Px6RzzSb1rrJ4QkTfP3KyIHPDbSqktwBXAJ0RkC/BZ4PtKqY3A981zgNuBjebvI8B/n+XnWSwWi2UJIyLLROQ/i8g/icgPor8Z3jMsIj8UkedE5FkR+VSFNteLyDkR2Wf+fnf+jiKG40Fs7dKE383I5DQKyCF4jsN0ME2uYwV+3yWV1/BUoTWRZDQ5SCbVSzbVgxKtqPbwqUd4LTvCeMasCxE/P6guilgVDR8EV4Qp5aPWXJ2PWI3s+gSgB4cjA1cB0OYNcnvrGnan9HqerOsVBvgqyEeq+tJ6dr271aenNc1gZzqfmrWlVxcIdUT45I1b2Layk9ZkbPBknL6cMjWS8KnkN824/smQiCJv4hGEoMx5SJgB3nQuzDtp2VyYd6qgvG7Omr5WBjsLkaLIhrLBd3wgmTKiF2degUf+Bxx6TDu2SuUjVlM5rQ7ohFkOnD3AVLawbqZqKmBYYYC5bFPBhJhIRrRuKxpYR/+/b9P7+MDmD+QdrdNTp3H8FOK4dLf4Vdd3aZl4N/8dVUwFrET7QOFxLBXQcx36OtIsa0/izNKxOj5xvEjQwXO8fD9Me7oY7oquNHvWdbJ+IKWVLs1v0kG3G2xbDsCE31sQezH7nJiDEl0QKrJeK6dW315Ye1Za1DjWVzzHQwSyEtIz9bpuboRHlOcXtYvWQ+VULu+Ej0zqSYmh9iFuX3s7e/p36lIASqtDxp1t3/UJyZFTAfuPTZALFZlQXyteH30d8RIoccgS4oYZEk6CIFSs8TdzT+pS3tGxmZ3JZdy6/Aq2JHrIf5tRza34b6JKKqDvRWqgLq74eWn9Vf61XBnq6LhX0hem51nAol7Hai/wsIgcEJGnRORpEXmq1huUUkeiiJNSahR4HlgJ3AX8qWn2p0CkAXsX8GdK8zB6PVeFanEWi8VisVTkq8ALwFrg99FZEY/O8J5qk4ClPKiU2mn+/n0Dba6OCLgJwhDOpoZR4iImJSknCVNDZppg8DK8ga0mfUtY01d9kXxEi5ci5ySZ7NxoIlYu6dwZnGntFOw7qJ0YR7y8QxMvslukTJfqxHGEEIdg+GpyYajV/NI6whWEip8d0pGJO3etYa3fQXcuABGySEFeXIX4ogdBCTfBuza+i1/f/kHesX2IdMJlKjeFIKzuWJ3/6ChyVqj5o52+ntZEUcQqksOO48YGbpXk2COSRhI9EJ9QKZRyOJVeT3bFXkCn/+nUNp2KGCdXzakxRMV/y/yPeDQp0aL7wpiJbI0e0f+bwX30GT4ujkkXnY5FrKoSd6zajHBFa0G9Lz6IjtbNRNui7z/lpehKdeW3T+Ym6TVOsVcjCggF57y/I0nCOQ/NmVh6mIgw1NNG0nW02MIMqYBxHj/2eJHapFIqL1oxkZvAczxcR9ixqp0jkwdMG9327HhUW8yoArppwj6dRuiZtYbuyl0wuH32x4eWXL90sJ0r1vUWnMWJQkFiHK+or3iOhzg+GQKSuRFQikxU5DkmOOOKm3esgjDgmvX9RccFsLZzLa6TYLlrrifiFE0AaEcpIFDTHDmrz9eqdi1rHtW0C8QnIwGuElzHIxcoFDpFsWNqlKtah9nQua54YqGSAmQVxyrqY9EERmvS9Eu3g2Vou92Sfjjfkus1f3Uiskop9Trw1rl8iIisAS4Hfg4MKKXMVYGj6FRB0E7XwdjbDpltR2LbEJGPoCNarFq1ai5mLSlsPSGLxbIE6FVKfUVEPqWU+hHwIxGp6ViZ+9ER83hURKJJwOfm39yZGc05HB2ZYiKxlq4WH6d1G6F6kUASeo1VME061LPqAL9x3fr8eo9apMygNAgVYZgX/cWbOAYpnxVd7RDA7lXLiHRA2hKF9TJFqYCbbmd8sp2xs/3kFAQhnOrazqAZbB4fneasCwgM9uh1YF6QBcdnMpwqDJS8VNFgfnmrjgJE20YyI6S8VD5NK05bovA+wWHT8naG27t5fWSE24fXsryz/D1O7DwlajgBCdchQ2FgGoYOk34XXvcamNROjC6GLGXRoUqfGyeK7rmlESsRXXg3yOmUN8crqAKKA9OjbG1fTUtqPy/ndnCidSOrzj2Kn/LIBVmyQZhfY1WV1VdrGe5d98DrD+naUPFBa4ljJiL57700dS/6jkIV0p3s4ii1nVUgH1FrT3pla7bqwi1eh+Y4CUJ0QdvZOFYAr5x7Jf/41NQptvVtyz+PjvXF0y9yfPIQoKOwDkJgpPDXdq2gyx/ibPYQw21DnD73EkPJcaa9BN39xVLzsyHhOdy2zcQYonM+fqLQINleFNlxxGFqcA+Z/Y+TddLGsQpg3XWEZ58sOqZQhbx87mUSboKehP5dFkQroh26iAjXtwxxKF28XNV3fQIVkgknSTr62rBn4GoeOvVNcsZpH+zt5JmTB5lMrmAqG3J2MsNEohcnEMhNamcxXhjacWHLOykj/puPOYhRqm0UhUrHrgMHO99MKneOS01U+AN7V/G1n7/OgeNjHDw9kS950Ghm6sl/C+xSSr0mIt9SSs260KKItKFFL35LKTUS90rN+q3a0zklKKW+BHwJYPfu3bN6r8VisVguaqKpziMicgfwBtBTo30RJZOApVwpIk+aff4bpdSzFd7f8Im/J147QyLIkO1KkfZdsv3/mqfOfQuV1cIIuTDHdDBNl5HrnmkwG+F7Ho7oAWKoIKqeE81YhybFqb+9leMT4/iOj+/4eI6n12TEE14SrUyt2AvnjpMJQl7Y/AmOjUyxwxVGk8vpDk7lB3+uceh8cSDIMJGd0CIKA1sh1VExJSzvWE2P0OK1lK3vgmInKRpcZQK9xmRFV2X9krgDWmuNVZQmGBWdDUKt/BY5p9O5QDtGrkM20LPh77x8JSdGp9m9urvqfqEghe5UcobdhHGsjMBH1kRVROBnX+Q6gNQAv5xsZcrv4qW+WwinHuXRV/WavGXtegC6urfKALJjEPb+RvlnRsdd4jy54uZT4Irk9il2wpa1tZFtS3DV+nLJ8ziXr+rl+ZOnWNaepCPRUbNtRUoEPjwvQQZwTd+aC1v7trKibYVWBBzVKXXHJo7lBU9OjE0z2JlmfedWTkycYU3XarZ1tnJk4nVuWH8ZDx17hDcY49dW7uUbc7IkRuR8jp8sbJs8U9bMd33G3RQ5N0QIORlM8tMzLxY5Tb7rc3ZaK4hmggwdyRQDHSn2riu5XJrveUuihy29xZL3OmIFWTVBi+j3pU1qXhTx62xNkTsZ4jgpvv2sVjFMiK/PY3ZKp7nG+9mVn9AKkKWkY+UIitIR9e/22Td0pL01psJ5uPNyAG4wv62BjhSDnSmOnJvi+OhU0xyr+C993Wx3LiI+2qn6qlLqr83mYyIyqJQ6YlL9jpvth4Hh2NuHzDaLxbKIqRUtvX9fLx/f+fELaI3lIuc/ikgn8NvAHwIdwKfreWPpJGDJy08Aq5VSYyLyNvSk48bSfczHxJ9jlMWybgsdCZdT48K5rB60RJoE49nxWc/4e+Lp9D0VSRUrhHyxSo6Pwao0nJzUg7goDTDhJLRjVaJwNpXVxhw8PUEmF5L0XDxHeK7/Dqb60nDKDHTN+3zjmEXrt2jpydtVSjSIn8hN0JvWg/W+dF9RSiDAb964ge+/cJyVPW38+FhM5KJK9CKuCujXcEgTRlUsNLZlc6JTHc2i+OkoFdB8471tCdb2tbK2b+aSn2v6WrhkwKR6lRloBpxeUjs8GSOzXeJYBvEoX2ILJzPasXLw+PVr11VURCxj1ZVaUGR5IWWt1MkNwiCf4lXq3Mb7X3uyhXuuXDPjR67pbWda2uhv6S9OLZ0JP6UH5SWqhtko6ooUzlUN7lx3Jw8efjDvYFw7dC0/PvRjdvZrSfHulHaKo2MLwoBMLmRN+gpePfkwg51p2tx+rlr2HjqTnaxbNsXE4ZWkWzq4o30dx7Nj9LUOsH3ZMKvbV1c2YjbEIzutfdrBWrGzrFnC9ZkUpVU/TeToydFXtNKoofR6kfITfGBvhcmg+PdS0h98x6erxefE6DSuSeFNer4uFmw+1xNFQAhSiDgF4hVSX71EifpfiVJlzzo4/TKk4o5Voe9FKYAvn9DXke4KYilerP27dg1xbGT+nCqY2bFSVR7PiFH5+wrwfEkNkQeAe4HPmf//Lrb9PhH5OnpN17lYyqBlEWDrVVkslmYgIingo8AGdBrfV5RSN8zi/ZUmAfPEHS2l1D+JyP0i0qeUOlnattHkHSsnTdp383LeAHdvvomfHP4JoQpn71g5Hq4IR8/ptU9D4XQ+gpUNQjpb03S1+Owc3MtDbzxEYBbA+64PufKIxbaVHfx0/0mmsiGZXEjCc3R6nLgoxweKIwi+ONC5koePPFy8vUbECsjLRL9303vL27kOb926nPHsOD8+ph0x3/ErRrh0+1iUq0Kdq4iEF9X2KazncB0hYQa609lQOy/GUUvV2FcpSc/lju1VlpNHa4jcZPGgtuR49q7v5x9NSSNfCgPG6zf305ass1/4adh0W9Gm7mRxtE2Zf1AhYhWPIpQq/FUhcqLrbZ/nktvgyFNl6X7R96MAhnbPuJvhjmG6T3XnHauVbSv56I6P5te9RUT2jWXHEFx6/NW8Oqn7bZBz82vwbtzcz7aVHXSkE+ClWKmARCvXGJXFORM/T30btUJiBYc04fqcQ0erosK7lHxf3cludvbvZN/xfUXHWP6Z8TS94jYJN0Fva4Kutd0cfkNPIviek49qg3ascijEKThWoeMjpiQCbqKoPluZJP22d2uxDrdyP960vJ0fvHA8/7wt6XHl+l4eiq11jP/OE54zr04VzCxesUNERkRkFNhuHo+IyKiIlM7olXI18KvAjTElpbehHapbROSXwM3mOcAUD2EKAAAcr0lEQVQ/oYs77kcXH7bT2BaLxWKphz8FdgNPoxVm/59631hjEjDeZrlph4jsQd87T1Vq22gc49Bk3TRpk+bS5vWxpq8ln/4H5TPQM+GKWySY4KDX0IxnAo6OTJELhN62ZF6dL6+CZgb1pZ+X9nWEamw6x3SgHaso1a6SCpcvDrSUR2kqHUd8W9KtUN+pSvtcmKsarYLidU3V1OugoAoYRenOTGTxHIekcXZCpXAdyS+kr+WkzYpoXYmfKi6WWjLw93x9TkT0d7g2fSUrkzvmbEe8IHRE1A9KVQzjA/N6o09Ru1mvr+q/FHa8r1g1Drhz412kHI9OJ1FRSr4SG7sKgeeORAdOiUADFI5tNDPK6h79m+vwlnFuMsvhs1P5VFHXkYLiY9Tv5piSWESR/HiyolMFkHB8pk3E6rYV1/Dm1EBZ2/ZEO3uX780/r/odxLeXODe+4xvBHIekEbhQimLHipAcITiF360SN1/MGTcBnSXFsYuO2StOAywh5bvcdGlBRl4Xmy6NptavltoIavY8pdR5/yqVUj+h9Ndf4KYK7RXwifP9PEvjqBV5OtTxpgtoieVi56EDp5g+Ub3G2qdvueQCWmNZxGwxtRYRka8Aj8zivdEk4NMiss9s+7fAKgCl1B8B7wE+JiI5YBJ4v1Lqgq7xzbppWoxjtSF9PVcOdxNbTlAxha4WjjhF63pOtF3C4OR+ouSUbM4h6TmkvUhOWkdVorVVlYQN0gmXqWxANheScCXvrESO1Z61Zv3GpttpeeEfKwoMVDqO+LZ61OPi7WsN2mutq4oT9qwHXmTS0Y6GQuG5gh8rPOo4kh/ANcyxilT7vHRhfRXoYqoxhjocLlvZSUfa56f7T9Ltr2qIHSJCq99K2kvnU0KjVMBS58OrIXpRjSjqNeuIVRWG24f5UIcR9KxTbn1D9wa+89p39FuqOCpxYY6+llY6BjtoP3MrvoLT5IqiyHkix6Fj5ewOohbxvuxV/x34rkcORVIp2qdGWZvs59GSSFDSTRYdb10Rq/HiAH08unzL5iEe269T8XzHLzhWwSQBIcrRDqfrCEGoSKfToDL6e0pULiJdL/Hi3p6rr1tx6qoj1kDOQ4bFYrFYLJYFRT6XRCmVm82NdIZJwKjNF4Evnrd1c+ClvptZMfIkWSdNT2tUNNdluKuDlFtce2c2iAjj04UB+qTTTibZCxMnUOLiiEvCc+hL9/HWNW9lVYcerEdRm0qD0JSvHatcqNccRWsbps06iDevMY7V8u24PevYdeY5njj2RNE+Ku03fmy1IlDxfYgISqmag/x8od4ZaNv4Fh473Ms1W1bxLy9qRTZBcOPLT0RwzfHOJhWwJiNmNcTokeJ0qZxO36R3A5zaT2JgMzev8HnpWHHh2EbYce/Wezk7dZavvfA1AELMGiuqr7GqN2JVKt3eUBrkrEGx05H20iSUkAtV/vuuTCzVrVGURqyqkPA8lC5pjffqTxA3VayqR7kjVd2xin03JXXP4u/ZPNDHW9ZqyX7P8cga2X/XEXIolJmU6GtL6rVcPzTXLjdRFnmcLXFHqlLE6kJjHSvLrLDrqCyzwUY/LReIHbH0dAHS5rmgEyLOQ3JsYXC6ZR2nW7R2VHdLYSAz3NPCRGysfV5y1TFa3V4mWz2CnDCSHGQILz9gWd+1Pt9uzBQnzVRIcYocq2yg8FynLGKVT8lxHEh1sHf5Xg6PHmZl+8oyBytOaVHSevAdn0yQqXleakmsx2lL+dz31u35me8/e1LhCHhOccQqol6HbUb6L4Xjz8O66+BYTIQyEmboWQfb/7eqb29U5KxI3t7EaUvXrcWfl66/qkbUrtRJawizcNZ2LtvJWHas6utxB8J3fbzAIReEeVGQirHryFmosjbovPBja4NqOGxJ10eJgxtM65peQEuqk4lYra6oLzvi1F6jGXd6Lr2z6KX4JEeipEhxFLFyrvsMh07/Bzpc7ViNTJXUqIr61o73l60drJd0Ih6xkvKacBcY61hZLBaLZVEzl7T1hYxSCpHCwC0SIoj+j683Oh/HaqAjybGRaba1vR1f0hyWBziV0uK8rnhlKTVQUNqLr++KaEu6HDqTIRcovFhqXCYXIlIuKS4ivPuSdzORnajpWMUjGkln5jVWoNPRMtR2rDzXoTXp8qbVMyvyRwPRVnPuRXSqY5Ta5IqQM0IBlc7bebH1nbDlrvIZ/axxrEoG7VFNrIhGOXhxxyqKWNVitmus5iVVaxb7vGrlVTVfjx9PwtH143KhIhdG680qGqD/a2DkrMhZrJEKmPQS6Cpb4KLXMkoVp8UVl1CF9aVjJkvqWMXeU+pYZU2RX+W4TDs+rhRfuxjYAseeKziIPWtn/vxSTDHreGQ24Tr0d6RwRIza6YXHOlYWi2XB8vnvVl9/FfHpWy7h/n3312xjJd0ti5FcqPJO1eWruvBchzu2DzLQoQe68QFfvVGCOB990/t5/ugI+w/rwU18kbcjbtHahYhbV9/K86efL5M6B+hI+YxOjeb3FXekai0gT5dKLJdQtMaqztSqSL1wJofzI9eur/l6KSu60iScNN2dKVJuCs9V2rFyhGmTKdWwVEAojNqTbTA9Bl3DhQKxJelg65e1celgB88f0cHbhjl4wAe3fRCABw89aMyq/n36Up8zcT59tllEkZ2EmzDFoKEj7TM6lePWLcurv7GRqYBF+60+wdDqJ/E8jw7fxxeBTbezevQAz516jhuGbyiakKkmRlMPRSm6TrFjFU3A5MIcwz1ptvcsY0f/cgY7zG89+u69+iZKyrjuM0TOayo2gSAidKZ97rtxA//1+788v33PEetYLWFsWp/FYrEsXHKB9qqu37SMy1dp6etLBioXuz0fAYANPavY0AOfP/wSCc9heWqIN87uB8DBLxqw5N/TvYEN3Rsq7q8tFRMwKEmzq7UeRUT42I6PVR2sx7cPtw9XbFNK5IzNNUWylLakx7+/7Q6eP/U8azrW4DuvMU2I4wiBiVjVm2I4K3bdo8UDDj2mazhBWdQi4Tnctm05W1d0cGo809BIUOT8RtGrWv2t3nMe2RcJYixkrhu6jh8e/CHdyW6mcoUU1+Geloq1k+YlFTBODYdkNHuODQMdcPYcHk5e8n37su30pIqjs57jMR1M175+tPUX1vVVoCfVUzTJE08FzIQZVnal2bail8198YxsNeNx1MQpjlKVUkvlc76xjpXFYmkqtQoIR+zqeF/V1z7/3Zd4YqS68vWV6ysU3rRYFgFZM1CvZzH2XByIe69ag+8KLx3r4eBJOJHZjyt+PtWpXuIRLt8tHtjMNM6ZyQmYbdT51JS+JjTasQKdghkVkR0zYSpHCsU+Ew2MFOVJdeq/I/sK20oECSKGe1rmrVbPlSuupCfVw5qONVXb1HvOo4hVQx2rq+4rOJ4NZHPPZpJukrWda3lq8hwAk5kcnekqDkmUrlnlO5ozNSJhpyZP5SNCIgJ+Gs/xypwqqFNAZPeHqr70sR0fK9vmS0EVMEoJLOsTZnvlBWqzI7p2zMvv7jywjtVFwkypUBbLYqYe58tiudiIIlaeO/Psa70pcpXoic24L09sIem0k3a6WNNbXseoFnFnKlIEvG7TMn5klPQuJNGs+YVSxQ9CRWgc0XlVJXPqU4abL3zHZ1vftppt6nWsojS0hjpWyfaytUCNQERY16VFZKJoyEQmqB6d3HQHPPs30Lqs4bYANSM9d2+8m2888vlY2+rO3c5lO/nRoR/Rmeis/lk1Jj0qTYj4bsGxGs3o1OCy69PwHjjxIizbVP1zZ8E9V64uErEAaE26LO+snWY8H1jH6iIhXmXaYrEUsLWyLIuVbFB/xKoRtYBEBN9J05+4hITnzHqtUHzGOHKyvNgg9EJy/fD1fO+17zEdTF+Qz8vkwnzEal4LksZVEf0LP2ish3odq7Wda9nYvZErBq+YZ4saSzTRoRQkvCrfdd8GuO7/bPyH96yF06/ULICcclNaeTOihmO0tW8rW/u2NtJCPCmkAv79y38PVLg+dQ7BDb/TsM/sbSt3NGe7frJRWMfKYrFYLJYFyJkJLWlez5qduUSsIiKxg0sH27l+U/+s3x+3M1pjNctswoaRcvUsfa6k9k6juXPHCv7+yTfIBoqOlM/ZiWxdEcbzJhqgisxfmtkcqdex8h2fW1bfMs/WNJ6445xwL7AAx7Z3Q2asprOUdJM1Ha/5JooWR0WlAdoTjY8iLlSsY2WxWC56aqUS3r9Pr8GyyoGWhcb/evooUDsVMO2lmcxN5h2JubB5eQejUzl2reo+r/UKccGKaPAZpeJtWn5hB1bdKS32UU1oo1FEAh/ZIOTuy1dy8MwE7akGSmyXEokhJFqLoxILAFdcAhXULMp8MVC7MPB8f7gP6e6aTTzHKzjg81F8eQZyYQ6F4hsvfiO/rSOxaEsJzpqLu/cvEqxUtGUpcr6qlLawsGUpkAsK605qpQLeteEuDo4erLtwbi1cR7hi3fmLvcQdwMjm9f1t/OzAKXavrj0YbDTtiXY+fNmHGxLJq0Uk2BGEinTCrara2DCiAbM/P+IUc+HGVTfy9Mmn50UwZCERj1gdHWm8UMZcERHWd21g4NzJ+ZN7r0FOFUeJL++/fH5qlS1QLu7eb7FYLBbLImQqF3OsasyQ96R6Kqp9NYP4gDNysjpSPp+4YX6jRtWYb6cKCmvJLljGY3RMTRgwz8TG7o1s7N7YbDPmnbiU9+WrygtlLwTeuvpmOHoAUhc+UrR3cC/PnHwm/3xL75YLbkMzsY7VIuD+ffdbcQqLxVAt0nW+kazot2UFLiwLiVdPjucf+9UWyC8wvJgDWMsZvJiIlMh2DNVQVWskbvNSvCyaeGS2LblAh9Hpblj7FhioreA4H8QLEP/K5l+hM3mBfhsLhAXaI5YWc3WabKFfi8Viubjo7ygMTrxF4qTE5dbd+RRwWEAkPZdP3bSxlpZAY4kiVWIdq2YR/z0mF0jtpDJEYM01zbaCruTCjOjNJ9axslgsFwW1JhjqiWbNJHBh1zpaLiT97QUxitJiuwuV+DqKeZUcX2A4F/JYlZGtz47XbmeZN+KpgPGi2JZyltLaqgjrWF0AbPFei8VisZwvi3FwMq9FcpcyabOermNlc+1YwnhFjpXt55UYah8qSglcSljH6gJg10dZLM3lfNJl41Guhw6c4qED/6Fq2yvX16ekZqNeltlwx/ZBDp6eaLYZ54W7hCJWF5TOlXD1JxekKuBSId63L2i0chFx57o7F+WEUCNYcI6ViNwGfAFwgS8rpT7XZJP4/HerL2o/H84nZcmuo7JYljYzXYeswMbFxyUD7fMv321ZfCRam23Bkqaegt1LnaXqVMECc6xExAX+G3ALcAh4VEQeUEo9N1+fOVen6fihz1Tcfr4KZdaBslgWHzNFpeuJaM31WtSICaDIOZtr+rKNzFkslosVG6Wy1GJBOVbAHmC/UuplABH5OnAXMG+O1XxhHSSLZXHTyALGkeNVK51wIXD/vvMvDmuxWCwWy1JHlLpgZe1mRETeA9ymlPqwef6rwF6l1H2xNh8BPmKebgJevOCGzo4+4GSzjagTa2vjWSx2grV1vlgsti5EO1crpZY124jzQUROAK/NcTcL8TtpNvacFGPPRzn2nBRjz0c5jTgnFe9PCy1iNSNKqS8BX2q2HfUiIo8ppXY32456sLY2nsViJ1hb54vFYutisXOx0AiH0H4n5dhzUow9H+XYc1KMPR/lzOc5WWgr8A4Dw7HnQ2abxWKxWCwWi8VisSxYFppj9SiwUUTWikgCeD/wQJNtslgsFovFYrFYLJaaLKhUQKVUTkTuA76Nllv/E6XUs002a64smrRFrK3zwWKxE6yt88VisXWx2LmUsN9JOfacFGPPRzn2nBRjz0c583ZOFpR4hcVisVgsFovFYrEsRhZaKqDFYrFYLBaLxWKxLDqsY2WxWCwWi8VisVgsc8Q6VvOEiPyJiBwXkWeabUstRGRYRH4oIs+JyLMi8qlm21QNEUmJyCMi8qSx9febbdNMiIgrIr8QkX9oti21EJFXReRpEdknIo81255qiEiXiHxTRF4QkedF5Mpm21QJEdlkzmX0NyIiv9Vsu6ohIp82v6lnROQvRCTVbJuWOiJym4i8KCL7ReSzzbZnvqh2DxKRHhH5roj80vzfbbaLiPxXc16eEpFdsX3da9r/UkTubdYxNYLSe4cR9fq5Oe6/NAJfiEjSPN9vXl8T28fvmO0vishbm3MkjaHStX8p95FK1+yl1kcqjbMb2SdE5E1mXLTfvFfqMkwpZf/m4Q+4FtgFPNNsW2awcxDYZR63Ay8BW5ptVxVbBWgzj33g58AVzbZrBpv/D+BrwD8025YZ7HwV6Gu2HXXY+afAh83jBNDVbJvqsNkFjqKLCTbdngr2rQReAdLm+TeAX2u2XUv5z/SZA8A608+fXKjX5QYca8V7EPB/A5812z8L/Cfz+G3A/zL3gyuAn5vtPcDL5v9u87i72cc3h/NSdO8wv8v3m8d/BHzMPP448Efm8fuBvzSPt5h+kwTWmv7kNvu45nA+yq79S7WPVLtmL7U+QoVxdiP7BPCIaSvmvbfXY5eNWM0TSqkfA6ebbcdMKKWOKKWeMI9HgefRP9oFh9KMmae++Vuw6isiMgTcAXy52bZcDIhIJ/pC+hUApVRGKXW2uVbVxU3AAaXUa802pAYekBYRD2gB3miyPUudPcB+pdTLSqkM8HXgribbNC/UuAfdhR5MY/5/p3l8F/Bn5n7wMNAlIoPAW4HvKqVOK6XOAN8FbruAh9IwSu8dZqb8RuCbpknp+YjO0zeBm0z7u4CvK6WmlVKvAPvR/WrRUePav2T7COXX7CMssT5SZZzdkD5hXutQSj2stJf1Z7F91cQ6VpY8Jjx8OToStCAx6RH7gOPoH8OCtRX4f4HPAGGzDakDBXxHRB4XkY8025gqrAVOAP+fSZH5soi0NtuoOng/8BfNNqIaSqnDwH8BXkffnM8ppb7TXKuWPCuBg7Hnh1igE16NpOQeNKCUOmJeOgoMmMfVzs3FdM5K7x29wFmlVM48jx9b/rjN6+dM+4vpfFS79i/JPlLpmg08ztLuIxGN6hMrzePS7TNiHSsLACLSBnwL+C2l1Eiz7amGUipQSu0EhoA9IrKt2TZVQkTeDhxXSj3ebFvq5Bql1C7gduATInJtsw2qgIcO+/93pdTlwDg61L9gMTnu7wD+qtm2VMPkoN+FHrysAFpF5F831yrLUqPWPcjMGC/Y7IRGsgjvHReCGa/9S6yPlF2zWbyRt3mjWX3COlYWRMRH39C+qpT662bbUw8mDeCHLNyLydXAO0TkVXQaz40i8j+ba1J1zAwYSqnjwN+wMNMBDgGHYlHKb6JvtguZ24EnlFLHmm1IDW4GXlFKnVBKZYG/Bq5qsk1LncPAcOz5kNl2UVLlHnTMpONg/j9utlc7NxfLOSu7dwBfQKcueaZN/Njyx21e7wROcfGcD6h+7V+qfaTSNftqlnYfiWhUnzhsHpdunxHrWC1xTJ7tV4DnlVJ/0Gx7aiEiy0SkyzxOA7cALzTXqsoopX5HKTWklFqDTgX7gVJqQUYBRKRVRNqjx8CtwIJTs1RKHQUOisgms+km4LkmmlQPv8ICTgM0vA5cISIt5npwE3qdi6V5PApsNCpfCfQ15IEm2zQv1LgHPQBECl33An8X236PUfm6Ap26egT4NnCriHSbGf1bzbZFRZV7x79CTyS+xzQrPR/ReXqPaa/M9vcbRbi1wEb0YvxFR41r/5LsI1S+Zj/HEu4jMRrSJ8xrIyJyhTnH98T2VZt6FC7s33mplfwFOvc1i55t+d+bbVMVO69Bh0qfAvaZv7c1264qtm4HfmFsfQb43WbbVKfd17OAVQHRymNPmr9ngX/XbJtq2LoTeMz0gb9lASs6odMzTgGdzbalDlt/Hz1J8Qzw50Cy2TYt9T+0itVLaKWuBfubbMBxVrwHodeAfB/4JfA9oMe0F+C/mfPyNLA7tq8PoRfg7wc+2Oxja8C5yd87zHX6EXNsfxX9RoGUeb7fvL4u9v5/Z87Ti9SpaLZQ/ypd+5dyH6l0zV5qfYQK4+xG9glgtzm/B4AvAlKPXWLebLFYLBaLxWKxWCyW88SmAlosFovFYrFYLBbLHLGOlcVisVgsFovFYrHMEetYWSwWi8VisVgsFsscsY6VxWKxWCwWi8ViscwR61hZLBaLxWKxWCwWyxyxjpXFcp6ISCAi+0TkGRH5KxFpWQA2XS8isy7uKiK3iMjjIvK0+f/G+bDPYrFYLM1HRMbM/2tE5AMN3ve/LXn+s0bu32JZyFjHymI5fyaVUjuVUtuADPDRet4Uq4w+H1wPzMqxMvacBO5USl2GLqr35403zWKxWCwLjDXArByrOu5hRY6VUmrWk30Wy2LFOlYWS2N4ENggIneKyM9F5Bci8j0RGQAQkd8TkT8XkZ8Cf25mCR8UkSfM31Wm3fUi8iMR+TsReVlEPici/0pEHjHRpPWm3TIR+ZaIPGr+rhaRNWjn7tMmkvaWSu0q2aOU+oVS6g1zLM8CaRFJXtAzaLFYLJYLzeeAt5h7xqdFxBWR/2zuF0+JyG9A/t70oIg8ADxntv2tyXB4VkQ+YrZ9Dn3/2CciXzXbouiYmH0/Y+5n74vt+19E5Jsi8oKIfFVEpAnnwmKZM/M5c26xLAnM7N3twD8DPwGuUEopEfkw8Bngt03TLcA1SqlJkzZ4i1JqSkQ2oiuI7zbtdgCXAqeBl4EvK6X2iMingN8Efgv4AvB5pdRPRGQV8G2l1KUi8kfAmFLqvxjbvlbazuy7yJ6SQ3o38IRSarqBp8lisVgsC4/PAv9GKfV2AOMgnVNKvdlMrv1URL5j2u4CtimlXjHPP6SUOi0iaeBREfmWUuqzInKfUmpnhc96F7ATfY/rM+/5sXntcmAr8AbwU+Bq9P3UYllUWMfKYjl/0iKyzzx+EPgKsAn4SxEZBBLAK7H2D8ScGB/4oojsBALgkli7R5VSRwBE5AAQ3dSeBm4wj28GtsQm9TpEpK2CjbXaPVDqVInIVuA/AbfOdPAWi8Viuei4FdguIu8xzzuBjeh090diThXAJ0XkbvN42LQ7VWPf1wB/oZQKgGMi8iPgzcCI2fchAHNfXYN1rCyLEOtYWSznz2TprJyI/CHwB0qpB0TkeuD3Yi+Pxx5/GjiGnrlzgKnYa/FIURh7HlL4zTroyFj8fVTInqjVbrxk2xDwN8A9SqkDpTuyWCwWy0WPAL+plPp20UZ9PxsveX4zcKVSakJE/gVIzeFz4/e9ADs+tSxS7Bori6WxdAKHzeN7Z2h3RCkVAr8KuLP8nO+g0wIBMJEvgFGgvY52RYhIF/CPwGeVUj+dpS0Wi8ViWZyU3jO+DXxMRHwAEblERForvK8TOGOcqs3AFbHXstH7S3gQeJ9Zx7UMuBZ4pCFHYbEsEKxjZbE0lt8D/kpEHkcr7VXjfuBeEXkS2ExJ9KgOPgnsNouLn6OgSPj3wN2ReEWNdqXcB2wAfte8d5+I9M/SJovFYrEsLp4CAhF5UkQ+DXwZLU7xhIg8A/wxlaNH/wx4IvI8WgDj4dhrXwKeisQrYvyN+bwngR8An1FKHW3o0VgsTUaUUs22wWKxWCwWi8VisVgWNTZiZbFYLBaLxWKxWCxzxDpWFovFYrFYLBaLxTJHrGNlsVgsFovFYrFYLHPEOlYWi8VisVgsFovFMkesY2WxWCwWi8VisVgsc8Q6VhaLxWKxWCwWi8UyR6xjZbFYLBaLxWKxWCxz5P8HVzCRlT3iweYAAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "# Show traces and histograms\n", + "import pints.plot\n", + "pints.plot.trace(full_chains)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": "R-hat:\n[1.0037001615279588, 1.00421206454155]\n0.2913131495099299\n0.3474467965607744\n0.24053935957450112\n" + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAF1CAYAAAADRCZsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdd3hTZRvH8e+TpIO2bEqBMsreew9BBEFAQaagoOAA3IgDEGS4XhU3CAqIiAwHILJBpuy9N2VImWVToCPJ8/6Rgi1dKTQ9SXp/rqtXm5OTnF/R9u55ptJaI4QQQiRkMjqAEEII9yPFQQghRBJSHIQQQiQhxUEIIUQSUhyEEEIkIcVBCCFEEhajA6RXvnz5dFhYmNExhJfaunXrBa11sNE5hDCaxxWHsLAwtmzZYnQM4aWUUieMziCEO5BmJSGEEElIcRBCCJGEFAchhBBJSHEQQgiRhBQHIYQQSXjcaCWRvLCB85M9fvyTNpmcRAjhDeTOQQghRBJSHIQQQiQhxUEIIUQSUhyEEEIkIcVBCCFEElIcvIwZG+9ZfqGPeS4WrEbHEUJ4KBnK6lU0/7NMoItlFQBtzBsgphn4BRmcSwjhaeTOwYt0My+ni2UV31g78HrsS1QxHYMd04yOJYTwQFIcvIamp3kxu+zF+crakb/sjdhuLwWbfgC73ehwQggPI8XBS9RWBylrimCKrTmgAPjJ2hIuHoHw5caGE0J4HCkOXqK7ZSnXdABzbfXvHFtorwtBIbD1JwOTCSE8kRQHbxB9jUdMm5hpe4Bb+N85HIcFyraGo6vAGmtgQCGEp5Hi4A0OLcZPWRPdNdxR+mGIvQ4RmzI/lxDCY0lx8Ab7/+KczsV2XSrpc8Ubg8kCR5Zmfi4hhMeS4uDpYm/C4aUsttVGJ/ef0y87FK0Ph6U4CCGcJ8XB0x1ZCtZbLLTXSfmcUs3g3G64fjbzcgkhPJoUB0+3fw5ky8Mme7mUzynR1PH52OrMySSE8HhSHDyZNQYOLoLyj2LDnPJ5BSqDX044sSbzsgkhPJoUB08WvsIxEql8u9TPM5mhaD04vjZzcgkhPJ4UB0+27y/wz+kYkZSWsIZw8TBcP+f6XEIIjyfFwVNZY+DgfMckN4tv2ucXa+T4LE1LQggnSHHwVAcXQPRVqNTJufMLVgXfIGlaEkI4xaX7OSilHgG+AczABK31J8mc0wUYDmhgp9b6SVdm8hrbfoEchaFk01RPCxs4/87XP/uUoNCmRTy8phkAxz9p49KIQgjP5bI7B6WUGfgOaAVUALoppSrcdU5pYBDQUGtdEejnqjxe5WqEY6XVak86OpudtM5ekdKmUwRzxYXhhBDewJXNSnWAI1rro1rrWOBX4O5hNS8A32mtLwNorc+7MI/32D4F0I7ikA7r7Y7aXM+0zwWhhBDexJXFIRQ4meBxRPyxhMoAZZRSa5VSG+KboURqYqJg4w9QugXkKZ6ul+7VYVzTAdQ37XVROCGEtzB6D2kLUBp4ECgM/KOUqqy1TtTuoZTqDfQGKFq0aGZndC9bf4Jbl6Dx2+l+qQ0zG+3lqC93DkKINLjyzuEUUCTB48LxxxKKAOZoreO01seAQziKRSJa63Fa61pa61rBwcEuC+z2Ym/CulFQvAkUSWUtpVSst1ekuOkcBbmYweGEEN7ElXcOm4HSSqniOIpCV+DuRvLZQDfgJ6VUPhzNTEddmMmjfTniVfr7nKPzxT5sTjAKKT3W2isC0Ni8KyOjCSG8jMvuHLTWVuAVYDGwH/hda71XKfW+Uqpt/GmLgYtKqX3ACuBtrbX8SZucqxG8aJnDPFtdNutUFtlLw0FdhAidj+amrRkYTgjhbVza56C1XgAsuOvY0ARfa6B//IdIzd/DMKH5xHq/00AUf9tq0s28HGJvgG9ghsQTQngXmSHtCY6thj0z+N72GBH6/vtc/rbXxF/FORbuE0KIZEhxcHe2OFjwFuQqyhhr27TPd8Imezmu6QA4uDBD3k8I4X2kOLi7TeMh8gA88ikxOLHAnhOsWFhmrw4H5kLcrQx5TyGEd5Hi4M5uXICVn0DJZlC2VYa+9e+2Bx0L9+2dnaHvK4TwDkZPghPJuL1Y3seWCXQ2R/HIvkcIH7QgjVelz3p7BchTErZOgmrdMvS9hRCeT+4c3FRpFcET5hVMsTUnXN+96khGUFCzJ5zcAOdkxrQQIjEpDm5qkGUaN8jGt9b2rrtItafA4g/rv3PdNYQQHkmaldxQXbWfh8w7+F9cNy6Tw2XXCftgA8MtjXlq+3Qab6jLGfICss+DEELuHNyP1vT3+YNzOheTbC1dfrnxVkcheMFyb8txCCG8kxQHd3PsH+qaDjDG2i7Dhq6m5hTB/GVvSFfzCrJz0+XXE0J4BikO7mbVZ5zRefjVlvr2nxlpkrUFASqG9ubVmXZNIYR7c6o4KKUquzqIAM7shBNrmGBtlSl3Dbft0SXYYS9JD/NSHFt5CyGyOmfvHMYopTYppV5SSuV0aaKsbMP34BPIH7YHM/3SU2zNKW06RV11INOvLYRwP04VB631A8BTODbv2aqUmqaUetilybKaqPOwZwZUe5JrZP5KqXNt9bmh/XjUvD7Try2EcD9O9zlorQ8DQ4ABQBPgW6XUAaVUB1eFy1J2TAVbLNTtY8jlY/Bljb0yD5m3g5amJSGyOmf7HKoopb7CsWnPQ8BjWuvy8V9/5cJ8WYPWsGM6FKkH+ZLskppplturE6ouwnmZMS1EVufsncMoYBtQVWv9stZ6G4DW+jSOuwlxP05tgwsHodr9buRzf1bYqjm+OLTY0BxCCOM5O0O6DXBLa20DUEqZAH+t9U2t9S8uS+flbi+w94FlIp3MvtT5I4Drfxg3Ge08udltD6PyocXwgGzOJ0RW5uydw1IgW4LHAfHHxH3ywcpj5vUsttfiOgFGx2GlvRpEbIKY60ZHEUIYyNni4K+1jrr9IP5r43+TeYHGpp3kUjeYbWtodBQAttrLgLY7mrqEEFmWs8XhhlKqxu0HSqmagGwhlgHamtdzSQexxu4e8wy32Us5vojYZGwQIYShnO1z6Af8oZQ6DSigAPCEy1JlEdmI5mHTVv60NcLqJgvkXiMI8pWBiC1GRxFCGMip30ha681KqXJA2fhDB7XWca6LlTU0N20jQMUwx9bA6CiJFa4DhxY6htgqZXQaIYQB0rPwXm2gClAD6KaUeto1kbKOdua1nNZ52KTLpn1yZipSG25ehEtHjU4ihDCIU3cOSqlfgJLADsAWf1gDk12Uy/vduEgT0y5+tLVCu9viuIXrOD6f3AR5SxqbRQhhCGcbumsBFbSWdRUyzN5Z+Cgbs22NjE6SVHA58M0Op7ZCtW5GpxFCGMDZP1n34OiEFhll9x8csBfhgC5qdJKkTCYoUBnO7jI6iRDCIM7eOeQD9imlNgExtw9qrdu6JJW3u3AETm5ktq2r0UlSVrAKbJsMdhuYzEanEUJkMmeLw3BXhshydkwFZWam7QGjk6SsQBWIuwkXwyG4jNFphBCZzNn9HFYBxwGf+K8341iIL1VKqUeUUgeVUkeUUgNTOa+jUkorpWo5mdtz2aywczqUfphIchudJmUFqzg+S9OSEFmSs0t2vwDMAH6IPxQKzE7jNWbgO6AVUAHH8NcKyZyXHXgd2Oh8bA8Wvhyun4Hq3Y1OkrrgcmD2hTM7jE4ihDCAsx3SLwMNgWtwZ+Of/Gm8pg5wRGt9VGsdC/wKtEvmvA+AT4FoJ7N4tm0/Q0A+KN3S6CQpChs4n7DBS9gVF8qa1csdjwcat1qsECLzOVscYuJ/wQOglLKQ9k70ocDJBI8j4o/dEb9eUxGtddb4zXP9LBxc6Ni3weJrdJo07bWHUdF0grT/UwshvI2zxWGVUupdIFv83tF/AHPv58Lxe0J8CbzpxLm9lVJblFJbIiMj7+eyxtoxFbQNajxjdBKn7NVh5FZRhHLB6ChCiEzm7GilgcBzwG6gD7AAmJDGa04BRRI8Lhx/7LbsQCVgpXKs31MAmKOUaqu1TrTqm9Z6HDAOoFatWh71Z+zt5hiFnRW+P3CW8nT9/CBw0NhgTthrDwOgouk4p+zBxoYRQmQqZxfeswPj4z+ctRkorZQqjqModAXu7IOptb6KY/4EAEqplcBbdxcGb1FbHSTMdI5vYjsYHcVp+3VRbFpR0XSCJfbaRscRQmQiZ9dWOkYyDc9a6xIpvUZrbVVKvQIsBszARK31XqXU+8AWrfWce8zskTqaVxOl/VnkQb9ko/HjqC5EBXXc6ChCiEyWnrWVbvMHOgN50nqR1noBjiaohMeGpnDug05m8Tj+xNDavJGFtjrcwt/oOOmyVxejjumA0TGEEJnM2UlwFxN8nNJafw20cXE2r9HCtIXs6hYz7Y2NjpJue+1hFFKXyO0YxSyEyCKcbVaqkeChCcedhHtsXeYBHjOv55TOy0Z7OaOjpNteHQYQP6RVCJFVOPsL/osEX1txLKXRJcPTeKFAbtHYtJsptubut2+DE+6MWJJ+ByGyFGdHKzV1dRBv1dS0Az8VxyKb53REJ3SVIE7ag6lskl3hhMhKnG1W6p/a81rrLzMmjvd5xLyZSJ2DrdpzVzbdqUtQVUlxECIrcbadoxbwIo7lL0KBvjj2ks4e/yGSExdNU9N2lthqY/fAJqXbdtpLUsQUCVEePDtdCJEuzvY5FAZqaK2vAyilhgPztdZuvrSowU6sJVDF8Le9RtrnurGd9vh9pE9vgzLuu2CgECLjOPvnbAgQm+BxbPwxkZojy4jRPmywJ1mp3KPs0cWxaQWn0tzCQwjhJZy9c5gMbFJK/Rn/+HHgZ9dE8iLhy9hoL0c0fkYnuS838eeQLkz5U1uNjiKEyCTOToL7COgFXI7/6KW1/tiVwTzelZMQeYBV9ipGJ8kQO+0l4dRW0B617qEQ4h6lp5c0ALimtf4GiIhfUE+kJHwZAKvsVQ0OkjF26pJw6xJcklFLQmQFzm4TOgwYAAyKP+QDTHFVKK8QvhxyhHJEh6Z9rgfYbC/r+OLf9cYGEUJkCmfvHNoDbYEbAFrr08gQ1pTZ7XBsNRRvAiij02SIIzoUAvLCiXVGRxFCZAJni0Os1loTv2y3UirQdZG8wPl9jiaY4g8YnSQDKShaH46vMTqIECITOFscfldK/QDkUkq9ACwlfRv/ZC3HVzs+h3lTcQCKNYQrJ+BqhNFJhBAulmZxUI49PH8DZgAzgbLAUK31KBdn81zH/oHcxSFXkbTP9STFGjg+n5B+ByG8XZrzHLTWWim1QGtdGfg7EzJ5NrsNjq+Fio8bnSTjFagMvtnhxBqo0tnoNEIIF3K2WWmbUsozlxXNbGd3QcxVKO55G/ukyWSGsEYQvkLmOwjh5ZwtDnWBDUqpcKXULqXUbqXULlcG81i3O2yLNTQ2h6uUaubod5D5DkJ4tVSblZRSRbXW/wKy2loawgbOB2CCz0yKq4I0+9hL1yEq1czx+chSyFvS2CxCCJdJ685hNoDW+gTwpdb6RMIP18fzLCbs1DEdYKO9vNFRXCdPCcfHkWVGJxFCuFBaxSHhDK4SrgziDSqo4+RQtzx+FdY0lWzmGK4bF210EiGEi6RVHHQKX4tk1DPtB2CDN985AJRqDnE3HaOWhBBeKa2hrFWVUtdw3EFki/+a+Mdaa53Dpek8TH3TPo7aC3Ce3EZHcYnb/Sp+xLLNz4/Zk8Yw2BoDwPFP2hgZTQiRwVK9c9Bam7XWObTW2bXWlvivbz+WwpCABSt1TftZa69kdBSXi8GXlfaqPGzeisJudBwhhAt47sbGbqaqCidIRbMmCxQHgMW22uRXV6iujhgdRQjhAlIcMkgj0x7sWnl/Z3S8FfbqxGozLcxbjI4ihHABKQ4ZpKF5D7t1ca4SZHSUTHGdANbZK9HGtBEZqyCE95HikBFirlNdHckS/Q0JzbXVp4gpUpqWhPBCLi0OSqlHlFIHlVJHlFIDk3m+v1JqX/ySHMuUUsVcmcdljq3GR9myTH/DbYvttYjRPrQ1ywZAQngblxUHpZQZ+A5oBVQAuiml7m6Q3w7U0lpXwbEk+GeuyuNShxZyTWdjs72c0UkyVRQBLLNX51HzBrBZjY4jhMhArrxzqAMc0Vof1VrHAr8C7RKeoLVeobW+Gf9wA1DYhXlcw26HQ4v5x16FuLRXQPc6c2wNCFZX4fg/RkcRQmQgVxaHUOBkgscR8cdS8hyw0IV5XOPMdog6xzJbDaOTGGKFvRpXdQDsmG50FCFEBnKLDmmlVHegFjAyhed7K6W2KKW2REZGZm64tBxcBMrECns1o5MYIgZf5tgawP65EH3V6DhCiAziyuJwCki4T2bh+GOJKKWaA4OBtlrrmOTeSGs9TmtdS2tdKzg42CVh79mB+VCkLlfIbnQSw8y0NQbrLdg72+goQogM4srisBkorZQqrpTyBboCcxKeoJSqDvyAozCcd2EW1zi7B87vhUodjU5iqB26JOQrAzumGR1FCJFBXFYctNZW4BVgMbAf+F1rvVcp9b5Sqm38aSOBIOAPpdQOpdScFN7OPe3+HUwWqNje6CQGU1DtKTi5ASIPGR1GCJEBXDq8Rmu9AFhw17GhCb5u7srru5TdDrv+cCxfHZjP6DTGq9oNlr0PO6bAw+8bnUYIcZ/cokPaIx3/B66fhipdjE7iHrKHQJlHHKOWbHFGpxFC3CcpDvdq4zgIyAtlWxudxH3U6AE3zsPhJUYnEULcp6w3aysjXDoKBxdA47fAJ5vRadxC2MD5mLGx1i83e6eO5Ln4mwfZBEgIzyTFIZ3CBs5nqGUy3c0mGi0J4/yS+UZHchs2zPxha8JL5r8owEXOktfoSEKIeyTNSumUh2s8YV7BPHt9r90O9H78ZnsQs9J0Ma8yOooQ4j5IcUinvpa5+BPLaOvjRkdxSxE6P//YKvOEZQUm2UJUCI8lxSE9rp/lafMSZtsbcVQXMjqN25pqa0aoushDpu1GRxFC3CMpDumx8hPM2PnG2sHoJG5tqb0mZ3Vuepj/NjqKEOIeSXFw1rl9sO1nfrE9zL86xOg0bs2GmWnWZjQx74KL4UbHEULcAykOzvr7PfDLLncNTppua0qsNsOGsUZHEULcAykOzji0GI4shSYDuEqQ0Wk8QiS5+dP2AGz/BaI8b01FIbI6KQ5pscbCokGQtzTUfsHoNB7le9tjYI2RuwchPJAUh7Rs/B4uhcMj/wOLr9FpPMoxXRAqPg6bxsO1M0bHEUKkgxSH1Fw/C6s+hdItofTDRqfxTM2Ggj0OFg0wOokQIh1k+YxkhA10LInxhc9YHjVF02JPS04MlGUy7kmeEtD4bVj+Aez9U/a+EMJDyJ1DCmqrA3Q0r+ZHW2tO6AJGx/FsDV6D0FowqzcclrkPQngCKQ7J8MHKRz4/EqHzMUqWybh/Fl/oPgPyl4fpXWHJEIi5bnQqIUQqpDgko495LmVMpxga15Nb+Bsdxztkyw1P/+XYMW7dKPi6Mqz+0jGaSQjhdqTP4W6nt/O6ZRZzbfVYbq9hdBrvki03tBsNtXqx/Pv+PLRsBIf/nsCbcX3ZpUveOU32gBDCeFIcEoq5DrN6c4GcDIl71ug0XiEsxY78d3jQtoOPfH7kD9/3eTOuL/Ps9TM1mxAiZdKsdJvNCjOeg4vhvBnXV2ZCZ4KV9mo8GvMRO3UJRvuOopd5odGRhBDxpDiAozDMfR0OL4bWn7HOXsnoRFnGZXLQPfZdFtpqM8znF/pZZoDWRscSIsuT4nDrCvzWHXZMgSYDoPbzRifKcmLx4ZW41/jD2ph+llkwvz/YbUbHEiJLy9p9DkeWwZzX4PoZaP051JG1k4xiw8zb1j5EkouXtkyEK/9Cp4ngn9PoaEJkSUp72C18rVq19JYtW+7vTa5GwOJ3Yd9fhNsL0j/uRXbqUhkTUNy3453Ow4K3IHdx6DoVgstm2rWVUlu11rUy7YJCuKmsdedgtzkW0lv+EWgbn8d1ZrytDTHIgnruJGxGfuqqQXxn+wb/0Y15K64vi+x1ZIirEJko6/Q5nN8PP7Zw3DGENYSXNzLa1l4Kg5vaqMvzWMxHHNGhfO/7NUMsvziWTxdCZArvLw5x0Xw1+Fliv2vIpYgDvBb7MmG7nyHs071GJxNpOENeusQOZZK1Bc9bFsKPzR1FXgjhct5bHOx2xyqgY+ryhs9MFtnr8HDMSObYGwLK6HTCSbH4MNzak96xb8CVk/B9I1j0Llw7bXQ0IbyaS/sclFKPAN8AZmCC1vqTu573AyYDNYGLwBNa6+P3dVG7HQ7Oh1WfwdldEFyep2IHsdZe+b7eVhhrib02vPIKLB0GG8fCpnFQvDEUf8CxLHhAPvANALMvWPzBNwiy5QKLn9HRhfBILhutpJQyA4eAh4EIYDPQTWu9L8E5LwFVtNZ9lVJdgfZa6ydSe9+URitVGfgb7czr6GleTEnTGY7ZQxhtbc+f9kbYvfgGKSsqos7R3byUZqbtlDKlcQfhlxOyF4BcRR1FJLgsFKgMIZUcxeQuMlpJCAdXFof6wHCtdcv4x4MAtNb/S3DO4vhz1iulLMBZIFinEqpWrVp6y8b1jrkJF4/A2d1w7B9iDq/ET1nZYS/Bj9bWLLDXxYbZJd+bcB85uEERFUkOdYMAovHFij+xBKpochFFXnWNguoShVUkYeosQSra8UJlgnxlHEUif3nIVxrylkIVqCTFQQhc26wUCpxM8DgCqJvSOVprq1LqKpAXuJDiu57dDR8EAwnqR97STLE9zCzbA+zVxZA+hazjGoHs1YGJ/ndImSaUC1QwnaCS6TgVzx6j3PmVFFYzXB1TCI/jEfMclFK9gd7xD6PUiNiDic/YGv/xW+YGc8hHasUs87lTHnfKApDvBFxYl/o5xTInihDuzZXF4RRQJMHjwvHHkjsnIr5ZKSeOjulEtNbjgHEuynlflFJb3KkZwp3yuFMWcL88QrgzV/bUbgZKK6WKK6V8ga7AnLvOmQM8E/91J2B5av0NQgghMofL7hzi+xBeARbjGMo6UWu9Vyn1PrBFaz0H+BH4RSl1BLiEo4AIIYQwmEv7HLTWC4AFdx0bmuDraKCzKzNkAndr7nKnPO6UBdwvjxBuy+NWZRVCCOF6MjtMCCFEElIchBBCJCHFQQghRBJSHIQQQiQhxUEIIUQSUhyEEEIkIcVBCCFEElIchBBCJCHFQQghRBJSHIQQQiQhxUEIIUQSUhyEEEIkIcVBCCFEElIchBBCJCHFQQghRBJSHIQQQiQhxUEIIUQSUhyEEEIkIcVBCCFEElIchBBCJOE2xUEp9YZSaq9Sao9SarpSyt/oTEIIkVW5RXFQSoUCrwG1tNaVADPQ1dhUQgiRdblFcYhnAbIppSxAAHDa4DxCCJFluUVx0FqfAj4H/gXOAFe11kuMTSWEEFmXxegAAEqp3EA7oDhwBfhDKdVdaz3lrvN6A70BAgIDa5YuUzbTswrvdODIUaKvXVZGZsiXL58OCwszMoLwYlu3br2gtQ529ny3KA5Ac+CY1joSQCk1C2gAJCoOWutxwDiAajVq6iWrNmR2TuGl6tetZXQEwsLC2LJli9ExhJdSSp1Iz/lu0ayEozmpnlIqQCmlgGbAfoMziSxEGXrPIIT7cYvioLXeCMwAtgG7ceQaZ2gokaVobXQCIdyLuzQrobUeBgwzOofImuxIdRAiIbe4cxDCaJduxBkdQQi3IsVBCMBulzsHIRJym2YlIYzk72s2OoJIp7CB85M9fvyTNpmcxDvJnYMQwLWoWKMjCOFWpDgIIYRIQoqDEIDZLD8KQiQkPxFCIJPgPFkpFcEwy880N20FGZKcYaRDWgjAZJLq4ImeMS/mPcsvmND0sizmb1sNsLcCkwwwuF9y5yAEEJLDz+gIIp2KqHO8a5nGGntl6sZ8x8i4Ljxs3gZbfzI6mleQ4iAEYJZ2JY8zxDIVKyYGxL1AJLn4ztaONbaKsHQEXDtjdDyPJ8VBCCDGZjc6gkiPiK20NG/hO+vjnCNP/EHFYOtzEHcL1o0yNJ43kD4HIYCbcVIcPMr2ydzUfvxsa5Ho8AldgPlx1am//mfqraxDLD53npPJcekjdw5CANl85EfBY8TehD2zWGivww2yJXn6V9tD5FFRPGzaakA47yE/EUIAFulz8BwH5kHMNf6wNUn26TX2SkTofDxhXpHJwbyLFAchgMu3ZFVWj7FzOuQqykZ7uWSf1piYaWtMI9Me8nAtk8N5DykOQgA2WZXVM9y6Asf+gYrt0an8+lpmq45JaRqZdmdiOO8ixUEIwCajlTzDkaVgt0LZ1DuXd+viXNTZaWLemUnBvI8UByGQtZU8xoH5EBgMhWuleprGxGp7ZRqbdqGQwn8v5CdCCMAsy2e4P2us486hzCNOLY+xylaVYHWNiuq467N5ISkOQgCBstmP+zuxBmKuQTnn5iustlcBoLFplytTeS0pDkIA0h/tAQ4tBos/FE9+COvdLpCTQ/ZQapoOuziYd5LiIARwM9ZmdASRGq3h0CJHYfANcPpl2+2lqW46jCzlnX6yfIYQwm3d3ie6pDrFMr/jDDnflCkp7B2dnO26FE+olRRT51yU0HvJnYMQwu01Ne0AYLmterpet91eCoDq6kiGZ/J2UhyEAHwt8qPgzpqZtnPAXoTT5EvX6w7rwkRp//imJZEe8hMhBBDoKz8K7io316hj2s9Se410v9aOiZ32klQ3yZ1Dekmfg4eJun6dI4cPce7cGSxmC0WKFaN0mXIoWTjuvkTFykQpd9XcvA2z0iyy1b6n12/XpehjmufY58En6SquInlSHNyc1Wpl9crlLF2yiJUrVxB+cB9aJx55kTtvPh5r156OXbpRt35DKRT3wCKT4NxWS9NmInQ+9uji9/T63fbi+FhscH4fhNbM4HTeS4qDm7p08SLjxnzLpInjuXzxAn7+2ahWux7NHmlLqXIVCSlYCLvNzrEjB9mwejm/T5/K5InjCS1SjPYdO/Fou45Uq1FTCoWTYqwylNUdBXKLB0x7mGJrDtzb/8v7dDHHF2d3S3FIBykObmjbls306NqRi5HnaNy8NY91epIGTZrj5++f5NzKNWrTtkt3bt6IYsXieSyc/UhP5ZoAACAASURBVDtjR3/D6K+/ILRoGC/0eZHuzzxH9hw5DPhOPMfNW1ZDrquU6g30BihatKghGdxZM9N2/FQci22pr6WUmggdzDWdjRxn92RgMu/nNr1wSqlcSqkZSqkDSqn9Sqn6Rmcywro1//B4q2b4+voydd4/fDl+Gk1bPppsYUgoIDCINh26MnryLJZuPcKwkWMIKRDK8MEDqFejEqtXycYnqQkK8En7JBfQWo/TWtfSWtcKDg42JIM7e8K8gpP2YDbrsvf8HhoTB3RRx52DcJrbFAfgG2CR1rocUBXYb3CeTHf1yhX6Pt+TAqGFmfzXCspWrHJP75MjZ27adn6K8b8vYNKspWTPkZMu7Vrx54zfMjix9/CXbULdz6WjNDTv5Tfbg6nu3eCMffZicG4P2GXggbPcollJKZUTaAz0BNBaxwKxRmYywqCBA7hw7gw/zfqb3HnTN547JZVr1GbyX8t5vVcXXu7di+D8ITRq/GCGvLc3kc1+MkdYCrObj3+SzGJ62yZj0yrF7UDTY78uBrFL4MpxyFPivt8vK3CXP5eKA5HAT0qp7UqpCUqpQKNDZaYtmzYya/oknnimDxWrZmynWUBgEF9OmE6x4qXo9VQXDh7Yl6Hv7w1krx83c+sKbJvMcnt1zpHnvt9unz1Bp7RwirsUBwtQAxirta4O3AAG3n2SUqq3UmqLUmrLxQsXMjujy9yIiqLv888QUqgwfd4Y5JJrZM+Rk69+/BUfXz/at2nJxvVrEz2vtebQwf388N23PPlEJ2pUKkPR/DkpXjAPdatXYvjgARwL996JRDKS1c2s/B/cuszX1k4Z8naHdGFQZikO6eAWzUpABBChtd4Y/3gGyRQHrfU4YBxAtRo1vaId4Pq1a3Tu0JZT/x7n+2lzCcruulFFhYsW5/tpc3i9V2fatmxKhSrVKV+uHGfPX+DAnp1cvHAegNAixahQpQYhhULvDJcd//1oJv80gTETJvFI68dcltEoVmlWch8nN8Gm8VDrWfauDsuQt4zBF/KWgnN7M+T9sgK3KA5a67NKqZNKqbJa64NAM8Dr2z52bNvKy32f59iRg3z07Y/UrNfI5dcsUbocvy1ez6+TvmfjmpWsW7uWHLlyUafRg9So25D6DzxEwcJJh1SeOXWSt/t2p2e3Tvz+10IaP/iQy7NmppvRxgxlFVBcnYGTm8EWA6e2wYqPIEcoNB0Mq9dn3IVCKsDp7Rn3fl7OLYpDvFeBqUopX+Ao0MvgPC5z+lQEI0YMZ87vU8iTLz9f//gbDZo0T/F8rTUrFs9lyuSJRIQfxG63kbdAKI0aNeGBZo9QpUYdTCbnWwgDAoN49uW3ePblt5x+TcHQIoz/fSFPtKzP4AFvs2r95nRd0935y05wma4gFxnqM5lW5s3wY4InijeGTj9BwP33NSSSvwLs/RNiosAvKGPf2wu5TXHQWu8A7n2miwc4FXGS998fwbyZ0wHo2rMvvfsNJHuOnCm+5vKli7zy/JMc2LaB4NCilK1RF4vFh7P/HuOXcaOYNPYrcuXLT6vHOtKmwxOUq1TNZbOis2ULoE+/QQzt34e1q1fxQJOmLrmOEbJJcchUCjtjfb+mtIrgy7hO9O/ZDcwWyFEY8pYEV/w/nL+C43PkASjs1b9qMoTbFAdvZrVa+faLT/n6i8/QdjsduvWkxwuvUqhIsVRfF3nuDD07t+Li2dM8++4nPNiuKybzf7/EbkZdY8eaZWxcOp8/pvzI9J/GUrR0ebo9/Rxt2nclMCh7hn8vTVs+iq+vH0sXL/Sq4iB9Dpmrq3kF1Uzh9It9idn2RvQvnfKdc4YJiS8O5/dJcXCCFAcXO3vmNN27dmb39s00b/M4/QZ9kGyb/t1u3bxB32c6c+XCeQaNmU6ZaklXpAwIykGDR9rT4JH23Lh+lfWL/2Ll7F/59L23GPPFx/R+9W0693geH1/fDPt+AgKDKFOhMlu3bcuw93QHWmpDpgniJgMsv7LBXp7Z9oaZd+FcYeATAOe8vjszQ3hPo7EbOnf2DG1bNSf80H7+N2oin373s1OFQWvNgDdf4cTBPbz88XfJFoa7BWbPSfNOT/PBL/MZNnE2xcpU5IsPBvF487psWL08I76dO4oWL0nEieMZ+p5G8zHLWNbM0sK0hVzqBiPjunCvi+ndE5MJgsvBeRmx5AyXFAelVJKFapRSGTPl10NER0fTqd2jnD97hlE/z6TFYx2dfu2MKT+yduEsOvTpT/VGzdJ1XaUUpavUZOCYabz9zWRA83KP9rz+8nNcuhCZzu8ieXmD83PpwvkkS4d7siBfuYnOLG3N64nQ+diqy2T+xUMqwPkstzLPPcnQnwilVFPgF8BfKbUN6K21Ph7/9BIcE92yhI+GD+HQ/t18PfF3qtWq5/Trtm9ax8gRA6naoCntnn3tvjJUbdiU8rXqM3vCN8yf/D3t/vmbPq+/Q6fuz+Hvf++bnuTKnZeYmGhu3rxJYKB3TGSXSXCZIzfXaGTazXhbGxLeNaS0rEaGy18Btk+BqEgIkoUOU5PRfy59BrTUWu9VSnUC/lZK9dBabyBT7x+NtX7tasaN+ZYnnunNAw+1dPp161Yu5a2+3ckfWpQXP/gm1aGiZ/89xqo5v7Fjxw5uXb2Ib0B2ypYpQ/ma9ajRpAX+2QIA8PXzp8vLA2jUpiO/fD6Mrz4czMSx39D92b50fKoXOXOlf7hgrjx5AbgQeZ7AwHvbgMXdXJF5DpmilXkzFmVnjq2BMQFCKjo+n9sDQd4zoMIVMrpZyVdrvRdAaz0DeBz4WSn1OOA9bRCpsFqtvNnvVQqGFuXVgSOces2pk8d5642XeLVnR0KKhDH4h98Jypk72XO11swa9xVvdWjMvMnfE339KoF5QtB2G2sXz2HMkFd5qWVNpn3zIdevXL7zukJhpRgweiqDf/idIiXL8t3I92lZtxz/G9KfC+fPpet7LBhaBICT/55I1+vcWaxVFlfKDC1Nmwm3F2S/NmjvipBKjs/nZG+HtGT0nUOcUqqA1vosQPwdRDNgHlAyg6/lliZPHE/4wX2M/H4K2eL/ek9OTHQ0a1cuYdrUn9mxZhkmk5mW3Z6j80vv3PmrPzkzxo7kr4mjKPtgO+p1709gnv9uje02G2cPbmfv4t9YMGUcS2dOo+vL79C8U487Q2DL16xP+Zr1OXlkP4t//Yk/f53MvD9/480hH9GhW0+nvsfS5Rw/YNu3bvaaFV5lVdZMYI2ltukgv9uaYFhDQmA+CCogy2g4IaPvHAYCIQkPaK0jgCbAJxl8LbcTGXmej98fSu0GjWna8tFkzzl7OoKRwwfQvHYZ3u7bg6P7dvFYz5f5cs46erw5PNXCsGnZAv6aOIryzTry0CsfJSoMACazmUIVavHwGyN54svZ5C9Vickj3+PNbq05um9nonOLlCrP80M+45PfllKqYnU+GvQ60yaOder7zJMvmJJlKzB3zhynzvcEsXGyTajLndpCgIphnb2isTkKVALZFS5NGVoctNZLgT1Kqal3Hb+qtf4oI6/ljga8/Ta3bt1kwPtfJJmlHB19izGff0DbxtX445cJVGvYlAGjp/Dt/I10eXkAeUMKpvreR/ft5PsRbxJSugqNe7+HSmPpirzFSvPYsAk83P8Lblw6z7CebZk8cig3o64nOq9gsRK8/e1kajdtxRfvD2TT2pVOfa9tOz/Fzq0b2bwxA9e+MZBJhrK63tFV2LRig72CsTlCKjlmSVuz3JYx6ZLhQ1m11jagWPwaSVnGqhXLmD9rOk/3fo3ipRIP0Ttz6iRdH32QH0d/Tv2W7fjirzW89OEoKtdrgtmSesuezWpl7cI/ef+FzvgF5aTFW19i9nHun1YpRelGreg2aj4VW3Zlye+TeKNDU7avWZboPLPFwosffktIkTDef7c/cbFp/9B06NaTkEKFef3lvsQ6cb67M7loyRGRwLFV7NbFuYbBI9xCKoE9Di4eNjaHm3PV4O6jwFql1BwcezMAoLX+0kXXM9SVy5d5te/zFCtRmudefTvRcyeOHuG5J1oTffMmb38zmaoNUx4hYY2L5eK505yP+JczJ45ybP9Otq1bzY1L58hfujKtB31HQK6k00VuXo5k75LfCd+9nbgb1yhQtBgFy9WgRP0WBOTKi19gdhq/MISyTR5jxZihfNGvJ62796bLKwOxWBxTUnz9/Onx5gg+7/cMM6ZOpFuvvql+zwGBQbz70Ve83qszo778jDcHDrmHfzn3YfeiORtuKSYKIjaz3t7K6CSOZiVwNC2FGNzE5cZcVRzC4z9MQMYv8ONGbDYbfXs/x4XIc0ya9Xei+QOXLkTSp/vj2KxWhv44kyKlyid6bUT4QXasXcGmTZu4eOIg186dQtv/a/v2z5GbguVrUrbJYIrVaoLZknhuod1mY/vsH9n063dou5XAAiWwBOTg392bObx6Pqt//Jj8NVvSvOer5CxYjJAyVek88g/WTfqMBVPGsXvPXkZ8NwlfP38gfl5EzfpM+O4LOnTriZ+/f6rfe6OmLWjxaAe++vwTOnfrTtFiYff5r2kcP4ssvOdSJzeA3Wp8fwNA3tJg9oVzu4EnjE7jtlxSHLTWIwCUUgFa65uuuIY70FrzyksvsmLxPN4c+gkVqvw3x89qtfJq76e4ejGSIeNnJCoMW1cuZtq4UZw75OgkzlmwGPnCylGqYWtyFihC9pDC5CpYjIDcwSmusHrzciSzPnqda0d3kK9qU8Ja9SZbcJE7z984c5Qz6//i3Ma5TNv2NzXaP0etzn0x+/jywAtDyFu8PCvHDmX4q8/x/phJWCw+KKVo99xrfPJSN+bOmEqn7s+l+W/Qb/CHLFs0hx9/GMOIjz+7139Kw0mrkoudWAcmC1vsBsyKvpvZAvnLw5ldRidxay4pDkqp+jhWaA8CiiqlqgJ9tNYvueJ6Rrh08SK9n+/F6mWL6PVSf5589sVEz0+dMJoD2zbSZ/hXlKhQFYAb16/y2eA3CV+3mJwFi9LouUGUqNeCoLwhyV0iWVprDq+ez6oJH2OLuUWZbkPIX7NlkiISWLAEpTq8QdHmPTg2byxbZ3zPwY2reHzwt+TIH0qF5h3RNiurfhjBjDEj6frauwBUrN2QUpVrMG70F7Tr0iPNRftCCobStOWjTJ86maEf/A+z2TP/AnfVMuci3vG1ULAat8JTvxvNNIWqO/Z20Fr+MkiBqxbe+xpoCVwE0FrvBBq76FqZKjY2lonjxtKgVmU2rF7O28M/4+W3hyY6599j4Yz98mNqN21FozaONZVuXLvCu706cmzTMuo+1Y9u386jSpseiQqDNTaGq2f/5dzhXZw5sJ2zB3dy7vBuzh3ayfEtq9g6cxyTX2vP0q/fwS9XCNX6TSCk1iNJfrFpu/3Ouke+OfJR9sn3KP/MR9yKPMlvb3Xh0r+OjriKLZ+gQosuzJs8lt0b/gEcvyTbP9+Pi2dPMfu3yU79mzzY4lGuXr7E3t2e+5eYr4xWcp24W3BqK4Rl4gqsaSlUA6KvwqWjRidxWy5bbUxrffKuX1oeP5B8wby/eG/QO0ScOEbNuo14a9gnlKlQOdE5WmuGD34Ts48PTw/4AKUUdpuN9197nssR4bQeNIai1f/bDvTm5Uj2LZ3JvtWLuHE6PFGfQ3KCipSndJeBhNRuhTL991f6tRN7ObRwGtEnt6GjozD5Z8enQDlKt3ySXKVrkq9KEwJCwtj9/WvMfK8XXT6dTs4CRWjUayCn925hzIi3+WrWCvyzBVClwYOUqVabsV9/yqMdu5EtIPXRJVVr1AFg25ZNVKlWPb3/rMLbRWx2jA4q1hBwk2VKQuObgE9tc2wuJJJwVXE4qZRqAOj4FVpfBzx2KcSbN2/yyksvMn/WdEqWrcDXE3+nUdMWyTZFbF63ip3rVvBkv/fInc9xV7Bs1hRO7dlI05c/TFQYjqxdyPIxw7DeiiJHiaoUbvok2YKL4hOYE2Uyo9Fouw2lTFgCsuOfNxTfoMTLatitsRxfMI5Tq35D+WbDP6wO5qB82KIuEhOxgz0/9MOvWC2qP/8+ASHFqNz3G3aOepHZH77CU1/+jsXPnwdfHM7sIU/z18RveeLlgSil6PbaYEY8+zg/jf2Kl95MfSRSwcJFyZsvP5s2rKPn830y4F888125EWd0BO91fC2goGg9YI3RaRyCy4PFH05vgyqdjU7jllxVHPoC3wChwCkcK7J6ZH9DTEwMnds/xraNa3nhtQE89+rb+PgkWZEccNw1fP7xMPKGFOLhLs8AcDPqOr9+N5LQSnUp91D7O+fumj+FNT9+TPai5SnTdQgBIanvCpecuJvX2Dr6DeLOHSSgQkuy1+uByee/0VLaFseNPQu5vmkqm0f2oma/7wkICaNMt8HsmziQjVO/pmGvARSqUIsyTdoy/5cfaPxoFwoWK0HpKjVp0Ko9k8Z+TcvHOlKyTPkUcyilqFmvEatWrkBr7ZHt9zExUhxc5vgaKFAZ/FPeDjfTmS1QoAqc3m50Erflqj6Hslrrp7TWIVrr/Frr7kDKv13c2OuvvcKW9asZ/vlY+vZ/N8XCALBi8VzC9+6gQ+838PH1A2Ddoj+JibpK3af63fmlefXMCdb9/Dl5KjSgyitj76kw3DhzlM1fPE/chaPkevgtcj7QO1FhAFBmH4KqtiXvYyOw37rKtjFvYou5Rd6KjSjY4HF2zvuFyHDHrlgNnn4Ti68/oz4acqe/4qk3hpItMIhBb/TFak29OaDRQy25cP4sWzdvSvf34g4CA7LUnM3ME3MdTm6Ekm64AmpoDTizE2xu0tTlZlxVHEY5ecytbdqwjj+n/8wzffvRpkPXVM/VWjPqi48pWKwkjdp0unN80eyZ5C1WlpAyVe4c2zl3MphMlOr0DiZz0ps3W2w0lw9s5NyWRVzYtZKoU4exxThGBNviYjizbjbbv+2Ljr1Jntbvka1E/VSz+RYoR65m/bFeOMbxheMACGvdB5/AnCz5/kO01gTkDqZWl5f4d9tqtq9eCkDOPPnoOeBDwvfu4NtPhqV6jcbNW+Hnn43pUyalep678sS7HY9wfI2jv6Fk+jatcoWwgfMTffRbbYK4mzwyZLzR0dxSRm/2Ux9oAAQrpfoneCoH4HFjHEcMe4+8wSG88No7aZ67ZsUS/j28nxfeG3lnSYybUdc4d2gnNTo8n+iXT/jWNeQqVQO/nElnO18N38GuH/qDLemSFMrih7bGAOATUpZczfphyZ7fqe/Fv1hNAio8zOk1MynUsAPZgotQpPkzHJ39NRG71lOkagMqt36K/ctmMv6T9/iqdkP8swVQr0VbDu7YzNQJoyldriKPdXoy2ffPniMnj7TrxIzfpvPeiI/JlTv5JcfdlazK6iLhyx37Nhd1fsOrzLJVlwaglumgwUncU4bv54BjboMFx8zo2x/XgE6pvM7thB8+xJb1q3ny2RfTHK2jtebrzz4gf2hRGrbucOd4xJGDaLuNkDLVEp1vjb6Bb47kd009u3EuSinytB5CcNfR5Os4klzN+5O9zlMElH+YoFpdyfPocPK2+yjZwqDtNs7PG8nZ397iyqqx2GOi7jwXVLMLKBOn1/0JQMH6bfHNkZfV074HwGzxoUmfYVw/f4o/x31153VP9R9KxTqNeH/AK6xckvKOXd169iX61k3Gj/W4m0Sio6XPwSXCl0NYI7D4GZ0kiZM6P2d0HuqYDhgdxS1l9Kqsq+JnR9eL/zxSaz1Ca/2l1tqjVrmaM3smQJrNSQCb1//D8QO7affsq1gSLIp3/tS/AOQqlLhPIVu+wkSdOpTse0XdUmhrDL6Fq2HJWRCffCXIVrIhQdU7kKNBL7LX7IxfaOUUm0FiTu7AdmoDRF/h1oGl3Ng1985z5oDc+IfV5uyWJWitMVl8KdSoE1cOb+FyhGO8d6EKtSjfrCMLpo7n2IHdAFgsPvQbOZ7i5asw4OWe/LNsUbLXLl2+Ek1bPsrY0d9wPp0bCBnNz0/2kM5wl0/AxSNQ8iGjk6RAsdle1lEcZG2tJFzV51BIKbUPOACglKqqlBrjomu5xPLlyylboTLBaSylDfDzT+MJypmL+o88nuh4TPQtAHz8E+/RUKJqLW6cOkz0pbNJ3qtwlZoAXF8/CW1L/1+zOtbRN+Fb51VMuUty48CqRM/7hVbBfvMK0RdPARBSuzWYzBxc+dedc+o/8xYBufLy1aDXiIt1NGNlCwzinW8nU6RUWd7q0z3FAvHqgBFER99iyOB3053dSLkDUx5oIO7RnhmOz6VbGJsjFZvs5SigLsPlY0ZHcTsyQzoF4Qf3U65ytTTPu371CltXLaF+y8fvLGB3W0CQY83B6OtXEx2v9Eg3TD6+HJz+IfqukRL5a7YkoHwLbuyex/lfXyFq+yxiTu/BFnUxzQlyAKZsOQCwHluKPeoc+CZuEjPnCgUg5sp5AHxz5CVXyersX734zjn+QTl58MURXDp5hFnj/2teCsyRi4FjplO0THneefFpNq5ZkeT6xUqU4slnX+Sv335h4/q1aeZ1F9LlkMHsdtj2C4Q94NaTzDba4wdRnvCOfUkykquKA1rrk3cd8pgZ0jabjYsXzlOgYOE0z13/zzLiYmNo2Kp9kucKhZUCIDI88a5TOfKH0qT3UK4d3cH+KcOxJ9h0RJlM1Hx+KJX6fIUlRwjXN03l0txhnJ/am7M/defSwo+J/jflsdm+oVVQOYthO7kO4qLIWaNdoueV2fEXsj02+s6xPBUbcivyX66fP3XnWLGaTSjXrAPzfh7Lsf3/LYsRmD0nA0ZNoUDR4vTv053j4UlbC/v0G0ShwkV58YVeXLt6Ncnz7uhGjMf87+ketHYMAz20BG5cSPr8iTWOv8ar98j8bOlwRBfisg6CE57zh0xmcVVxSDRDWin1Fh40Q/r2OP+0dlsDOLB3FxYfX8Li91VOqGiZCuQoUITdC6clea5c03Y07DWAi7tWsmf828RGXU70fO4ytan75g/UGfonlXp/RalOb1Gw7qPEXTrB5YUfcmXV2DsjlxJSShHS+TPydfmavB0+xb/UA4met0VFAiTqEM9RzJH9fHjifXUb9nyHbDnz8u3wd7Db7XeOB+XMzZtfT8LHx5fXez+VZHOgbAGBfPjNBM6eOknfPs/f+fd0Z2aTDGVNl3n94IfGMK0zFz6rTq93P7wzRBSATePBLydUaGtszjRoTI67h2P/SL/DXVxVHPoCL/PfDOlq8Y89gtlsJmeu3ESePZ3muTdvRJEtMChRR/RtSik69nyRyPC9HF6zIMnzVR97hode/R/Xju9m+5fPceXItiTn+OUMJnfZ2hSs/zilOvSn/nu/U7jpk9w6sIxLiz5JvkCYLfjkLoJvcKkkHdcxJ3egfLIRUCDszjH/vIUAuHEpcSeyX2AO6nXvT2T4XrasSNzHkK9AKM+/N5KI8IP8+vMPSb+3mnV55Z1hLFvwFx+NcP+NgAL9jBlprZTqrZTaopTaEhkZaUiGdNv1B2ydxGTrw/SIHUikzsVPviPpb/kdE3beG/w67J/D1zeaEfbe8kRzC9zRantluHoSLnjUmBmXc0lx0FpfuHuGtNb6oiuu5QpKKUqVrcju7VvSPDcwKDs3o64TG9/5fLcmj3clpGw1Vowewul9Sd+vXNN2dPpkGmYfX3aPfY0jMz8nLupKitczWXwp/uhLlOn6LrGndnNp8adJ+i1SYrtxkejwdfgXr4vJ8l8xM/k6+krikvkeyjR+lJwFizLzl4lJnqvZpAWV6zVm4tiviYtL2nneo/drdHyyF6O+HMnYUV8led6dWG3G/NWotR6nta6lta4VHBxsSIZ0uXUF5r0BReszwvo0q+1VeDz2fX61Pshrltns9XuWEZaf+dtWk2+tHdJ+Pzewyh4/QTV8WeonZjEuKQ5KqeJKqS+VUrOUUnNuf7jiWq7Stl1bDu3fzZGD+1I9r1rt+tiscexcvzLZ5y0WH4aNnkRQcEHmvd+bY5uS/g8YXKIC3b+dTeU23TmzYS5bPunKv39PwnorKpl3dAip3YrSXQYQG7GTq/98n2bTjbbbuLpmAlrbqNgp8d4TcfFNWv7ZcyV5nclspmT9lpzZv5WbUdeTPN+809Ncu3SBTWtWJnlOKcWAD76gWau2DB88gE8/HO62TUzRcdLn4JQ9MyD2OrT8GFv8vNYYfBlofYGXYl/jF9vDjLU9Rr+4l7C7rkszQ0Xo/JC3FByR4pCQq/7rzQaO41gy44sEH6lSSpmVUtuVUvNclMtpXZ96Bv9sAfwyLvUJXfUbNyNPSEGW/pHy3gc5cuflo59mkadYaRZ99jrbZ09M8kvSxz+AB557l65fziJHiWqcWDSBje+35/CMkdw4m/wwuwJ1H6Voi2e5dWgF19b+mOIvXm2zcmXFaGKOb6JEm75kyxua6PmoCMcM0TxFSiX7+rzFymC3WblyIenchYp1HX0a+/fsSPa1ZrOZ/42eRLsnevDlZx/z/LO9iI1NOvvbaLJ8hpO2TXYsolfo7qXZFQvs9fjY+hQjrV25QbZkX+62SjZzLPURF532uVmEq4pDtNb6W631iviJcau01qvSfpn7LO2dK3dunnn2BRb8+WuqzUsWi4VnXniFvZvWsHNt0qGdt+XMk4+PJ86gRN3mrJ/8OVtnJm2nB8hTtDRdPxhH589nEFy1Kec3L2TbyB7smzSYW5F3DwCDoi16EdqkKzf3LuTK0i+w3fivY1trOzEnt3Nh5ltEH/mHsNZ9CG2SdM/cywc3YfLNRv5SSTvV4b+OeWsyTUf+2QIIypmb86n0z5jNZob871t6vz6QeTOn0ePJrkRHu9cPoXvez7iH2/0FbQaNhjM7ee9kTcIGJe1D82ilmoH1loxaSsBVxeEbpdQwpVR9pVSN2x+pvUApVRhoA0xwUaZ0e3vQewQXKMSwN/tyI5kmldu69HiBQmGlmPTZkDsTIXqBhgAAIABJREFU35Ljny2AYd+Mp0yTx9g07VsOrPgrxXODS1Sg46DPeWbCCmp1eZHLBzexdWQPzqxP/BqlFMUfe5mw1n2IPr6Z87++xMW5w7i08CPOT+nDpQUfov/f3nmHN1W9cfxz0nRCW2gpu6UM2XsUZFimoCwR/DGUKaIMkSWCskWkbBUQkI0yZAvILiBDQYassvcoe7R0Nzm/P1K0kHTSNKPn8zx5muSee+63yc197znnHXHRlO42Ht8Gxm6F+vg4HhzfjXfpmjiYWFQHeBpqiPT2ye9rtE2v1xMdGUH2hJiOpNBoNHzcfyifj5rA7m0b+aD9/6xqislJq0YOKdHaYS8x0pH1upqWlpLx+NcBrSucNx3cmRUxl3EoB3wEjOe/KaVJKewzDRgM6FNol2m4e3jw408LuHH1EqMG9UzyYubk7MzIb6dx/9Z1Ni2elWyfGo2Gr4K+J0+Jihz8ZRrxMcnfQbt65CSg3ad0+nELOV6rwsVVE7m65UX7KYTAt0FHqg5eQr7qzZFxUegiHuNVrDwlPxhN9WHL8S5T22T/j0L2Ex/5lIBmSRc8CT17jBz5/XHNlt1o27Xzp4mPi6VoidLJ/h/PadflYwYMG8fenVtYueznVO2TGcTFW4+hsk4k9TXH2KcvSxjG54HN4+RmSCt+9nfl0pqAuYzDe0ARKWWglLJewiPJBCtCiGbAPSnlkeQ6Tez29/CBicAbM1CrTiAjx44neMsGfvp+QpLtqr5eh4CGzdi0ZBbhTx4n2Q7AQavlg08+I+LRXW6f/jtVOtxy+tD265/IE9CUG9sXcveQ8bDe1ceXYu/2p8aQRbz+5RJKdR6LT6UGODgmnfTs3tFtOHnkwreC6fq+el08oWeOULmGaeNyaOcmhEZD9dqpz9ffvltPSpatwPQfvkv1PuYmNt5q7kmskiIiFH/NXXbpU84aYLOUeBvCbsKdk5ZWYhWYyzicAoxdX5KmFtBCCHEVWA7UF0IY3VYmdvvzzmU6q6k5+Lj3ZzR9tz2zp44jeEvSTleDBg8jJiqS7b8uTLHP/IUNi7+RT1Jv5DQOWlp9/i05XqvChdWTiLh9MdX7mkIfH8vjswcpXutNNA6m/fzvXz5DXFQEpasZTyXExcawZ91yKtdpSK7ceVJ9XI1GQ9mKVbl68bzVTC3pdMo4JEd9jSEqP1hnxzXCizcBBJyzs/WUdGIu45ADOCuE2JoaV1Yp5VApZUEppT/QDghOqB5nFQgh+HH2HMpUqMLoz/sQevO6yXZFi5eifM267F6/DL0uedfIhwkLuG450mbkNA5aWn31PVrX7Jxb9g36+PSnmo4Lf4w+LoZc/iWS1nnNkD22cKlyRtsO7fydsMcP6dItbXWjb1y9xLYNqylfJcBqvIQctbbhdmkp6muOcVbvy20y76Ys08nuA74BcNbizpJWgbl+ESOBVsA40uDKas04OzuzYMlSpNQz7qv+Sd7xvv9BVx7dDeXkX38k29/1CwanrFxF0l491dUjJw16jSLi9gVu7Vme5v3/JeHCHBcdmWSTiIeGzLE++YwXo/esX04eX39q1EldSuYLZ07xZd8Pad2gGjHR0Uyaaj3TSoqkyU4k1TTn7HpK6blH1tjLxeDOSeoMnW+1Ed2ZhbkipPeYeqRy391Symbm0PWqFPIvzJBhoziwZwd/7Nhssk1gw7dxz+FF8JrkF1tDr13CObsHrp7e6dJSpHpDvMvX5drW+USEXk5XH845cuOWryjHt69F6k1Pq0i9HoQwyjP19NEDzhz9ixat2qJJIQfV0yePGDO4N+3eqsW+4K306NWXA0dPUbJUmXTpNgdq5JA01TVncBQ6/tCXT7mxjbNFXw2AJprUrQXaM+aKkK4hhPhbCPFMCBErhNAJIcLMcazMpluPnvj6F2H2tG9Njh4cnZxo26k7R/Zs48bFZEI2pESj0b7StEqL/mNxcHbjwsoJSV7cU6JgYDue3TzPqS3LTG53yuYOUhL5UtrxCycOI/V6Xg9Mvjbw5QtnadekFhtXL6P3ZwM4evoio74JoqCvX7r0mosolZU1SWprThElnTiiL25pKWbnpszNSb0/bzkcsrQUi2Ou26XpQHvgAuAKdAdmmOlYmYpWq2XA50M4d/oEf+4xHW7foVtPXLO5s2TSqBeymSYmh08eosIfp2lB+mVcPb0I7D6U8GunuL1vVbr6yF21CZ7FqvDXih+JjzVO4ufuY0jKd+/2iwF4t68YFsNfK5n03f+ZU//wYZvG6HQ6NgfvZ8TX4622trTWwTrWPqyRWppTHNKXJJasURBpsy6AypqL5MVm0sGZBXPWc7gIOEgpdVLKBUATcx0rs2nTtgN58hVgwcwpJrd75vBi4PBvCDl8gG3LjRPWAVRv2Ayk5MSmV/P1Lx7YHK/SNbm6aRZRD26meX8hBH6NOhMX/ogLe43nWHMWLALArcsvZqwMe/QAZ1c33EzEPgA8vH+PAd3b45bdnc07/6BCpWRjIC2Oh6sqE2qSsFCKa26xT286et4e2aIPAKCJQ9aeWjKXcYgUQjgB/wghJggh+pvxWJmOk5MTn/YbyNFD+zl0wPRSyjttO1El8E2WfjeWM0eMq0zl9y9G8cDmHFs7j7vnj6dbixCC5gPGIRy0XFw1KV2uoZ5FK+Ho7mUya6xnXj+ERsOd6y+ua0RFRvxb6e5lpJR89dmHPH3ymF9WrKaQf+E0a8psXLSWSdlt9VwxnN8HspBxuCzzc1bvm+Wnlsx1we6Y0HcfIALwBVqb6VgWoWPX7uTOm58fxo80OXUkhGDyD3PJU9Cf7wb3IPSa8aLxwFHfkt07Dxu//phbqQyGM0U2r9zU6jSQJxcOc+9I2sP/hRA4ZsvB3VvG+ZEcHJ1wy+HDo7uhL7wfFxONo5Pp4LptG1bz94E/GBs0mbLlbcPDxUrCLayPy7t5JLMTIq1rjcjcbNYFUE2cg3DjZJNZhQw3DkIIB2CclDJaShkmpRwtpRyQMM1kN7i4uDByzDeEnDjG6l9MTx25e3gya8lqNBoHJvfvQviTRy9sz+buyZh5q3DLmYsNoz/kz5+nEBcVkS49ZRq3xb1QWS7/NoPY8Ecp75CIyHvXibx7heJVapjc7uDoRNxL6xEx0VE4u7oZtY2Li2PGxDEUL1WO9zt1TZMOSxKTQlxKlkRKuBTMPn05pP0M/FPF7/rqaISEsxssLcViZPg3LqXUAYUSppXsmtZtOxBQK5AfgkZx57bp+f6CfoWZNncZD+/cZuqg7kYXWZ/8voxfvJ7Xajfl2Jq5/NyrCcc3LjG5OJwcQqOhaf9v0MdEcu6XMUh96i52MY/vEjJ/CFpXD0rWe8dou14Xz7OHd/DKne+F98OfPCK7p/Hi8vaNa7h14xojRn+NQxJR19bIo4j0BxPaLfdC4NldQ6W0LMYFWYCL+vxwep2lpVgMc90OXAb2CyGGCyEGPH+Y6VgWQwjB9B/nEB8fz5SvhybZrkKV6oyZ/CPn//mbxRNHGm3P5pGD4ZOmM2rBerx8i7F//rf83PNNTm9dkSYXVS+/13ijx3CeXDjMhZUTk60Qp4+L4eaupRyZ1InYsPs0/2o62XPlNWp3/dg+9PFxFC3z4vTQg9CbFPYznmrY8tsq8hf0o2Hjt1Kt2xrQWEmktlVxKRiAvbqsZxwM9SkCDCm8I7Km15K5jMMlYGNC/+6JHnZHIf/C9P98CDs3/8ah/buTbPdm89Z07TWAXWt/YdfapSbbFCtXmaCFq/hy1go88/mxZ/Zo1o3oTNjd1HshlW7YmiptPuHuoY2cnDOQJxeOIHXxSCmJDX/Mw5D9XFwzhUNj23Bl40w8/MvRbupa8pWqYtRXdPgT9i8IwjOfH5UDG/37ftjjhzy6G2rkxhoVGcHf+/fQvGUrq0mLkVqcHbPWtEmquBQMPiW5Q/oCNW2drbpqIPVw3nTAq71jFv89KeVoc/RrrfTqO4DZM39g5ZK5BNSqm2S7ngOHcfjoYRZPHEHRspXwe8106ozSVWsyYdFa/tjwK4smjWJF/3eo1XUIpRq8axSpbIrqHfrinrsAe+cHcXLWZwAIrRMy3lCBTaN1ImfpmtRu3ZkC5aqb7CPq6SM2jv2EZw9CGTrjF7SJaj0c+2M7ANVqvvHCPscO/UlsbAz1G76ZokZrQy1Iv0RcNFw7AFW7gXGNqSzBaekPnn5wZgNUsppUb5mGWYyDEMIHQ22GMoDL8/eTS9ttyzg7O9PinXdZudz0iOA5Dg4OTP5hHu81qcmPw/syZvHGJD1+hBAEtmhLmWq1mDCkL7t/HEHIjpUEtO2Db6XaKd6Zl27YmuJ1mnLl7108vnmJ+JgosufKi3ehEuR5rTxaZ5ck971/KYTNQZ8SFfaIfhPnULLyfwvVer2enat/JnfBQpQs++JU05GD+3DQagl43XT6b2tGo7GtkY7ZuboX4qMN5TN3p239y34QUKoZ/D0XYsLB2S4nP5LEXGPpX4CzQGFgNIZ60nYdUeLtnYvIiGfoUvB68fbJzeiJM7hx8Szr5qaceC5XvoKMX7CKT0ZPI+LRfTaO/Zg1Q9pz6+TBFPfVOrvwWu23CGjXh5qdP6d8044UKBuQrGG4uH8za77sgJSSkXNXU6n2i+kx9qxfzuWQ4/T87AsjA3XiyCFKlimPm5uxF5O1Yy2pw62GsxvBKTsUrmNpJZalVHPQxcKFbZZWkumYyzh4SynnAXEJSfe6AXY5anjO4aPHKOBbKMUkdAB16jemdtM2bFw8i1uXz6fYXqPRULtpa2Zs3M+HwyYQ8fge60d2ZdeM4el2fTXF8Q2L2DZ5ILmLlWXi8i0UKV3hhe0XTx5l8cQRlAmoTbPW7V/YJqXk3JmTBFQLyDA9mYmjg1pz+Be9Hs5thmINQZt0oagsgW91cPM2VIjLYpjrF/HcLzBUCNFUCFEJ8DLTsSzOzRvX+fOPndRp8FaqF2JHjh6Pa7ZsLJo4ItV3rVpHJ+q9057v1++leZfenAlew7rhnYl+9jTlnVMgZMdq9i8IokiNN/lm7go8cr64CHnx5FGC+nxATp88fPfjIiMjGHrzOhHhYZQuZ5uZO3V6NXL4l9tH4dldKNnU0kosj8bBUATo4nbQZS13Z3MZh7FCCE9gIDAImAv0N9OxLM7oUaMA+OCjPqnexyuXDz37f0nI3/s5vn9Xmo7n5OxC2z5DGDh1AQ+vX2DD6I9eaQRx6+RB9swaiW/FWoyYNgunl6adLoccZ3zvDnh4ebNg5WZyehsXfDl7+gQAZcrapnFwUGsO/3F2I2i08FqjlNtmBUq8BdFP4bpxGhx7JkONgxDCRQjRD0OSvXbA2YT60VWklEnX17Rhjh05zG8rf6Zdl4/JV8C4IE5ytH6/G7kL+LFqVvpyIlWq3YB+E2Zz//Jpds8ala4+op4+Inj6V3jk8WXk9/PQal/MvPngzi0m9++Kew4vFq3aQt78BU32E3LiKA5aLaXL2qZPfFSsipAGDG5bp9aAfx1wtc4MuplOkXrg4GyYastCZPTIYRFQFTgJvIWNV39LCSklXw0ZjFcuH7p/OjjN+zs6OtKz3xCunj3J0QT30LRS+Y1GvPfJIC7s3cTpLWmrCielZPesUUQ8vs+A8dNxcctm1Gbp1K+JiYrkx8Wr8cmTz0QvBo4fPkjxUmVxdXVN8/9gDcSnsx6G3XH9T3hyDSq0T7ltVsE5OxQJNNSWzkKOCxltHEpLKT+QUs4G2gB27epwYN8fHDm4j+6fDia7u0e6+ni7VVtyFyzEmtlTkqz9kBLNu/bBr/Ib7FvwLaFnjqZ6v3/WzefKwR38r9dgowhogBsXz3Jo5yY6du9D4WJJ15mOeBbOiWOHaNAg+cI/1oxP9iy+8Pqc48sMXkqlrLIYY6bzvHzoVyEF4fFVGn45J8uUD81o4/Dvio2UMuncDXbC3Llzye7uyTttO6W7D61WS9/Ph3Pt/GkObk9fki+NRsOXE6fj7lOALUF9eXAlmQp0GCKf984bx59LJlO0ZhPefv8jk+3+2r4BodHQtnOPZPvbu3Mr8XFxNGz8drr0WwNateYAcVGGXEKlW4KT8SgyK7NTVwmABppjFlaSeWS0cagghAhLeIQD5Z8/t5cyoYk5uHcXgY3ewtkl6biB1NC4eWsKFi3BypkTiI2JTlcf2T1zMmz6YjRaR1YPac+hZT/w6MZF4mNjiIuK4NH1C5zZuZqtE/ux+KP6nNz0M+Xefp+RU2ehSSJB3okDuyheoarJBejnSCn5Zd50CvgWIqBGzXRptwbUtBIGwxATpqaUTHAHb07rC9HAIfUjc1snQyOkpZS2k4bzFYmOjubhg3v4+hd95b40Gg1fjg6i1wfvsHHRj7zbI32OXfkKFWHC8i1MGjaIw6tmcXjlj0Zt3HL6ENjiPRq26YRvsZJJ9hUdGcG18yF07Zm8lu0b1xBy4hhTZ8yxqSysL5PVE+/5D9nIeqcJuFGARrOfAllj6iQt7NBXpo/DOnIQbmkpmYKqjZhOnJyccHZxJfzpkwzpr3rtetR4swW/LZjO641bkq9QkXT14+mVi69nLuTh3VBO/bWHJw/v4+CgJYdPHgqXKke+QkVTFah34cQR9DodlQKSHg08uHeX8cMHUqZCZd5r93669FoLWds0QEVxiQqaywyL64r6NEwTrKvEZ9q11NUcx+CMad8o45BONBoNJcuU58CeHfT7amyqLrgpMWrsRN6tv5s5owcybM5KHLTp/3q88+QjsGX6T+DjB3ahdXSifGXTEc8x0dF8/skHREdHM3veQhwdbbv4vC7rOKGYpLN2K+HSlbW62paWYrWckEW4K3PQyMG4nK49onIGvAI9PunJlYvn2PF7xhQE8cmdl6FjJ3PhxGE2LZmVIX2mh/j4OA7u2Ej51wPJlkSd6OkTRnPi6CFm/rSA14onPT1lK+izkIuiEeF3aKr5i1W6N4jANl2RMwOJhu26KoaRQ1yUpeWYHWUcXoF3Wv+PUuUqEjRiEPfv3cmQPt9q+R4BDZuxetZkLp60zOLX7nXLeHzvDp26mPZi2r5pLUvnz6Rt5x40a/luJqszDxFZOQju73lo0bNQ19jSSqyebfqqZBMxcHm3paWYHWUcXgGtVsuc+YuIioxk4EftiYp89SR4QggmTJ6BV558fPfFxzx+kLkFzi+HHGfp1K8pE1Cb2vWM6zJcvXSBUYN6Ua5SNSZNnpKp2sxJdFwWNQ7xMXB4PsH6ilyTxpUAFS/yp74MYdLNUOPBzlHG4RUpXqIUcxb+zJmT/zCkT1fi4l49OZe7Zw6+n7uMyPAwpgzoRuQz83sBSyn5a/sGgvq8j6e3D9NmLjRKIhge9pQvenfG2cWFJct+xcnJfsqEuzlZZvlNCNFDCHFYCHH4/v37mS/g9FqIfMACXZPMP7YNEoeWYH1FQ7R0MmV47QFlHDKAJm83J2jqdPYFb2Vony4ZYiCKly7H+OkLuH4uhKDe7/Ps6eMMUGrM4wd3CV7zCyM6NWX60F7k9S3MT8t+wyuXzwvtpJSM/rwXVy6e46cFP5MvfwGz6LEUlkq8J6WcI6WsKqWs6uPjk/IOGc3hBeBdjP36spl/bBtlk64GRD2GSzstLcWsKOOQQXTq2p2xQVPYtXUjYwb3TrHoT2p4o0ETJs5awrXzIQzv1IwrZ05kgFJDDMO2FQsZ3e0dPm1SlfnjhhAbE8PQsVNYun4nvibcaGdMHMOurRsZMWYcgfUbZogOa+LJs1hLS8h87p2BG39BlS4o99XUs1tfEVy9DKlG7BhlHDKQj3r2YeiIMfy+dgXjvuqXIdXFAhu9zdwVv6OPj2d0t1asmjWJmOj0e0oc27uD/i1qsnjicGJjYug5cBjLtxxg/c5DtPngQ7Qm3Gd/+/VnFsycwrvtu/Bx789e5d+xWhwds+BP4fACcHCCCh0srcSmiEML5doYCgBFZUyckzViFXEOQghfYDGQB5DAHCllyjU0rZB+g4YQGRnBd5OCyJOvID0+++KV+yxXuRorNu9jxJcDWDf3O/b8toJW3ftRp1mbJGtQv4yUkk2LZ7Fi+rcUKlGW7+etoHyVlKu2/bFjM2OH9qV6nXp8P31GqosZ2Ro5XG07TiO1PE8a50wsh5yXsEdfhb5f/2VhVTZIhXZwaA6cXgNVu1lajVmwltuleGCglLI0UAPoLYQobWFN6WbIsNE0a92B2VPHEbwlY8pY5PTy5odZi5j762Zy5S3A/HFD6Nf8dVbPnsLDu6HJ7qvX6/llymiW/zCO6g2b8fPabakyDH/tDWZwr06ULFuBpctX2XygW3JktSqh9TXH8BSRrNQFWlqKbZK/MuQuAwfnGMqq2iFW8ZOQUoZKKY8mPA8HzgA2u+Kp0WiYOWs2ZSpUYXj/jzl9/EiG9V0poCbL1u9k5s/r8C9ZjnVzp9GveQ2+7dWe7SsXEXrt8r+pv+PjYjl1aB/ffPweW5bNo33XnvwwezGurm4pHuePHZvp/2E7/IsUZ/X638nubjoYzl4QWWzOvbXDH9yROdVCdHoRAmp9BvfPwPktllZjFqxiWikxQgh/oBJw0LJKXg1nZ2eWr15H47q16PdhW2Yt3UDR4qUypG8hBNVr16N67XrcvH6FDauWsnHdShYFDQMMZUTd3D2IDA8jNiYaD69cDA/6gZb/65iqaaE1SxcwfvhASpatwMp1G8npZbflv/8lPgvVkPbmKXU1x5mra4reOu4PbZOyrWHXWNg3xVBK1M6mXK3KOAghsgOrgX5SSiPnfiFED6AHQEFfv0xWl3Zy587Dr+s20rJJQzq1rM+AYd/wTrvOGZq9tKBfYXoO+IpP+n/JjauXOXJwH1cunCMiIpxs2dypWO11Xn+jPq4mqry9TFRUJFPGDGXNsoXUDGzIkqUr7H7E8JyslD6jhcMBtELPap1d1+IyPw5aqNkXfh9kqLtdqrmlFWUoVmMchBCOGAzDL1LKNabaSCnnAHMAKlauYhO/5teKlyR4/yG6de7IuK/6s2j2d7zR4C3KVKxCnrz50Tg4EPb0CXdu3eDKxXPcvHaFh/fvotdLPHLkxL9IMSpVr8XrbzQgR86k7+CFEPgVLopf4fSlEA85cZQRAz7hysVz9Ok/iC9HfG3TKbjTSmQWipB+x2E/p/T+XJCm64Er0kCVLnBkIfw+GAoHgkv6KkJaI1ZhHIRhrmMecEZKaT85GRLImy8/m7bu4PcN65gzezZrli5g2QLjWgvZ3D3wLVQYPz9fHBwcCL1zj60b1rB66QK0jo7Uqvsm7bp+TLXX38gwr6GIZ+HM+W48S+fNJFfuvPy6fjOB9Wy33Gd6ySprDkXEbSpoLvN1nG2nWLc0iUuFVhD/Y63TSFaM7cTQ+I+4Or6pBZVlHFZhHIBaQEfgpBDin4T3vpRS/m5BTRmKEIKmLVrRtEUrYmJiuHb1MqG3byP1etw9PCno60vuPHmNLvo6nY5/jh5hw7rVrFj2M3u2b6JMhSp07zuYOvUbp9tI6HQ6Nq1exszJY7l/N5R323chaMJEPDw9M+LftTmcs0icQ0uH/eilYIPOdqv2WRvHZTFm6ZrTS/sbx2VRwD6Mg8iIQC1LULFyFbltT9byz46OjubXpUuYOimI2zevU6JMebr07E+9xs1T7Wb6LDyMLetXsnT+TK5dvkiZClWYMHkaVQOqm1m9dVOsTHnCrp+x6PChatWq8vBhM9YK0Ou5Pqo412QeOsZ9ab7jZEE06JnvOJGamlM4dVkPha1vPUcIcURKWTW17a1l5KBIBS4uLnTq9hHtO3Zh9a/LmBQ0jqF9uuKdKzd132xK1ZpvUKJ0eXLnzYeLqxvxcXE8enif61cucS7kBIf/3MvBvbuIjY2hdPlKzFuynKYtWtltYFtacHPOAusr1//ET3OfabGtLa3E7tCjoW9cH1Y5jaL48g7QdTPktW03YTVysGF0Oh3B27eyYOEC/tyzk8iIZ8m29/UvQuMmb9OqTVuqVAtQRiERBYuUIvb+RfseOazrRfixNQTEzCAKF/MdJwuTj4f86fOtwa31o13gnsfSkv5FjRyyEA4ODjRq8jaNmrxNbGwsZ06f4kzIKe7dvUNsTAwOWi3euXzw8ytE6bLlyJ1H5etPCgd7X3OIeQan17FJV10ZBjMSijd0WA7zm8DyDtBlEzja5uetjIOd4OTkRIVKlalQqbKlpdgkrs52/lMIWQ9xEazSvWFpJXaP/3c3aazpwexb01gwuhOj4zsD2JwXk53fLikUqcPJ3pMr/T0XchXnsCxhaSVZgq36AObFv0VX7VbqaY5ZWk66sPNfhEKROnLac1bWm4fh9lEI6IGq25B5BMW3I0RfiAmOc/Ag+fVAa0QZB4UCiIq34wjpQ3PAyd2QZlqRacTiyOdxPfAijCHa5ZaWk2aUcVAoAFetnbqyPr0Fp9ZAxQ7gnDXyZFkTp2Vh5uveooM2GK7blnelMg4KBRBnpzn52TcVkPB6b0srybJMjW/DbellSNCnt50RqjIOCgXwNDre0hIynrDbcHSRYdSQs5Cl1WRZInHhm7gP4M5JQ5I+G0EZB4UCiIqxnTu6VLNnAkg91BloaSVZnk366uBfB4K/hoiHlpaTKpRxUCiwuzotNB06A/3hhcyPbYh/0Gn8h2x6IZOoIrMR8PZEiAmHnaMsLSZVKOOgUAB6e6oEp9czynEhj8nOtHiVR8lqyF0KavSEo4vhxiFLq0kRZRwUCsDHw9nSEjKOv3+imuY8QfHtCCPlCoCKTCTwC/AoCOt7Q1y0pdUkizIOCgV25Mp6/zxsH0GwriK/6upaWo3iZZzdocX38OC8of60FWPnCWUUitRhF66s0WHwaydwdOOLZyoa2tpIvObzjbYB7fdPp/tuZ4L1la0y75IaOSgUgIOtr0jrdbCmh+GO9L2F3CeHpRUpkmFMfEdCZCGmOc6giLhtaTkmUcZBocDG02fodbD2EzjT+EcMAAAI1klEQVS/Gd4KgiKBllakSIEYnPgkrj9xaPnFaRw8vGRpSUYo46BQADHxNuqtFBsBq7rCyV+h/nAI+MjSihSp5Kb04f3Yr3AmFhY2NSRItCKUcVAogDid7a05tBj6PWfHVkd3+jfGxr2P/++lVDyDjXFW+tEudjg4OBkKBO2bBro4S8sClHFQKADQ2UqcQ1wUXAqGlV34zXk43iKMLnFfMFdnfQuaitRxXvpCj91QvDHsGAk/1oTjKyxuJJS3kkIBuDhaiSurXg93T8Ltf+DhRYi4b/BCigmDZ3fh0WXQx4OLJ7PimzM9viXPcLO0asUr4j/mT6ADDTQlGHxvBSXW9uDhmoF4V2kFvjXAqwg4ZTNMI4bfZtKyzRTW3CEvj/AQEUTjxAPpyVm9H/27dQS/GuDo+kqahJQ2csf0EhUrV5Hb9thWClyF9VKlWmVunD1pUZelIvlyyoM9suMjwgCIkY7cx5MwmY1nuPBAenJF5uUffTH+0JcnBidLylWYCYGeQM1xWjnsp6XbKcONgQlCpRe3ZC7CpBvOxJFXPKKwuINGSNC6GHI5FW8MxRqCV2GEEEeklFVTq0ONHBQKIE5n+ZukHOIZf+kDCNZV4ogszg3pg1Qzv1kOiYbd+krs1lei31M9RUQo+cQjshFFBK48kJ5clXmIxjiqPxtRVNOc4434E9Q7f4zCF7cDcFWfJ806lHFQKACtxvJxDmekH5/G9bW0DIUVIdFwSRbgkiyQqvYRuLJbX5Hd+oqMoRP+IpRAzQlqa04CF9J0bJudVhJC3AeuWVqHFZILeGBpEVZGaj6TQlJKn8wQkxghRA+gR8LLEsC5zNaQgLWfN0rfq1NCSpnqcoA2axwUphFCHE7LvGJWQH0mKWPtn5HS9+qkVaOa0FQoFAqFEco4KBQKhcIIZRzsjzmWFmCFqM8kZaz9M1L6Xp00aVRrDgqFQqEwQo0cFAqFQmGEMg4Ku0cIWy/WoFDfYeajjIPCLhFC1BZCdASQUkp1cbE9bOE7FEJYbZFuIUQNIUTHhL9pzrWiIqRtHCFEMSAHcFJKGWNpPZZGCKEB3IDZhpcim5RyVsLFRSOltL3c3GbCWs8dW/kOhRAtgUZCiDFSynuW1pMYIUQLYCxwDGgJDCWNIdLKONgwQohmwDjgIXBHCDFSSnnewrIsSsKF45kQYhGgA2oKIVyllFOt5aJiDVjzuWML36EQIhAIAj61QsPgDfQGOkgpTwkh5gMVhRBPgTApZXRq+lHTSjaKEKImMBHoLKWsBzwGhlhWlVURD/gCi4AAIcQUIcS3wkCWPu9t6Nyx5u+wCjBXSrldCJFfCNFICFFdCOFpYV1g+NxcgZJCCA+gLtAJmAYMS+1UmKU/YMWrESSlPJbwfCTgJYQwTtWYNVkP3JFS7gQOA58AHtKAVdx9WhhbOHes+TuMT/R8FdAN6APMEELktIwkA1LKp8D3GKaStgELpJTNgblAQaBYavpRxsF2OQisARBCOADOQCHAI+E9b8tJswqigBJCiI8wXFTGA35CiI8tK8sqsJVzx5q/w13AR0KI5cBPUsr2GIzsMyDAosoAKeUqoCGwF8O6A1LKYMAdw3edImrNwUaRUuqA51VABPAEeCSlvC+EeB+oLYQYIKWMsphICyKlvC2EuAEMB3pLKTcIIeoBFy0szeLYyrljzd+hlPKkEGIQhjv08wnvXU4wtpme3dcUUsrHQohg4H9CiFjABSgMnEjN/ipC2o4QQiwEQoE3gS5SypOWVWRZhBC+QG4p5ZGE11bj6WJtWOu5Y83foRBCC3QARgHfJLzdE2grpbxkKV2JEULkwLDe0BqIBgZLKY+nal9lHGyfBP9vR+BMwt8GUsq0VfawY4QQQqoT3SS2cu5Y83cohKgMtMEwPbfQWgxrYoQQ7hiu96Zrjprax0o/b0U6EEJ0Af6WUp62tBaFbaHOHcXLKONgR1jz3ZXCulHnjuJllHFQKBQKhRHKlVWhUCgURijjoFAoFAojlHFQKBQKhRHKOGQyQgidEOIfIcQpIcRKIYSbFWiqm5BvJ637eQshdgkhngkhpptDm8J2sLNzu5EQ4ogQ4mTC3/rm0GfNKOOQ+URJKStKKcsCsRjSAqRIQsCNuagLpOkHlKAnGkP06iAzaFLYHvZ0bj8AmkspywGdgSUZL826UekzLMteoLwQojkwDHDCkEL5fSnlXSHEKKAoUAS4LoQYiuEkfZ5VsY+U8oAQoi4wGkMahHLAr8BJ4DMM2RnfkVJeEkL4ALMAv4T9+wG3MPyIdUKID4BPgbMvt5NS7n9ZT0I+mX0JdQEUisTYw7n9nNOAqxDC2ZrqXpgdKaV6ZOIDeJbwV4sh62RPICf/uRV3ByYnPB8FHAFcE167AS4Jz18DDic8r4vhx5MPQ5TmLWB0wrbPgGkJz5cCtROe+wFnEh1nUCKNybX7V0+i9l2A6Zb+bNXDsg97PLcTtrUBdlj6883shxo5ZD6uQoh/Ep7vBeYBJYAVQoh8GO6wriRq/5v8LwGaIzBdCFERQxGU4ona/S2lDAUQQlzCkKoXDHdZ9RKeNwRKi/+qLXoIIbKb0Jhcu8R6FIrE2N25LYQog6Goz5sp/fP2hjIOmU+UlLJi4jeEED8AU6SUvyUMo0cl2hyR6Hl/4C5QAcN6UeKKTomHu/pEr/X89z1rgBrypUpQwrg0b3LtIl5urFAkYFfnthCiILAW6CStJJFeZqIWpK0DTwzDZTAsfiXXLlQaslJ2BBzSeJxtGOZdAUi4SwMIx5DnPaV2CkVasclzOyGb6SZgiJRyfxq12AXKOFgHo4CVQogjGLwkkmIm0FkIcRwoSdrv4vsCVYUQJ4QQIfznTbIBaJXghlgnmXZGCCGuAlOALkKIm0KI0mnUpLBvRmGb53YfDBXTRiTs+48QIncaNdk0KreSQqFQKIxQIweFQqFQGKGMg0KhUCiMUMZBoVAoFEYo46BQKBQKI5RxUCgUCoURyjgoFAqFwghlHBQKhUJhhDIOCoVCoTDi/1Fe+EE8FIJjAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "# Discard warm up\n", + "chains = full_chains[:, 200:]\n", + "\n", + "# Check convergence using rhat criterion\n", + "print('R-hat:')\n", + "print(pints.rhat_all_params(chains))\n", + "\n", + "# Check Kullback-Leibler divergence of chains\n", + "print(log_pdf.kl_divergence(chains[0]))\n", + "print(log_pdf.kl_divergence(chains[1]))\n", + "print(log_pdf.kl_divergence(chains[2]))\n", + "\n", + "# Look at distribution in chain 0\n", + "pints.plot.pairwise(chains[0], kde=True)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We see that the log-pdf could be reasonably well recovered." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Neal Langevin MCMC on heavily correlated Gaussian \n", + "\n", + "We now try the same method on a heavily correlated problem" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXsAAAEKCAYAAADzQPVvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdd3RVVf738ffJTW+kkV5IJY0WQgoQeq/SUewOWLHMqGOZGX864xTb2B2xoCi995ZAIAHSG2mQ3nvvt53nj/iIMTRnjILZr7WyVO45Z++zMJ977r57f7ckyzKCIAjCb5vOr90BQRAEYeCJsBcEQRgERNgLgiAMAiLsBUEQBgER9oIgCIOACHtBEIRBYEDDXpKkZyRJypIkKVOSpK2SJBkOZHuCIAjC1Q1Y2EuS5AQ8CQTLshwIKIDVA9WeIAiCcG0DPYyjCxhJkqQLGAOVA9yeIAiCcBW6A3VhWZYrJEl6CygFuoATsiyf+PFxkiStA9YBmJiYjPX19R2oLgmCIPzmJCcn18uyPPRGx0kDVS5BkiRLYDewCmgGdgK7ZFn+9lrnBAcHy0lJSQPSH0EQhN8iSZKSZVkOvtFxAzmMMwMokmW5TpZlFbAHGD+A7QmCIAjXMJBhXwqESZJkLEmSBEwHcgawPUEQBOEaBizsZVmOB3YBKcDF79raMFDtCYIgCNc2YF/QAsiy/ArwykC2IQiCINyYWEErCIIwCIiwFwRBGARE2AuCIAwCIuwFQRAGARH2giAIg4AIe0EQhEFAhL0gCMIgIMJeEARhEBBhLwiCMAiIsBcEQRgERNgLgiAMAiLsBUEQBgER9oIgCIOACHtBEIRBQIS9IAjCICDCXhAEYRAQYS8IgjAIiLAXBEEYBAYs7CVJGi5JUtoPflolSXp6oNoTBEEQrm3A9qCVZfkSMBpAkiQFUAHsHaj2BEEQhGv7pYZxpgMFsiyX/ELtCYIgCD/wS4X9amDrL9SWIAiC8CMDHvaSJOkDi4Cd13h9nSRJSZIkJdXV1Q10dwRBEAalX+LJfi6QIstyzdVelGV5gyzLwbIsBw8dOvQX6I4gCMLg80uE/Z2IIRxBEIRf1YCGvSRJJsBMYM9AtiMIgiBc34BNvQSQZbkDsB7INgRBEIQbEytoBUEQBgER9oIgCIOACHtBEIRBQIS9IAjCICDCXhAEYRAQYS8IgjAIiLAXBEEYBETYC4IgDAIi7AVBEAYBEfaCIAiDgAh7QRCEQUCEvSAIwiAgwl4QBGEQEGEvCIIwCIiwFwRBGARE2AuCIAwCIuwFQRAGARH2giAIg4AIe0EQhEFgoDcct5AkaZckSbmSJOVIkhQ+kO0JgiAIVzegG44D7wHHZFleLkmSPmA8wO0JgiAIVzFgYS9J0hBgEnA/gCzLSkA5UO0JgnB702q1NNW3U13RRHVFE421bTTW9/60NHbQ3a2i57sfhUIHA0M99A11MTM3xtHVCjdPW3xHuODmZYskSb/27dxyBvLJ3h2oAzZKkjQKSAaekmW544cHSZK0DlgH4OrqOoDdEQThViDLMrVVzRTkVlGUV0NZYR1lRXWUF9fT063qc6yhkT5WQ82wsDLB2NQAKxtT9A300Gi0KL8L/pqKJtLiC74/NzDIjTWPTGN0qIcI/R+QZFkemAtLUjAQB0yQZTlekqT3gFZZlv98rXOCg4PlpKSkAemPIAi/juaGdvKyK8nJKCUnvYy87EraW7u+f93W0QI3D1uc3W1wdLHG3skSe2dLbOzMMTI2uKk2tFotVWWNJMZcZtdXsdTXtuI/xpWHn53H8BHOA3VrtwRJkpJlWQ6+4XEDGPb2QJwsy8O+++8I4AVZludf6xwR9oJwe9NqtRRdriEzpZic9DJy0kupqWwGQEdHwt3HHp8AJzx9HfDwdcDd2+6mA/1mKZVqTuxNZutn0Sh71Hx97FmMTX7eNm4lNxv2AzaMI8tytSRJZZIkDZdl+RIwHcgeqPYEQfjlybJMeXE9yefzSU8o5GJy8fdP7da2ZviNdGXh6jC8AxzxCXD62YP9avT1dVmwKhRvfyeeWvMfDu9IYMUDEQPe7q1uoGfjrAc2fzcTpxB4YIDbEwRhgNVWNZNyIZ+0+EIuJhfRUNsGgIOzJeOn+zFqnAeBQW7YOlj8qmPmw0c4MzrEgyM7RdjDAIe9LMtpwA0/XgiCcOtSqzRkphQTF51L0rk8yovrAbC0MWVksDsjx7kzNtwLe2erX7mn/dnYmVNZ3vhrd+OWMNBP9oIg3IYaaltJjL1MUmweafEFtLd1o6evy8hgd+atGEdQmNdtMcWxubEDM3OjX7sbtwQR9oIgIMsyxXk1xJ7MIu5MLgW5VUDvk/H4Gf6ETfYlKMwLQ2P9X7mnN6+ttYuMpCJmLQ76tbtySxBhLwiDlEajJTejjLjoXM6fyqGipB4dHQn/0a489PRsxkX43BZP79cSdTANZY+a2UvFSDKIsBeEQUWt0pAaV0DMyUziz1yipakDha4OI4PdWXrveMZP88fS2vS/vr4syzS3dtLY3ElbezftnT10dimRJAldXR10FQpsrExwc7LG2GjgPiW0Nney+T+nGDF2GN7+jgPWzu1EhL0g/MZp1BoykoqJPZlFbGQmLU2dmJgZEhLhQ9gUP4IneGNiZviTrtnZpaSwtJ7i8oben7IGKmtaqKlvpUepvqlr2Fqb4eNhy4r5Yxk74uddPb/pw0g62rp57MUFP+t1b2ci7AXhN0it0pASl0/sySwunM6hraULA0M9wqb4MmXuSMZO8EZf/+Z+/bt7VFwqqCHrciW5BTVcLqqlorqJ/78eU19PgZuzNR6u1oSPdcfOxhwbK1PMTAwxMzXofYKXQa3RoFJrqalrpaSikeLyBlIzy3jmtZ08+cBUls/7ecbW489e4tCOBBbfFY67j/3Pcs3fAhH2gvAbIcsyl7MqOH04ndNHMmhp6sDEzJDQycOZMD2AseO9MLyJoZPWti4ycitJzSwlNbucguJaNNreZHewNcfb3Y45k/3xGmaLu4s19kPNUShuvlr6cA+77/+9s0vJa+8d5t0vTlFa0chTD077Sdf6seqKJt58aReevg48+PSs//o6v0Ui7AXhNibLMkV5NZw5msGZYxeprmhCT09B6BRfpi8YTfBEb/T0rv9r3tbRTVpWOckXS0nNLKWgtHcevb6eggAfR9YsCSXAxwF/bwcsh/y8VcqNjfR5/bnFvP1ZJHuOpRER4sW4UcP+q2u1Nnfyl8c3IcsyL7+9GgNDvZ+1r7c7EfaCcBtqbmgn6lAaJ/alUFJQi45ChzGhntz18BTCp/lfd265ViuTV1xLXEoRcalFZF2uRKuVMdDXZYSvE2sn+DLSzwl/bwcMbnKo53+hUOiw5o4QDpzMoL6p48YnXIVSqea1pzdTVd7E6/+5D0cX65+5l7c/EfaCcJvo7lRy7lQ2UYfSSIsvRKvR4jfKhSdeXsjEmYFYWJlc89zW9m4S0oqJTy0iPq2IxuZOAIZ72nH3klBCRrnh7+OA/g0+BQwU7XfDRD09qhsc2Z9Kpeaff9xBZkoJL76xipHB7j93934TRNgLwi1MlmUyk4s5sT+F2JNZdHUqsXO0YMX9E5m2YDRunrbXPLe6rpXYxHxiEvJJyypDo5UxNzVk3KhhhAW5Ezp6GFYW136D+CXFJOQBEBT402blKJVq/v7sNuKic3nkj/OZPGfEQHTvN0GEvSDcgqrKGzl1OJ1Th9KpKKnH2MSASbNHMHPRGPzHuKKj0/9LTFmWKSytJzaxgNjEfHLyqwEY5mzNXXeEMGGcJ36e9tf9ArSpvYui2kbKGpopa2ihorGFxrYumjq7aO7oQqOVMdBVYKCni6WJERN8hzE1wBMPu/++Lo5areFQVCaBwx1xdbr56/R0q3j92W0knL3EYy8tYNHqsP+6D4OBCHtBuEWoVGriTudyZFciqXEFAIwYO4xVD0UwafaIq86k+f8BH3XuEqfOX6K8qgkAP297Hl4TweQwb1wd+weoLMtUN7dxsbSazNJqLlXWk1ddT13rlTFzHUnC3sIMazNjbMxM8La3RldHQbdKjVKtpqKxlXcPx/Lu4ViGDbXkmQURTAv0/Mn3veNQMqWVjfz9+cU3fU5Hezf/9+S3ZCaXsP7Pi5i/IuQntzvYiLAXhF9ZSUEtkQdSiTyQSlNDO7YOQ7jn8enMXDQGWweLq55TVFZP9IXLRJ3Lpbi8ER0diTEBLqxeFMzEcZ7YWPZdBavRarlUWUdKYQUpRRWkFFXS0NY7bq+nUOBlb024jyve9jZ42FvjamOBk6U5erqK6/a9uqmN6OxCdsVd5KmNB3ht5UyWhAbe9L2XVjbyxfbzRIR4MSnU+6bOaaxv45X131KQW8Xzf1/O1Pmjbrq9wWzAdqr6b4idqoTBorOjh6iDaZzYl0xediU6Ch1CInyYt2IcY8d7X3Wopaq2heNns4mMyaG4vBFJgpG+zsyY6MuUcG8sh1wZf5dlmcKaRuLySonPKyOpoJy27h4AHC3NGevhxEg3B0a42uHjMPSGoX4j3So1a97biomBPpvWr7qpc1rbunj4pS20tXfz5Vv3YmttdsNzivNq+NNjX9PW0sVLb64idLLv/9Tv34JffacqQRD6K7xUxbE9yUQeSKWzoweP4fase24uU+eNumpNmpa2LqIvXObE2RzSc8oBGO3vzO/XjmFSqHefJ/iObiXx+WWcyy0mJreIqqbeTUWcrYcwa5Q347xcGOvuhL3ljUP1pzLU02WEmz2nMwtu6ni1Rsv/vXuY6tpW3v2/FTcV9GnxBfz191sxNNLj7a/X4uUnat78FCLsBWGAdXcqOXP8Ikd2JnIpsxw9PQURswNZuCoM35HO/apK9vSoOJuQz8mYHOLTitFotLg5WbHuronMivDD3nbI98eWN7RwJruQM9mFJBaUo9ZoMTbQI8zblbXTQxg/3A0nqyE/7tKA6OxWodZokWX5upUytVqZf3x0jIS0Yp5/ZBaj/K6/Ibgsy+z99jyfv3Mc52E2/O3je685vCVcmwh7QRgg5cX1HNoez4n9KXS29+Dqacsjf5zPtPmjMLfouxJVlmUuFdRw+HQmJ2NyaO/owdbajJXzg5gR4YePe2+pYVmWya+uJ+piAVEX88mpqAXA3daKuyPGEOHnzphhjlcdllFrtVS3t1HW0kJ1ezvdGjU9ajUqrQZzfQPcLa0YaWeHoe5PX3na0tlNVGY+S0MDbxj0b38WyfEz2ay9cyKLZo687nWVSjXvv7qPyINpjJ/uzx/+uhQT059WtE3oNaBhL0lSMdAGaAD1zYwrCcLtTKVSE3Mik6O7k7iYVIyuroKIWQHMXxlCwBi3fkFY19DG8bPZHIvOori8EX09BZPDfJg/LZCgQFd0dHoDPru8lsiLeZxMz6OkvhlJgtFujjy7aBLTAjxxsen7pFvX2UFGTTW59XXf/dRT0tKMWqu9bv/1dRRMdffgjRmzMTO4+c3BPzp2AaVaw7LrfDmrVmv4x8fHOX4mm3uWhnLf8utPlawqb+Tvz24jL7uSex6bxl0PT71ta+vfCn6JJ/upsizX/wLtCMKvpqWpgyM7Ezm4PZ7GujYcXKx44KmZzFgUhPXQvuPRao2WC8mF7D+RTkJ6MVqtzAhfJ55/ZBZTx/tgZtL75FpQ3cDh1FyOpl6ivKEFhY7EOE8X7p0cxJQAT2yH9I7Xa2WZ3Po64srLSKysIL2misq2tu/bcxtiwXAbG2Z5euFqPgSXIRY4mJlhpKuLgUIXPYWClp5ucuvrOF9WyjcZady1ZwdfLl7KUOMbL7qKzS1m67k07pkUhK/T1Rd5KVVqXnnnEDEJ+fzuzgnct+z6QX/hdA5v/Wk3AK+8t4bwqX437IdwfQM6G+e7J/vgmw17MRtHuJ3IskxuRjmHtsdz9kQmKqWaseO9WXJ3OEHjvfotfCqtbORQ5EWOn8mmobkDGytT5k0NZO6UAFwcLYHeMfijqZc4kppLfnUDOpJEqLcLc0YPZ1qgJxYmvTVvylpaiCktJqa0hISKMpq6uwFwNDNjjL0Do+wcGG3vgK/NUEz1f9omIWeKi3j0yAFmuHvy/tzr14OvaGzh7ve3McTYkO3PrMHgKuUWWtq6ePnN/aRllfP0Q9OuW8pYpVLz9QeR7PoqFi8/R15+ezUOt+BG5reSW2U2jgyckCRJBj6VZXnDjw+QJGkdsA7A1fXn3cBAEAaCUqnm9OF0DmyNoyC3CmMTA+YsHcuCVaH9yheoVBrOJuRx4GQGyRdLUSh0GB/kwdypAYwP9kRXoUNLZzfbz6dzMCmH9JLevV9HD3PghTumMHuUDzbmJig1GhIqyjmVXEh0cRHFzb2LpxxMzZjm7kmYswthTi44mZv/z/c3eZg7jmZmaG/wINjc0cUjG/bSo9bw1r3zrxr0pRWNPPf3PdQ1tPGXp+Yxa5L/Na9XVd7IP5/fwaXMcuavCGHdc3NF5cqf0UCH/URZliskSbIFTkqSlCvL8tkfHvDdG8AG6H2yH+D+CMJ/ra66mSO7kji2O4mmhnaGedux/s+LmDZ/FEbGfce3y6uaOBR1kSOnM2ls7sTB1px1d01k/rQRWFuaoNJoiM0t4mByDtFZhSjVGrzsrXl6/kTmjh6Oo5U5rT09nC4u5ERsPjElxbSrlOgrFIQ7u3DPyNFMcnXDw9LqZx/H7lKpqGxrY4qbxzWPaens5rHP91HZ1MqGh5fiZW/T75ikjBL+8vZBdHQk3n91FYHDrz1VMvpoBu//dT+SJPGnt+9k4syAn+VehCsGNOxlWa747p+1kiTtBUKAs9c/SxBuLXnZlez6KoaYk1nIWpmQCB8W3x3OmFDPPkGr1mg5l5jP7qOppGSWodCRCB/rweKZowgZPQyFQoe8qno2HkjmYHIOje2dWJkasSx0BIvH+ePvbEtLTzcnCvI5GnOZ82WlqLRahhqbsMBnONPcPRjv4oaxXv+n3Q61ktquNtrV3ejr6KKvo8BQoYe9kflPfjPYkJJIt1rNLE+vq77e0NbJuk93U1zXxFv3zGesR9+pk7Iss2V/Ip9ujsHV0Yp/vnAHzg6WV71WZ0cPH//jEJEHUvEb5cIf/7kSe6erHyv8bwYs7CVJMgF0ZFlu++7fZwGvDVR7gvBz0mi0JJy9xP4tF0iLL8TYxIAld49n4erQfmHU1NLBoahM9h1Po6a+DTsbM9beOZH50wKxsTKlvbuHfYlZ7E3IIr2kCl0dHSYHeLA42J+JfsPoUqs5UZDHWwdiOVdWilqrxdncnPtHBzHL04sx9o7ofBfYnWolCfXFZDdXkd1cTW5LNRWdzXSqlVe9DxsDUx7yHs/93uE3dd+FTY18mpzIfG8fQpz6z3+vamrl0c/2UtHYyocPLSbcx63P6x2dPfzz4+OcvnCZqeE+vPj4nGtuLJ6dXsqbL+2ipqKJNY9M5a51U1D8jyt5hWsbyCd7O2Dvd08VusAWWZaPDWB7gvA/62jv5sTeFA5svUBVeRM2duY89PRs5q0Y12dTblmWybpcxZ5jqZw+fxmVWkNQoAtPPjiNCcGeKHQkMstqeO/EeY6nX6JLqcbd1opnF01i4Vg/TAz1iSoqZP2xQ0QXF6HUaHAxH8KDY8Yyz8uHEbZ2SJJEs7KLqKpckupLSG0sI6e5GrXcO33SztAM3yH2hA91Z6ihGbaGZpjpGaLSalBq1bSqujlekc0bmScYZeXMGGuX6957fWcnD+7fg7GuHi9OnNzv9YySKp7ceIAelZqPf3cH47z6Xi+vuJY/v3WQyppmHr1nEnctHnfVTxUqlZrN/znNji/OYmM/hDe+eIjAscP+i78t4acQtXEEAairbuHg9ngObY+ns70H/9Gu3HH3eCZM8+vztKlUqYm+cJkdh5LJLajB2EifeVMDWTpnNK5OVnR0KzmSmsvOuIvklNdipK/HvDHDWRIayAgXO1Kqq9ibm83hvEu09vRgY2zMAh9fFvn4MsrOHo0sk9JYSnTVZeLqishtqUYGDHR0GWnlRJCVC2OsXQmwcMDGsH95hR/rUCtZGPkxRgo99k1/BD2dqz85d6pU3LN3J9l1dWxdtpLR9g59Xo+6mM8Lm49iY27CRw8txsPuyk5Qsiyz/2QG7395CjNTQ159ZgGjA67+xlKcX8NbL+8mP6eSmYvH8Mgf54tFUv+jW2U2jiDc0n48Hj9xZgDL75/I8MC+Qxj1je3sPprKwcgMmlu7cHG05PdrpzNncgDGRvpkl9fw6s5IjqTm0tmjwtvBhj8tm8b8IF9aVD3szcnm6egjlLQ0Y6SryyxPb5b6+jPexZVujYrY2gL+mBzH2erLtKi60dNREGTlwhN+Uwi1cWeElRP61wjq6zHR1Weagw9bC5PoUqvQ0+9/jZbubh46sIf0mmo+nLuwT9BrtFo+Ph7Hhsh4Rrja8+FDi7EyvbL6t7Wti399coIz8XmMG+XGX56a16cg2/fXUWvY+VUsmz85hbGpAX/+911MmH7tmTnCz0+EvTDoyLLMxeRidnxxlqRzeRibGnDHmnAWrQ7F/kdzuvOL69h+MImTsTloNFomBHuydM4Ygke6odZqOJmRz5bYNDJKqjDU02X2aB9WhI9kuJMNp4oKeezoQc6VlSADYU4uPBESxmxPbzRoiKzM5bG481yoK0Sl1WChb8RUh+FMtfdhgq0nJno3v4L1WlqUXewrTWeOcwDm+v2foBu7Orl37y7yGhv4cO5C5nhdKTPc0tnNH789wrlLJSwNCeSlpVP7TK9MyyrjtfeO0NjSwWP3Tmb1wmB0dPoP25QW1vL2n/ZwKbOciTMDeOKlhVhcpeibMLBE2AuDhkaj5VxUNjs3xpCXVcEQSxMeeGomC1aG9hmP12plLqQUsv1gEimZZRga6LJ45ihWLhiLk70FNS3tfHj8PLvjMmls78TVxoI/Lp7MwmB/6rs72Jp5kQeP76GpuxsHUzPWh4SzzC8AaxMjTldd4vnk3cTW5KOStTgbW3CX+zimO/oyxsoF3avsQPXfkmWZv6YfoVOtZK3PhH6vFzQ28LuD+6hqb+OzhUuY5Dbs+9fSiit5/tsj1LV28Jfl01kRfqWGTY9SzYYtMew4lIyTnQX/ef0ufL3s+11frdKwY+NZtn4ajZGJAS+9uYpJs8W2gb8WEfbCb55KpSZyfyo7v4qlsrQBR1dr1v95EdMXjO6z+1OPUs3R6Cy2H0yirLIJW2szHr1nEgunj8DczIiLpdW89+0RTqbnoZG1TPbzYNWEUQR7OhNZlM+jRw8QV1GGno4OMzy8WOkfSKizM/H1xXyQF0VUZS6dGhV2hmas8QxhnnMggRaOfb7EbFW1Ut5VQVVXFZ2aLnq0Pai0KgwVhviYejPczAddnZv7tf087xyHyzN5xn8avkP6hnFsaQmPHzmIvkKHzUtXMNbBCeh9o9sYncQHR89hb2HGN0+sItD1yrl5RbW89t5hisoauGPWKB67d/JVZ9vkZVfwzl/2UnS5mkmzA3n0hQVXLeEs/HJE2Au/We2tXRzZlcj+LRdoqG3D29+Rl99azfjp/n02B2ls7mDvsTT2Hk+jubWL4Z52vPL0fKaG+yADJzPy2PzdUI2poT53ThzNnRNHoaOnw5bMdJ6JOUpDVycu5kN4bvxElvsH0qLuZG9JKn86sZv6ng6G6BmywGUE851HEGzjhs53FSwruirJbbtETmsuee35tKha+tyDhIS+jj5KrRIZmUk2E3nI44Eb3vu2oiT+nRXFXKcA1vpM/P7PtbLMhuRE3r4Qi6elFZ8vWoKzeW8J5OrmNv609Tjx+WXMHuXDKytmYGbUO5SkUmnYtCeOTbvjsTAz4s2XlxIe1H/RVVdnD998fIp9357HwtpU1LW5hYiwF35zmhva2fV1LId3JNDVqSQo3JM//HUZY8L6LoKqqG5my/5EjpzKRKXWMCHYk1ULxzImwIXWrh42Riez9Vwada0duNlY8MIdU1gc7E96fTV/PR9NVFEBkiQxdZg7a0aMZqyjA8cqs1mfsI30pnJ0JR0m2/uwxHUUEfbe6OsoaFQ2ca7+HFmt2WS35tCiagXASt+KAHM/3IxdcTZ2xtHIEXNdMxSSAkmS6FR3srF4E4lNydynveeaT/eyLPPJpbN8kBPNFHsf/j528ff33NLdzXMnjxFZVMA8Lx/+MX3W95Utj6Vd4rVdUb2biqyY0adU8eXCGl7/8BgFJXXMmuTHUw9OY4iZUb+2E2Iu8eHrB6mtbGbu8mAeeno2pub9jxN+HSLshd+Mmsomdm86x/E9yaiUaibPGcGKByLwGN53GmFuQTVb9ydy+sJlFDo6zJsWyKqFY3F1tKK0vpl/7I1mX2IWXUoV433ceHXlTMZ4OLH/cg7Ldm8lr7EBayMjHg0O5c4RI2lSt7O9KIk/ZGylU6PC02wozwfOZJHrKKwNTGjoaSCy5iQJjUkUdRQBYK5rTsAQP/zN/fAz98VG3+a6K12NdY0ZMSSQhMZEyjrLcTcd1u+YHo2av6YfYXdJKotdRvHXoIXfT7VMrCznDyeOUtPeziuTp3LvyDG98/g7uvjH3miOpOYy0tWef6yZi+t35ZJ7elR8tSuOLfsTsTAz4p8v3MHEcf1X1TbUtvLpm0c4ezwTV4+hvPXV7wgM6t8/4dclwl647VVXNLH98zOc2J+ChMTU+SNZ+eAkXNyH9jkuPbucr3fHkZBWjImxPqsXBrNy4VhsLE3JKqvm918fIvJiXu8bwBhf7p0chJmZAd9kpPHk2SO09HQTONSWN2bMZoaHByerc3kqaRtZzVUYKfSY6xTA8mFBjLZyplHZSGJjLAmNSRR0FAIwzNiNlc7LGGExAhej/jtUXU+PpocjVcew0LPA1rB/GeGarlbWx2/nYlMlDw+P4Em/qehIEmqtlg8SLvBRYjzOZuZsW7aKMQ69NWpOZRbw2q5IWjq6eWxWGL+bEYKeovfNITWrjH99coLyqibmTglg/f1TMP/R07xGreHgtng2fRSFSqXhnsens+KBCPT1RazcisTfinDbqixtYPsXZ4k8mIqOJDFv+ThWPhjBUPsrG3nIskxcahGb9yaQll2OhbkRD6+JYMns0ZgY68mvPyoAACAASURBVHP+UgkvbDtGfH4ZZoYGPDRtHHdNHE1VVzsfpyZwJO8SMjDb05v7R4/B1tyIrYVJvBF5iDZVD15mQ/nTqLkschmJro5MfEMif8v5lvz2fADcjF1Z7ryUEKtx2F0lpG+GRtawsXgT1d3VPO/7B0x0++5ylVBXzLNJu+lQK/kgdBUzHHs34S5sauT5k8dIqa5imV8Ar0yehqm+Po3tnbyx/wyHU3LxdRzKp+uWMtyx942xta2LT749y8HIizjaDeHdV1YQPNKtX59y0sv48PUDFORWETzBm8deWoCji3W/44Rbhwh74bZTWljLts/PEH0kA4Wu4ruQn8RQ+yt7rao1Wk6fv8S3exMoKKnD1tqMJx+YyqKZI1Ho6nA87TIbTydxuaoeW3MT/rAggqVhgSRUlbP+xGESKssx1dPn/tFB3DdyDKU9DXxZEMOZ6ssoJB1mOvqxxiOEMVbO5HcUsL1sCwmNSfRoe3A0cvwu4IOxM7T7n+5VqVXxUf4npDWns8x5Cf7mV77sVGk1fJBzms8vn8PVxIrPJ9yDj7ktGq2Wr9JTeet8LAa6Ct6dPY9Fw/2QZZmDyTm8sS+a9h4lj84KY+30EPR0FciyzLEz2Xz0dTRt7d3cuSiYh1ZPwNCgb9G15oZ2vnzvBCf2pWBja87Lb61m4swAsYPUbUCUSxBuG8X5NWzdEM3Z45noG+iyYGUIS++b2GcnKLVaw4mzOWzaHUd5dTPDnK1Yc0cIMyb6oUVmf1I2X55KpKKxFQ87K+6fEszMUV4cLcjjs+RE8psacTQz4/5RQSz29eV0zSW+KYgnv60OK31jVrkHs9o9GENdiK0/x9m6GKq6qzHUMSDUOoTJQyfhYeL+s4Rfh7qDD/I+JrftEve43cV0u2nfv1be0cTzSXtJbSxjmdsYXhw5BxNdfQqbGnkx6gSJlRVMd/fg9WkzsTUxpbyhhb/tjuLcpRJGujnw6soZ35clLiqr553PokjNKiNwuCPPrpuJ17C+Q2AatYZDOxLY9FEUPV0qlt47njvXTelX2ln45d1suQQR9sItLz+nkq0bojkXlY2hkT6L7wpj6b0TGGJ5ZVm+UqXmcFQmm/clUF3Xire7LfevCCdinBfdKhXbz2ew6Uwy9W2djHC153fTQxjn5cyOnEy+SEmiuqMdP5uhrBs7jjAXJ3aVpLClMJFGZSd+Q+y51zOUuU4BlHeXEVlzioTGRNSyGm9TLyYNjSDEKhhDxc9X46WgvZCP8/9Dk6qZ37k/yHib3m38tLLM1sJE3smKRJIkXh2zkPnOgSg1Gj5LSeSDhDgMFLr8ZfJUlvr6o9Jo+Co6mQ0n41EodHhq3kRWjR+JQkeHzi4lG3ecZ8fhFIwM9Xj07kksnDGy3yrYi0lFfPSPQxTn1RAU7smjLyzo932I8OsRYS/c9orza/jmoyjORWVjYmbI4rvCuGPNeMwtroxZq1QaDp/OZNPuOGrr2wgc7si9y0IJD/Kgo0fJtnPpfB2dTHNnN6HeLvxuWgi+LkPZlJHGV+kpNHd3E+bkwiPBIbhZm7Ex/wL7StLp0aqZbOfNA97hjLFyIqEpiZPVkRR3lmCoY8gEm/FMs52Cs7FTv34rNW10qErpVNfQo2lAV8cIF9O5SNKNa9vIskx03Rm+KdmCpZ4Fj3k9gqdp73z2is5m/pRygLi6IiLsvHh19AIcjIeQVl3Fi1EnuNRQzzwvH/4yeSq2JqYk5Jfxt92nKKptZOZIb55fPBl7CzNkWSYyNpePNp2hvrGdBdNH8PCaCCyH9P0uoL6mlc/fOUb00QxsHS14+Ll5jJ/mJ4ZsbjGiEJpw2yopqOXbT04RcyITYxMD1jwylaX3TOhT0kCt1nD4VCZf/yDkX3xsNsEj3ejoUfJpZDzfnEmhtauHCD93Hp4ZitPQIXyZmsy6qP20q5RMd/fg0eBQTIwVbLgcy7GULBQ6Oix2Gcn9XuHYGxtzuvYMz2V8QLOqBUdDB+51W8N4m3CMFFdmpsiyTKsyj+rOGKo7Y2nozgC0fe7JVG8YVoaB173vZmULXxVvIrU5jRFDAnnEcy2muqaotVq+KYjjg5xoJEnitTELWe42hpaebl4+dZJtmRnYmZiyYcFiZnh4Ud3UxrO7D3M8/TJOVuZ8/Ls7iPBzB3rnzL/35WnSc8rx8bDjb88tItCn7w5Syh4VezadY9vnZ9FotKx5eCorHozos9pYuP2IsBduGdUVTXz7cRSnDqdjaKTP6rWTWXrPhD5P8mqNlpMxOWzccZ7KmhYCfBz44yOzCBk9jI4eJRsiE9h0JpnWrh6mBHjwyMxQhlqZ8mlyIlsPZ9CjVjPfeziPjgulW+pmw+UzRFdfxlhXn/u9w7nPKwyZLk5Un+Ds5ViUWiWB5gH8zuNBAs2vfBGp0nZQ23me6s7z1HSep1tTC4CFvh++lg9hYeCHka49VR3R5DZtwFC3/7Z9P5TQmMhXRd+g1Cq502Uls+xnoiPpkNVUyZ9TD5LTUs1Uex9eHjUXB6Mh7MrJ4l+xZ2np6eaB0WN5KjQcA4WCz6MS2BAZj1Yr89isMB6YNg5DPV2aWjr5bGssByMzGGJmxHMPz2TB9BF9VhLLssz5Uzl8/vZRqsqbmDDdn7V/mNOvOJxwexJhL/zqGura2PrpaY7tSUZHIbHkngmsfDCiz5i8RqMl6vwlNu44T1llEz7utrz50lLCgtzp7FHxxalEvopOpqWzmyn+Hjw6OwwbSxM+TU5ky4EM1FoNi4f78di4UBo1bbyRe5S4uiKG6Bmx3m8KazxCaFHXs6t8CwmNiehIOoRbhzHbfiauxldqs7erSilo2UZJ6wHUcgd6OqbYGoVhZzweO+OJGOleGcvuVFVR3n4cXckEI8XVp1029DSyuXQryU0peJi4s9bjIRyNHGhWdvF+9im2FyVjbWjCeyErmenoS0ZtDU8eOkJqdRVjHRx5beoMfK1tiM4q5M0DZyhraGH6CC+eWzQJJ6shqFQath9MYuOOC3R1K1k+L4gHVo7H/Ec15Atyq/j0zSNkJBbh5mnLPzY8wJgwz5/5b1r4NYmwF3417a1d7NwYw77NF1CrNcxZEsyd66ZgY2f+/TFarczpC70hX1zeiKerDa8/t4hJod50KdVsPJ3ExtNJNHd2E+HnzmOzwrCzMePTpEQ2X0xHrdWwxM+fx4PDqFE182rmQRLqi7E2MOG5wJmscg+moquEL4o2kN6SgaGOAXMdZjPbbiYW+r3z9WVZQ03neQpbd1HdGYOEAmfTWbibL8XKcBQ6Uv9fo5rOCyTWvIRWVjHO7nUkqW81S42s4UR1JHsr9iMjs9x5KXPtZ6MjKdhZnMI7WZG0Kru50yOYJ/2m0aPS8Meo4+zKzsLG2Jg3ZsxmqV8AhTUNPLxhDxcul+JhZ8V/1i5hgu8wZFnmXFIBH34dTVllEyGjh7H+/im4u/T9hNFY38amDyM5vjcFsyFGPPbSAuYvHye2B/wNEl/QCr+47k4l+7ZcYNdXsbS3djF13kjueXx6n0U5stxbZvizrefIK6plmLM1D64az5QwH9RaDTsvXOSzqAQa2jqZ4DuMx2aF4WpnwafJiWxKT6VHo2GJrz9PjAujQdPKe9mnSagvZqihKb/znsCKYWMp7yphd/lectpyMdM1ZabdDGbYTcNEt/cThUZWUtp2iEtNX9KprsBAYYW7+TLczVf0eYL/IZW2g+zGjylo2Yq5viehdm9hpt93UVJu6yW2lG6jpLOU0RajuNvtLoYa2JBcX8q/Mo9zsamSsdau/HnUPIaZWLMxLYWPE+Pp0ah5YHQQj48LQ6XS8PHxOHbFZWBsoM/js8NZOX4kegoF+cV1fLQpmsT0ElwdrVh//xTCgvpOB+3uUrLnm3Ps+CIGlUrNotVh3PXIVMxELZvbzi0zG0fqnYKQBFTIsrzgeseKsP9tU/aoOLwjke1fnKG5sYOQScO574kZePr2rV2TllXGp5tjuHipEke7ITy0agIzJvoiAweTsvn4RBzVzW2M83Rm/dzx+DgNZWNaChtSEulQKlk43JcnQ8Lpopv3ck4TU5OPjYEJ64ZHsGJYEFXdFewp30dGy0XMdc2Z7ziXqUMnY6DonTPeo2mksGUnha076dE0YGkQgLfFfTiaTEFH0rvKnfWq7oghtf7vdKlrcDdfzgjrZ9DVuRKedT11bCvdSVJTMtb6Vtzpuopgy7FUdDbzdlYkxyqysTU04/cB01noPIJDeZd483wsFW2tTBvmwUsRk3EyNWdzTCqfRSXQpVSxPGwkj88Ox9LUiPqmdr7Ydo7DpzIxMTbggRXhLJk9Gj29K0/pGo2WU4fS+PrDSOprWpkw3Z8Hn56Fk9v1v1MQbl230mycp4AcwPxGBwq/Tf8/YL755BS1lc2MDvHg3vUz8B/l2ue4/OI6NmyJ4XxyITZWpjz38EzmTwtEodDhVGYB7x89R2FNI4Eudry2aiZBHk5sy8pgXeR+Grq6mOnhyTNhEzAwkHg3O5ITlTkM0TPiDwEzWOMRQpOqnk8LPyWlKRUThTErnZcxw2769yHfrW4kt+lTitv2oZWV2BlPwHvI3Qw1Cr3udMMOVTmZDR9Q0XECMz13Jjt9ibXh6O9f71R3cqTqGMeqTyBJEsuclzDHfhbdai3vZEWxqSAOHUnicd/JPOg9nsyaWpbv3EZaTRX+NkP514wVhDm5cDTtEo8e2UtlUyuT/Nz5w8IIPOys6exS8sX2c2zdn4hao2XFvCDuWx7Wr5ZN0rk8Pn/nGMV5NfgEOvHCP1eKjb4HkRuGvSRJ64FvZVlu+qkXlyTJGZgPvA78/qd3T7idybJMXHQuG98/SWlBLV5+jjz9f3cQFNa3cmJ1bQufbTvHibPZmBgb8PCaCFbMD8LQQI+UwgreORRDekkVw4Za8u/7FjA10JMj+ZeZ/e1XlLa2EObkwobxE3G2NOej3Gh2FadgoNDjcd/J3O8VjlruYnv5Ns7UnkVfR58lTouZbT/z++mTam0X+S2budz0FRq5GzezxXhZrMFcv3+99h9SalrIbfqMgpbt6Ei6+Fk+go/lAyik3imKKq2KqNrTHKg4RIemg3DrUFa6LMdUYc6WgkT+cymGVlUXC1xG8vuA6bR0KnnyyGFOFRdib2LKv2bMZqmvP4n55ax+bws55bX4Og7l1ZXLCPNxRa3WsO94Gl/uOE9jcydTwn14ZE0Ezg6Wffp5KbOcr94/SWpcAQ7Olrz05ioiZgWK+fKDzM082dsBiZIkpQBfAsflmx/7eRd4HjC71gGSJK0D1gG4urpe6zDhNnPpYjmfv3OMi8nFOLnZXLWGSltHN9/sjmfXkRQA7lw8jruXhGJuakhRbSP/PhTL6awCbM1NeGXFDO4YF0BSVQVLd2zhYm0Nw61t+HLRUoKdHNmYf56NiRdQaTWsdg/mUd/JmOgqOFR1mOPVJ9HIGqbZTmGx0yLM9Xr/d5RlmdK2g2Q1fkS3phYHk6kEWj2Jmf6w696bUtNGUetOLjd/hUrbgZvZIvytHsVIt3fGjVbWcqEhnj3l+6hX1hNoHsBKl2U4G7twsOwiH+ScprKzhYm2nvw+YAbmCmP+fe4Cu3OyMNHT57nxE7l/VBCF1Y08+tleLlwuxcHSjL/fNYf5Y3qLnEWdy+Wzrecor2pipJ8Tf//jHf3my5cV1fH1B5HERmYxxNKYh5+bx4LVIejpiXkZg9FNjdlLvb+hs4AHgGBgB/CFLMsF1zlnATBPluXHJEmaAjwrxux/+yrLGtj43kliTmRiYWXCPY9NZ87SsX1md6jVGvadSOfL7edp6+hm1iR/1t45Efuh5jS1d/HJiTh2XsjAQE+XB6cFc3dEENWdbfwz9iyRRQU4mJrxh/AJLPTx5XBFJv/OiqK2u405TgE87T8NFxML4hoS2FG2iyZVE2FWoSx1vqNP1ckOVTmpdX+jtiseS4NARlg/g41R0HXvrV1ZQn7LVkraDqCRu7AzGk+g9dMMMejdpFsra0lsTGZvxX6quqtwNXZhtctK/Mz9OFGZzQfZ0RS21+Nv4cCzATPwNrXn46R4tmSkA3D3yNE8Pi6U5rYuPjp2gePplxlibMjaGSGsHj8KfV0FieklbNgSQ25BDe4u1jy8ZhITgj36vInWVjWz+T+nOXkgFQMDXZbdN5El94zHxPTnK+cg3Dp+1jF7WZZlSZKqgWpADVgCuyRJOinL8vPXOG0CsEiSpHmAIWAuSdK3sizffXO3INxO2lq72LohmgNb4tDVU7Dmkaksu28ixiZXCmX9/+mAH206Q1llE2NHuPLEfVPwdrdFqVbz1ekkNkQm0NGjZHnYCB6bHY6OrsSbcTFsvpiOoUKXZ8Mn8uCYIDKbK1l99guym6sYaenEuyErGGPtQkF7IX/L/oSCjkKGGbvxhNcjeJldGTbSymrymzeT0/QfJBSMtnkRd/Pl/aZG/lBTTw55zV9R3n4SHXRxNpuL15C7sDAY/t01taQ1p7OnfB9lXeU4GjnyhNejBFmM4WxNAX9O3kBOSzWeZja8G7KCECt3vkxLZm3aIbrVapb7BbA+NBxJBe/sj+FAUjYGerqsmxHK/VPGYmZkQEZuBRs2x5CWXY6djRkvPzGHWZN+tL1ifRvbPjvD0V2JACxcFcqdaydjIfZ+FbiJJ3tJkp4C7gXqgc+BfbIsq6Te3448WZZvuPJCPNn/dqlVGg7vTODbT07R3trNrDuCuPeJGX0qUQIUlNTx/sbTJF8sxc3Jisfvm/z9HqZnsgt588BZSuubifBz5w8LInCztWRrZgb/jjtHa08PqwJG8HTYeNCReTPzJAfLMrA3MucZ/+kscBlBt6aL3eV7iao9zRA9c1Y4L2O8TTg6PwjxbnUjibUvUteVgIPxFEYNfQFj3auXINZoeyhvP05B63aae7LRlYzxGLISryFrvl8Nq5E1JDQkcqjqCOVdFdgZ2LLEaTEhVuM4U5PPx7lnyGquwsXEkid8pxBh6823GWl8npJMm7KH+d4+PB06HhMdfT6PSmB3fCY6ksSq8aN4aNo4rM2Myc2v5ovt57iQUoS1hQn3Lgtl4cyR6P9gKKajrZudG2PY++15VCoNs+8I4q6Hp/Sp6y/8dv2cT/ZWwFJZlkt++IeyLGu/G6oRBqnEmMtseOsoZUV1jA71YN2zc/ttAdjU0skX285xIDIDU2MDnnloGotnjUJXV0FBdQNv7D/D+csluNta8cnaJUz0HUZceRnrtx0mt76OMCcX/jx5Kl5WVmwuSODD3GiUWg0PD4/gYZ8IDBW6xDcmsKV0O62qVqbbTmW5y9I+tWsAGrsziKt+DqW2haCh/8cw88VXvacudS1Frbspat1Fj6YRMz0PRtk8j4vpfPQVvRPKVFoVsfXnOFx1jLqeOhyNHFnn8RAhViFEV+exIvpzclqqcTWx5PWgRUyxHc6WixlMO/olLT3dzPLw4qnQcKz0jXtDPi4TGZklIQGsmxGKvYUZlwtreOPD45xLKsDc1JBH7o5g2dwxGBleqU/T3aXk4LZ4dnx5lraWLqbMHcm9j0/H0VVsIiL0JxZVCT9ZWVEdn75xhKRzeTi5WbP2D3MJnTy8z7ixWq1hz7HemSJdXUqWzBnDgyvDMTczoq2rh49PXGBrbFqfBUHN3d38LSaag5dzcTQz46WJU5jr5U1mcyV/SjnA5dZaIuy8eGnkHIaZWtOqauOr4k0kN6XgbjKM+4bdg7vJsH791coqDhdPRyEZMt7hfSwMfPu81tidQXXnOWo6z9OivARI2BtH4DXkLoYahXx/X62qNk7XRhNVe4oWVSvuJu4scpxPoPkIjldms+FSLPltdbiaWPHo8Agihvrw7cU0Nqal0NrTwwx3T54MDcfO0IQvTiWy88JFtFqZxSH+rJseiqOVOYWldXyx7Txn4vMwNTHgzkXjWD5vDCY/qBuvUqk5tjuZLRtO01Tfztjx3jzw1Ey8/Bx/fOvCIHArzbMXfiM62rrZ/Olp9m+5gKGRPmufncuiO0P7ze5ISCvm/Y2nKC5vJGTUMNY/0LtMX6uV2Z+YxTuHYmnq6GRZ6AienDsBM2MDNl9M4+0L51CqNawPCePR4BDUspbXM46ypTCRoYZmfBC6iukOvW8qiY1JfF38LV2aLla5rGCO/aw+QzY/1KmqRKVtY8TQ32Oq50qrspDmnmyqOmKo7TqPStuOhC7WhqMIsFqPk+kMTPWuzAyr7qrmWM1JYuvOoZJVjBoygtn2s/A08WZfWTovJH5MWUcTXmZDeSN4CeMsPdiUnspfjnxBu0rJDHdP1oeGY2dgwsboJHaez0Ct1bIo2J91M0Jxth5CaUUjr757mMjYHIwM9XlgZTgrF4zFzOQHlT5VGqIOpbF1QzTVFU0EBrnx8lurxebewk0RT/bCDWm1WiIPpPLluydoaepkztKx3PfEjH5f/FXVtvD+xtPEJOTjZG/B+vunMCHYE0mSuFxVz193RZJWXMVIV3teWjqNABc7MmtreDHqBFl1tUx0cePVqdNxt7DkXE0BL6fsp7a7jbs8xvGU/zTM9AxRaVVsKtnM2boYhhm7sdbjQZyNna/b/9rOOGKrHu335wYKG+yNJ2BvHIGtcSh6OlfuRytryWrJJrL2FOnNGehKCsbbhDPHfhYmCku2FyXxTUEC9T3tjLR0Yp3PRIabOvBlajLbsi72qa5pqTDki9OJ7InPRKPVsnCsP+tmhOBiY0FpRSMbd14gMjYHA31dls8L4s7F4xjygwVRGrWGU4fT2fyf01RXNOHt78h9T8xg7ARvMVdeuHXKJfwUIuxvPZezKvj47wfJvViO3ygXHntxAd7+fTfs6FGq2XogkU2749GR4L7l4axaOBZ9PV06e5R8ciKOb86mYG5kyDMLIlgc7E+PRs178ef5IjUZKyNjXpk8lblePnSolbyVeZLtxcl4mtnw96A7GGnV215tdx0f5X9CcWcJCx3mc4fTInR1bvzhVKVtp6R1P53qKgwUVhjp2mOm746F/vB+s3A61B3E1J/jVM1panpqMdc1Z6rtZKbbTaVVqWVTfhx7SlLp1KiYYOvJWp8JWOuY8VlqMvtys5GBxcP9eGTsOPS0Cr48ncj+xGyQYfE4fx6aPg4XawsKS+v5dm88kbG5GOjrsnTOGFYvCu6zgYhapeHU4TS2f3GWipIGvPwcuefx6YRE+IiQF74nwl74n7Q0dfDVByc5tjsZCysTHvr9bKYvGN0vZBLSinnns0jKq5uZEu7DE/dNwX5o7xeZ0VkFvL7nNNXNbSwLDeTp+ROxMDHiQlkpL0SdoKy1hVUBI3hx4iTMDQxJqi/h+aS91HS1cr9XGOv9p2Ko6K1Fk9WSzYf5HwMSaz0eJMhyzM92r7Isc6ntMjH1sSQ0JqHUKvEy9WKG7VTGWgaR0VTFNwXxRFbmopAk5jmP4AHvcDo6NXyanMDJwgIMFLqsCghkbdD/a+/O46Oq7v+Pv85kspGNbEBIAgnZSAIkIQlh3wRkEwRR1Kp1adX6rV202sW2Vq3Wtra/trbVarXWBRVEFAHZBGQNkBAge0I2spKN7OvMnN8fQTSG1TIEmM/z8eAhMXfmnivynpvPPedzEmlt7eLfWw+w6UgeRjsDNyZGc9/MRIZ6uZNfVM0bq/bx+f58nJ3sWXJ9LLctTuwV8t3dJrauPcy7r+6guqKBkJF+3P7ADNklSpyRhL34RsxmCxtXp/DGi1tobelk8e3jueN7M/ssyKk92cKL/9nOZ3tyCfDz5NHvXkdiTFDP95pbeX7NDjYdySN0iDdPLptFbPBQ2rq7+ePeXfz3SBpBAz15/ro5jPMPwKwtvJK7m79n7yDAxZPfJywh1uvL0kxK/SFeKvgXfk5D+GH49/F1vDT7n57sOsnu2r3sqtnNic5qnAxOTPBOYsag6QxxGsqGsgzeKthPdmMVHvZO3BwUz23BCWRU1fDvtFRSKsrxcHTizjGx3DkmluKqk/xnewq7sosY4GjP8okx3Dk1Dh83F45ml/P2mv3sO1SE6wBHls2P4+aF8b3KNV2d3Wxck8qq13dRU9VIxKgAbn9whtzJi3OSsBcXLTe9jBd/u5Zj2RWMSQzmoZ8vJCi09zx0i0WzZtNhXlmxi+5uM3cuTeJbS8bhYG9Ea83HB7P449rPae8y8eCcJO6ZnoC90Y6DFWU8tnkjx5sauTsmjscmTsHZ3p4T7U08enA1qXXHWRAwit/ELsTV/suZJzuqd/JG8ZuMcAnm0YgfnW4//E11mjs50niUPbX7ONqQjgULEW7hTPWdQqJnPPWdHbxflMLK4kOc7GojxM2Xu0KSuM4vkg15ebyelkpJYwP+bu7cEzuWZZHR7M8r5T/bU0g/XoWXqzO3T47j1kkxuDs7sielkHfW7Cc9t4KB7s4sWzCWm+bF9Xrw2tHexfpVB1n9393U1zQTFTuM2++fLjV5cUEk7MUFa25q542/bmHDBwfx8nXlu4/OY9rc0X2Cpqi0lt+/tJmM3AoSxgzn0e/OInBoT9OtE40tPLVqK7uyixgbPJQnb57NiMFemCwWXjywj38c3E+Amzu/n3U9SQE9Oz8dri/j4eT3aTN38WTMAm4I7H3OgpZCns1+nij3SB4Ofeh0d8qL9UXAH6hP4UjDUbosXXjYezDZZxJTfSczyHEQu08c4/2iVHZU5aHRzBgSwR0h4xjm5M1b6Ud4L+MoTZ2dxAwewnfiEpgRFMyGQ7m8sT2FktoGAr09+Pb0eBYnRmNvMLAjOY83V++noKQGv0Hu3LookQUzR+Hk+GWL5C9CftXrO2mobyUmMZjbH5jBmMRgCXlxwWTqpTgvrTXb1h/h1Rc+pamhjRvvmMCdD13Xq8UBQHe3mbfW7Oet1ftxdrLniYfnMXdaFEoptNZ8kprN8x/toNtk5mc3Tue2SbEYDIqShgYe2dyzhd5NkdE8m7TyyQAAIABJREFUOW0mrg49i4JWFqXy26OfMsTZndcm30m4e+9t+9rN7bxc8CoD7T34XsgDFx307eZ2MhozOVifQlrDEbosXbgb3ZnsM5FxXolEuIVT29HKmpLDrCp+j/K2BrwdXfhO+CSWDY+jsrGNN1PS2FSQjwbmhoRxd+xYgt0GsnJfOvNX7KCuuY2ogEG8cNcCZo0OxWSy8On2TN5bm0JZ5UmG+3vxxMPzmD15JMav9AZqbmpn7bvJrF2RTOPJVmKTRnDHgzOl3bCwKgl7G1VxvI6/PfMxh/cXMnJ0AM++fHefTUQAcgqqeO7vGyk8XsusySP54b0z8PToKaU0tLbz1KqtbE0/xtjgoTxz6/UM8+lZor+pIJ/HtmzEoBR/nbuAG8J7FjJprflL1jZeydvN5EEh/CFhKZ6OA/qct6ClkOrOah4MuR8XY9/vf123pZvC1iKyGrPJaMqisKUQCxbcjG5M8plI0qmAN2vNzqp8Xsx8n50n8jFrTZJPEI9EX8dk31A2Hsvne2vXkVVbg4ejE/fGxXPXmDg6202s2J3GRwcy6TSZmRIZzF1Tx5IUFkhrWxfvrU3h/U9SqG9oIzJ0CM/85Aamjgvr1bumoa6Fj99N5uMV+2hr6WTc1AhuuXeKzJMXl4WEvY0xdZv54L+7WfGv7Rjt7fj+Ezcw/+ZEDIbeUxC7uk28sSqZd9bsx3OgC3/4xRImxn/ZBmlvbgm/fG8TJ1vbeXThFO6aFo/BoOg2m3lh325ePZTCmMFD+Me8G/B375mdY7JYeOrwOj4oSeOWoLH8OnYBdmdZCBXkMhyForytHL62+l9rTV1XHWVt5RS3lZDbnMexlgK6LF0oFCNcglkwdB6j3KMJcwvFTtmR31TNCxlbWVt6lLrOVnwcXbk3bCJLh8dh6Va8k36EX6zfQVNnJ+Fe3jw3czY3hI0ktbCcp9/dyt68Euzt7LghPpJvTx/LiMHeVJxo4G//2c66z9Jp7+gmMWY4v/lREnGjAnuVYcqKa/nwrT1sXZtGV6eJybOjuf2BGYwIH3KJ/lSFOD+p2duQ/Kxy/vzrNRTlVTHpuige+vlCvAf13UAsv7iaZ/66gcLjtcybHs3D98zA/dRsnG6Tmb99uoc3dqQSMtiL5781j5H+PSWYho52Hlr/CcnlpdwxOoYnpkzH0fjl/cQzRzawovAgD0ZM4QeRM85bl/5d9h/Iac7F0eCIn9MQunQ3XeYuWkzNdFg6Tx8X6BxApPtIIt1HEuEWfvohbmVbIxvKMlhflkF2YxVGZWD6kHCWDo8jySeY7UWFrMg4yr6y4xgNBuaGhHHHmFiivHxZm5rNil1plNQ2MMjdheWTYrgpaTTebgPIzKvk/U9S2JGch1KKWZNGcvPCsYwM6R3e+VnlrHx9F7u3ZGK0t2PWoliW3jmJwOBLM5tICJAHtOIrOju6efulbaz+724Gervy8C8XMWFGZJ/jzGYL7649yL/f24OHqzM/e+h6JsR/uVtTWV0jj7+9gfTjVSyfGMNPFk3F6VSrhMKT9Xznk4+oaGriuetmszQyutd7ryxK5cnD67g3dAKPjZ5zQeNu6m4iuW4/lR1V1HXW4WBwwN7ggItxAEOdhxLg7E/ggIBeTc/qO1vZWJ7FhrIMUuuOAzDG05+FgaOZHzCKxrZOVmZlsDork7r2Nvzd3Ll11GhuiRpNa1sX7+89wkcHMmnp6GL0sCF8a0occ2LCUCh2HzjG+5+kkJ5bgesARxbNHsMtC+Px8fpy5a3WmrT9Bax6fRdpyQUMcHVk4fIkltwxEU9pNSysQMJeAJCZVsKff/0h5SV1XL8knu8+OhdXd+c+x1VVN/LUXzeQnlPO9PFh/OSB2Qx0/7JWvjO7iJ+9/SkATy2fzewxYae/l159grvWfIDRoHhpwWIShvZeYVvQVMOSbS8zftAIXppw21lLN99UVXsT2ypz+awyh/01RZi1JsTNl/kB0SwMGI2voxsbj+XzfmY6ByrKsFOKGUEjuH10DBMDAtmXd5wVuw6zN68Eo8HA7DFhfGtqHDHD/Whr7+KTrUdZtf4QVTVN+A3y4JaF8SyYOYoBzl92oDSbLezeksnK13dSkFOJp48rS++YxPybE3Fxk01DhPXIbBwb19nRzZt/38qHb+1lkJ8Hv3vlHuLGn3nrgc/25PDHl7eg0fzqB/OZM/XLlZoWi+ZfW5J5aUsyEX6+/L+7byDA2+P0aw+Ul/GdT9Yw0MmJt5fczDCPvj3UX8nbjdFgx/PxN16SoNdak9t0gu2VeWyrzCWjoQKAYFdv7gubxPyAUYS5+XKoqpJ/Jh9kQ34eLd1dDPcYyGMTJ3NTZDSY4MMDGTz39mdUnmxmkLsL3587kZuSRuHj7kJpxUle/M921m/LoKWtk5jIAB6+ZwaTE0J6PXRtb+tk69rDfPTOXspL6ggI8uHHTy1hxvwxOHxlmqUQ/U3C/hqUm17GH5/4gLLiWhbcPI77Hrm+z3RKgI7Obv7y2jbWfZZOdLgfT/5oAUMHfxnWbZ3d/PTtDezIKmRRQiS/vOk6nB2+DLDkslLuXfsh/m7uvHnjMvzc+m41XNfZyvqydG4fkYiX4zdfEFXT0cKB2mIO1BSx60QBle2NKGC0pz+PRF3HdUNHMsLNh5KGBtZkZ/FAziccb2pkgL0980LDWRYZTbyfP/vzj/Pcqu3syCzAbNGMDxvGozdMZeaoEOyUgYNHivnd+lT2pxVjZ2dg+vgwlt+QQFRY75lK9bXNfPT2XtavOkhrcwfho/z55Z9uY8LMyF4fBkJcKSTsryGmbjPvvrqDd1/9HG9fN577192MnRB6xmNLyur41Z8+oai0ljuXJnHf8om95oLXNLXw8OtryS6r5udLZnDbpJheD1SP1dfxwLqPCXBzZ8VNy/EZcObpkY4GI65GR7IaqrBojeECFgtprSlprSetrpRDdcc5VFdKYUstAK5GR8b5BPHQyKlMGxKOr5MrNW2tbMjP5fHczRyqqkQBEwKH8XDSBOaGhNHW0cXHB7P4zZtbKKtrxMvVmbumxbNs/GiG+QykubWDNZ8e5sONhymrPIn3QBfuWz6RG2aPwcezd509L7Ocj97Zy86NGVgsFibNimbJnROJHBMoC6HEFU1q9teIsuJa/vCLVeRllHPdwli+97MFZ6zNA2zdncPvX9qEo4ORX/9wAeNig3p9P6+ylodeXUNTeyd/uGMe06N7l39q29pYuvIdOkwmPrzldgLcPTiXNSWH+cWhj7ktOIEZfhF4ObrgaDBib7Cjsaudmo5mqjuaKWmpJ7uxiuzGSpq7e2bbeNg7EesVSILPcJJ8g4j08MNoMFDf3sbmgmOsz89lX1kpFq0Z6ePLovCRLI6IxHeACzuzi1idnM6e3GLMFk38CH+WT4zhutEhOBiN5BdX8+GnaWzdnUN7RzejIoaydG4s0yeE99r2z2y2sPezLNa8vZesw8dxHuDAnBvjWXz7eNkVSvQ7qdnbCK01m9ak8tLz63FwNPKLF25l6pxRZzzWZLbw0luf8/4nqYwe6c/TjyzE17t36SWr7AT3/+tDHO2NvPXwciKG9p0m+Ps9OznR0sKqm287b9AD3Dgshn01hbxblMK7RWf/MHc0GInwGMyCgNFEDfQj1iuAEDff0z8NVLe28H5mOhuP5ZFcVopZa4Z7DOShhCRuCB9JmLc3x6pqeWd7GusOZVPX3Iavuwt3T09gcWIUwYO86Oo2sWv/MdZsPMzhrDIcHYzMnhLJkrmxRIzo3Qeoo72LrWvTWP3mHipL6/EL8OSBx+Yz58ax8tBVXHWsdmevlHICdgKO9HyofKC1fvJcr5E7+4vT3NTOX5/6iN1bMokdN4KfPLsMn8F9581Dz16wv/7TJ6RllnLTvDi+/+3p2Nvb9Tomraic/3vtY9ycHPn3924i0Lvvw9YjJ6pY8v473B+fyM8mTb2o8dZ3tlLUXEdDVxudFhNdFjMe9s4McnLF19kNb0eXXg9wtdYUnKxnW1EhmwvySauqRAPDPQYyPyycBWERRPr4crK1nQ2Hclh3KIfM0hMYDQamRgWzODGaqZHBGO0MHC+v5+PNR9j4eRaNze34DXJn6bw4FswcfXoNwRcqjtfx8Ypktn6SRmtzByNHB7Ds7ilSjxdXpCvhzr4TmKm1blFK2QO7lVKfaq2TrXhOm5F15DjP/3QlddVN3Pej67np7kl9VsF+4XhFPY8/+yHV9S088fA85k2P7nNMbkUND/37I7xdB/DKAzcx1OvMHxofZGXgYm/P/yUkXfSYvRxdzvuQtq27m/3lpewsKWZbUSGlTY0ARPn48sOkicwJCSXC24dOk5mdWYX8a10yO7OKMFksRPoP4rFF01gwdiTebgPo6jaxY18eH28+QlpmKUajgSmJodwwawwJY4ZjMHxZY7dYLBw+UMi69/azb3sOdnYGJs+OZuHycUTHDZd6vLjqWS3sdc+PDC2nvrQ/9evKeUBwlbJYLKx8fRdv/uMzBg3x4M//vZ+I0Wffli81/Ti/fGEtdgbF335zC6Mi+m5KXVHfxPdeXcMARwf+/eAyhnj2nVVz+tjmZoZ7DMTN8Zt1oPy6brOZ9OoTJJeVsqf0OKkV5XRZzDjaGZkYOIz74xOZERTMUDd3us1mkvOO89aWVD5LL6C1swsftwHcMTWORQlRhPn5AFB4vIYVq/ez6fMsGpp67uIf+NYUFswchdfA3h82zU3tbP04jXUrD1BeUouH5wCWf2cqi24bj5fP2f87CHG1sWrNXillB6QCocA/tNb7z3DM/cD9AMOGDfv6t8VXNDW08ccnPuDgrjymzR3ND361+Jy14217c3nqL+sZNtST3/98Sa9plV8wmS088uY6OrpMvPH9W84Z9AAdpm6q21opajhJ8EDPi76GmrZWjlZVcfhEJYerKjlUWUG7yQRAhLcP346NY/Kw4SQO9cfJaI/ZYiGtqILXNh1k85E8Gto6cHNyZE5MGPPjRpIYGoCdwUBbexcbtmXwydajpOdWYDQamBgfwqLZYxgXE9TrLh6gtKiGj9/Zx5a1aXR2dBMVO4xvPbiMybNH4eAgj7LEteeyzMZRSg0E1gAPa60zznac1OzPLje9jGd/8i71NS088Ph8Fi4fd87SwoZtGTz/0iaiw4fyx18sxfUM8+wBXtqczD837eOFuxZwfUz4eceRXn2Cez5ajVLw+KSpjPcPJMDdvddYLFpzoqWF0qZGSpsaya+vI7e2huzaGqpbWwGwU4pwbx8Sh/qTFBBIkn8AXs490ze7zWZSCsrYevQYn2Uco665DSd7IzOiQ5gXF8GkkcNxMBqxWDRpmaV8uiODz5Pzae/oJnCoJ4tnxzB3elSvFcAAXV0mknfksHH1QQ7tK8DewciMBWNYfNuEM3b8FOJqcCXU7E/TWjcopbYDc4Gzhr04s80fpfK3p9fiNciNP735XSJGnb1sA/DBhkP85bVtJIwZzu9+uhhnJ4czHnesqpaXNyezMH7kBQU9wOhBg1l5863ct3YNP926CQBnoxEHOyMGBV1mMx0mE+av3EQ4GOwI9fJicuBwRvr4EjNkCNG+gxlg/5WNPLpNbM8oYGt6PtszC2lu78TZwciUyGBmjw5jalQwAxx7rqPiRAMbtmWwYUcm1bXNuAxwYNbkSObNiGZ0xNA+H4I1VQ18ujqFDasO0lDfiu8QD+58aCYLbh7HQOlXI2yE1cJeKeULdJ8KemdgNvB7a53vWmTqNvPqnzby8Yp9jJ0Qws//sBw3j3P3dl+3NZ2/vLaNKeNCefqRG/rMuPmqVfvSsTMYeHzR9Isa1whPLz67617y6+s4UF5GSUMDJosZi9Y42BlxMhrxc3NjmLsHgR4e+Lu5Y2/XdxxVDc3szC5iV1YRyfnH6eg24e7syIzoEGaOCmFixPDTK3YbmtrYvCOLrbtzOJxVhlKQGBPEQ3dOY0piCI5fa01gNltI2ZPPhlUHObgrF61h3JRwbrg1ibgJoTKrRtgca97Z+wH/PVW3NwArtdbrrHi+a0pzYxtP/3gF6SnFLLljIvf9+HqM5whugM+T8/j9y5tIigviqUcWnjPoTWYL61KzmTU6FE/XMy++OheDUkR4+xDh7XPBr+k2mUkrrmB3dhG7coo5VlUHgL+XO0uTRjEtagSJoQGnPxg6O7v5bE8Omz7PYv/hYsxmC8P9vfjOrZOYOz2aIb59ZwzVVTex4YODbPwwhbrqZjx9XLnl3qnMvSmBIf4X/4xBiGuFNWfjHAXirPX+17ITFSf51UNvUllaz2PPLeO6hbHnfU1BSQ2/ffFTIkP9ePaxxb1WgJ5NW2f3WadYXgoms4Wc8moOHCtlf34ph4rK6eg2YbQzED/Cn0UJUUyNDGbEYK/TpReTycyBw8V8tieHHcl5tLZ14evlyvKF8cyeEklokG+fMo2p20zKnny2rk1j345sLGZN/MRQvvezhYyfNvK8H5JC2AKZdnCFyTlaym9+8Dbd3WZ++/K3iUkccd7XNDS18fhzH+IywJFnH1vUa1PrszHaGQjw9iCnogat9SWZR97Y1kFm6QmOHq8ktaCcIyWVtHd1AxAy2IulSaNIChvG+LDA0/V36PlQSMsoYevuHHYeOEZzSwfOTvZMHx/O3OnRxEYFnLHsUlpUw6erU/jsk8M0nmzFw9OFxbdPYOEt46SNgRBfI2F/BTmUfIynf7gCT28X/viPuy54R6MX/7ODuoZWXn7u9j7tD85levQI3tiRyt3/XMXDcycSGzQU4wXUsk1mC5UnmzhWVUd+VS35lbXklNdQXHPy9DHhfj4sTowiPtif+BB/fN17Pwg1mcwczipj+748Pk/Oo6GpnQHODkwZF8qMCeEkxgTheIYpkF2d3ezZmsWG1QdJTynGzmhgwvRIZi2KI2FSmNzFC3EWEvZXiH3bs3nuJ+/hH+TDsy/fjbfvhYX2wSPFbNqZxd3LxvfZFu98frxgCp4uzvz380Pc889VDBzgxJTIYIYMdMPR3oij0Q6TxUJ9SzsNre3UNrdSVtdI5clmTBbL6ffx93In3M+XRQlRjBo2mOjAwbg7953/397RRXJaETv3H2PfoUJaWjtxdrJnYnwIMydFMD42qM+DVuhpm5CRWsyWT9LYvSWTtpZO/AI8ufdHc5i9eKzsACXEBZCwvwLs3prJ7x5/n7DIoTzzz7vOO+Pmq15fuY+hgz2486bxF31eg0Fx78xElk+MYU9uMdszC9iTW0xTW2evMHd2sMfTxRkvV2eiAgYzNzaCQG8Pggd7ETrEG1ens6+mPdnYyp6UQnYdOMbBoyV0dZnwcHNmSmIok8eFkhQbdNayU01VA5+tO8LWtWmUFdfiPMCBSbOimbkwhthxI87aHkII0ZeEfT/buTmD53+6kpGjA3jmn3fh4nrh3RRLK06SnlPO9+6cesaSx4VycXJgTkw4c74y195kttBlMmEwGE7vM3shzGYLWfmVJKcVsT+tiNzCE2gNg33cWDRrDFPHhTImKuCs5aKWpnb2fJbF9g1HOHKgCK01o8YO55Z7pzB1zmicBpx5zYAQ4twk7PvRoX3HeP6nK4kcE8gz/7zrjLtJncve1AIArps08pKPzWhnwGh3YcFaW9/CwSPFJKcVceBICc0tHRgMiujwodx36yQmjB1BePCgsz4ENpvMHDlYxJa1aezZmklXpwm/AE9uf2A6sxbF4RfgdSkvTQibJGHfTwrzqvjto+8yPGQQT//jzosOeuB0GcPZ6fLudVpb38LRnHIOZRznUHopxyvqAfAe6MKUxBCS4oJJjAnq0zr4q8xmC1lpJXy+KYNdmzNoPNmKi5sTc26MZ/biOMKj/aXTpBCXkIR9P6iraeaJB99gwABHnv77HRdVuvkqj1NN0LbvzeXG688/F/+b0FpTWnGSzLwKjuZUkJZZSlllz6wbZyd7YqMCWDhrNAmjhxEaNKhPw7GvKz52gm3rDrNt3RFqq5twcDSSNG0k0+aOZtyUcNmkWwgrkbC/zMwmM7977D3aWjr56zsP4jukbyfKCzU5MZSYyABeeGUrJxvbuPvmCf/T3bDJbKGiqoH84mryCqvJL6omu6CK5pYOAFwHOBITFcCNc2IYE+lPePCgXvvWnonWmuL8E+zemsnuLZmUFFRjsDOQOCmM+x65nqRpI7/RTzVCiIsjYX+Zvf3ydjIOlfD475YRFDb4/C84hwHODvy/J5fxh5c389r7e9mbWsjUpDCCArwZHuDFYG837Ix22J26227v6Ka5tYPmlk5qT7ZQVdPEiZomyqsaKDxeS1nVSUymnlk4RqOBEYE+TB8fRnT4UKLD/Rju733eO/cvFB87wY5Pj7JrcwblJXUopYiOG8aDj89n2rwxMl1SiMtMwv4yKiuuZdXru7huYSwzF1yasouDvZEnvj+P8ODBrN+Wwb/e2XXG45SCM3WztrMzMNjHjeBAHyYlhBAU4EVo0CCCArzP2Vvn67TWHMuuIHl7Dnu2ZVGcfwKDQREzbgRL75rExJlREvBC9CMJ+8voi03B73vk+kv6vkopblkYzy0L42lt66SkvJ6SsjpqT7ZitlgwmyyYLRqXAQ64uTjh6uKIt6cLQ3zd8fF0/cYdIM0mM0dSitizJYv9n+dQW92EwaCIjBnGQz9fyJQ5oyTghbhCSNhfJgU5laTuzee+H19v1e3uXAY4EhXmR1SYdTbjaG3uIC25gAO7c0nenkNTQxuOTvYkTArj7hmRJE4Jx8Pz3PvMCiEuPwn7y2TjhynYOxiZuzS+v4dyUbTWlByrZv/OHFL3HiMzrQSzyYKLmxOJk8OZMmcU8RNDcXKWxU5CXMkk7C+TtOQCxk4IvahWCP2lrbWToweLOJR8jAOf51JV3jPVMjh8CDd9ezLjJoczckygNB0T4ioiYX+ZNDe24TPIer3j/xddnd1kHT7O0ZQijh4sIvtoKWaTBUcne8YkBnPLfVNJmhqB9xU6fiHE+UnYXybd3Wba2zv7exhAz2Yf+VkVHE0p5MjBIjIPldDZ0Y3BoAiJHMpN357M2PEhRMUNx+F/6LkjhLhyyN/ky2Tm/Bg2fpjKPT+Yg+8Qj8t67rrqJvIyy8k+Wkr2kePkZZTT2dGzqUhQ6GCuXxJP/MRQRsUHfePVvEKIK5s1NxwPBN4EBgMaeEVr/Vdrne9Kt+yeKWxYncKzP3mP7z46l+i44VY5T1NDG8dyKijMqSIvs4ysw8epPdEEgJ3RQMhIP+YuTSB67HDGxAcxUKZGCmETlD7TSptL8cZK+QF+WutDSik3IBW4UWuddbbXJCQk6JSUFKuM50qwdW0a//7zRhrqW4kdN4JbvzuNUWODLvpBp6nbTHVVA1VlJ6ksred4YQ2lRdUcL6ihtrrp9HGD/DyIjBlG5JhAwqL9CY0ciuNlbpomhLAupVSq1jrhvMdZK+z7nEipj4G/a623nO2Yaz3sATrauli/6gCr/rOLhvpWHByNDA8ZhM9gD7wHuePoZI+jkxE7OwOdHd10dHTT0dZFQ30r9TXNnKxr5mRtCxbLl39uTs4OBAb7EDjCl+CwIYRE+hES4Sfz3YWwAVdU2CulgoCdwCitddPXvnc/cD/AsGHD4ktKSqw+nitBR3sXyTtyyM0o67kjP9HIyboWOju6T9fT7R2MODrZ4+Rkj4eXC16+bnh6u+Iz2J0h/p4M9vfEL8ALn8HusmuTEDbqigl7pZQr8DnwrNb6w3Mdawt39hdCa43For9xGwMhhO240LC36mwcpZQ9sBp453xBL76klMLOTjbuEEJcOla7dVQ9jdVfA7K11n+21nmEEEKcnzXrBJOAO4GZSqnDp37Nt+L5hBBCnIXVyjha692A1CKEEOIKIE8AhRDCBkjYCyGEDZCwF0IIGyBhL4QQNkDCXgghbICEvRBC2AAJeyGEsAES9kIIYQMk7IUQwgZI2AshhA2QsBdCCBsgYS+EEDZAwl4IIWyAhL0QQtgACXshhLABEvZCCGEDJOyFEMIGSNgLIYQNsOaG468rpaqVUhnWOocQQogLY807+zeAuVZ8fyGEEBfIamGvtd4J1Fvr/YUQQlw4qdkLIYQN6PewV0rdr5RKUUql1NTU9PdwhBDimtTvYa+1fkVrnaC1TvD19e3v4QghxDWp38NeCCGE9Vlz6uW7wD4gQilVppS6z1rnEkIIcW5Ga72x1vo2a723EEKIiyNlHCGEsAES9kIIYQMk7IUQwgZI2AshhA2QsBdCCBsgYS+EEDZAwl4IIWyAhL0QQtgACXshhLABEvZCCGEDJOyFEMIGSNgLIYQNkLAXQggbIGEvhBA2QMJeCCFsgIS9EELYAAl7IYSwARL2QghhAyTshRDCBlg17JVSc5VSuUqpY0qpn1nzXEIIIc7OamGvlLID/gHMA6KA25RSUdY6nxBCiLOz5p39OOCY1rpQa90FvAcstuL5hBBCnIXRiu/tD5R+5esyIOnrByml7gfuP/Vlp1Iqw4pj6k8+QG1/D8KK5PqubnJ9V6+ICznImmF/QbTWrwCvACilUrTWCf08JKu4lq8N5PqudnJ9Vy+lVMqFHGfNMk45EPiVrwNO/TshhBCXmTXD/iAQppQKVko5ALcCa614PiGEEGdhtTKO1tqklPo+sAmwA17XWmee52WvWGs8V4Br+dpAru9qJ9d39bqga1Naa2sPRAghRD+TFbRCCGEDJOyFEMIGXFFhr5S6WSmVqZSyKKWumWlS13LbCKXU60qp6mt1fYRSKlAptV0plXXq/80f9veYLhWllJNS6oBS6sipa3uqv8dkDUopO6VUmlJqXX+P5VJTShUrpdKVUofPNwXzigp7IANYCuzs74FcKjbQNuINYG5/D8KKTMCjWusoYDzwf9fQn18nMFNrHQPEAnOVUuP7eUzW8EMgu78HYUUztNax51tHcEWFvdY6W2ud29/juMSu6bYRWuudQH0f9IisAAACrklEQVR/j8NatNaVWutDp37fTE9o+PfvqC4N3aPl1Jf2p35dUzM2lFIBwALg3/09lv52RYX9NepMbSOuibCwNUqpICAO2N+/I7l0TpU4DgPVwBat9TVzbaf8BXgcsPT3QKxEA5uVUqmnWs+c1WVvl6CU2goMOcO3ntBaf3y5xyPEhVBKuQKrgR9prZv6ezyXitbaDMQqpQYCa5RSo7TW18TzF6XUQqBaa52qlJre3+Oxksla63Kl1CBgi1Iq59RP231c9rDXWs+63OfsZ9I24iqnlLKnJ+jf0Vp/2N/jsQatdYNSajs9z1+uibAHJgGLlFLzASfAXSn1ttb6jn4e1yWjtS4/9c9qpdQaesrGZwx7KeNYn7SNuIoppRTwGpCttf5zf4/nUlJK+Z66o0cp5QzMBnL6d1SXjtb651rrAK11ED1/77ZdS0GvlHJRSrl98XtgDuf4oL6iwl4ptUQpVQZMANYrpTb195j+V1prE/BF24hsYOUFtI24aiil3gX2ARFKqTKl1H39PaZLbBJwJzDz1PS2w6fuFK8FfsB2pdRRem5Ktmitr7npidewwcBupdQR4ACwXmu98WwHS7sEIYSwAVfUnb0QQgjrkLAXQggbIGEvhBA2QMJeCCFsgIS9EELYAAl7IYSwARL2QghhAyTshTgLpVSiUuroqb7vLqd6vo/q73EJ8U3IoiohzkEp9Vt6+qo4A2Va69/185CE+EYk7IU4h1P9jA4CHcDEU10ihbjqSBlHiHPzBlwBN3ru8IW4KsmdvRDnoJRaS8/uYsGAn9b6+/08JCG+kcvez16Iq4VS6i6gW2u94tRewnuVUjO11tv6e2xCXCy5sxdCCBsgNXshhLABEvZCCGEDJOyFEMIGSNgLIYQNkLAXQggbIGEvhBA2QMJeCCFswP8HVvJc5wEt+e8AAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "# Create log pdf\n", + "mean = [2, 4]\n", + "cov = [[1, 0.9], [0.9, 1]]\n", + "log_pdf = pints.toy.GaussianLogPDF(mean, cov)\n", + "\n", + "# Contour plot of pdf\n", + "levels = np.linspace(-3,12,20)\n", + "num_points = 100\n", + "x = np.linspace(-1, 5, num_points)\n", + "y = np.linspace(-0, 8, num_points)\n", + "X, Y = np.meshgrid(x, y)\n", + "Z = np.zeros(X.shape)\n", + "Z = np.exp([[log_pdf([i, j]) for i in x] for j in y])\n", + "plt.contour(X, Y, Z)\n", + "plt.xlabel('x')\n", + "plt.ylabel('y')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's run the Neal Langevin Method without momentum persistance first (alpha = 0)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": "Running...\nUsing Neal Langevin MCMC\nGenerating 3 chains.\nRunning in sequential mode.\nIter. Eval. Accept. Accept. Accept. Time m:s\n0 3 0 0 0 0:00.0\n1 6 0.333 0.333 0.333 0:00.0\n2 9 0.5 0.5 0.5 0:00.0\n3 12 0.6 0.6 0.6 0:00.0\n100 303 0.971 0.971 0.971 0:00.1\n200 603 0.985 0.980198 0.985 0:00.1\n300 903 0.986755 0.986755 0.983 0:00.2\n400 1203 0.985 0.985 0.985 0:00.3\n500 1503 0.982 0.982 0.988 0:00.4\n600 1803 0.982 0.985 0.986711 0:00.5\n700 2103 0.982906 0.984 0.985755 0:00.5\n800 2403 0.983 0.985 0.986 0:00.6\n900 2703 0.982 0.986 0.988 0:00.7\n1000 3003 0.982 0.987 0.987 0:00.7\n1100 3303 0.982 0.986 0.986 0:00.8\n1200 3603 0.982 0.988 0.987 0:00.9\n1300 3903 0.982 0.988 0.988 0:01.0\n1400 4203 0.984 0.989 0.988 0:01.0\n1500 4503 0.985 0.989 0.988016 0:01.1\n1600 4803 0.986 0.988764 0.988 0:01.2\n1700 5103 0.985 0.988 0.988 0:01.2\n1800 5403 0.984 0.988 0.989 0:01.3\n1900 5703 0.985 0.987 0.988959 0:01.4\n2000 6003 0.985015 0.988 0.99 0:01.4\n2100 6303 0.984 0.988 0.99 0:01.5\n2200 6603 0.984 0.988 0.99 0:01.6\n2300 6903 0.983927 0.987 0.99 0:01.6\n2400 7203 0.984 0.988 0.99 0:01.7\n2500 7503 0.984 0.988 0.990008 0:01.8\n2600 7803 0.984 0.988 0.99 0:01.9\n2700 8103 0.984456 0.987 0.99 0:01.9\n2800 8403 0.985 0.988 0.99 0:02.0\n2900 8703 0.984838 0.988 0.989 0:02.1\n3000 9003 0.98501 0.987 0.989 0:02.1\n3100 9303 0.985 0.988 0.988717 0:02.2\n3200 9603 0.985 0.988 0.989 0:02.3\n3300 9903 0.985 0.988 0.989 0:02.3\n3400 10203 0.985 0.988 0.989 0:02.4\n3500 10503 0.985 0.988 0.988578 0:02.5\n3600 10803 0.985 0.988 0.989 0:02.6\n3700 11103 0.985 0.988 0.988 0:02.6\n3800 11403 0.985 0.988 0.988 0:02.7\n3900 11703 0.986 0.987 0.988 0:02.8\n4000 12003 0.986 0.987 0.988 0:02.8\n4100 12303 0.985373 0.987 0.987 0:02.9\n4200 12603 0.985 0.987149 0.987149 0:03.0\n4300 12903 0.985 0.987 0.987 0:03.0\n4400 13203 0.985 0.988 0.986597 0:03.1\n4500 13503 0.985 0.987 0.987 0:03.2\n4600 13803 0.985 0.987 0.987 0:03.2\n4700 14103 0.986 0.987 0.987 0:03.3\n4800 14403 0.985631 0.987 0.987 0:03.4\n4900 14703 0.986 0.987 0.987 0:03.4\n5000 15000 0.986 0.987 0.987 0:03.5\nHalting: Maximum number of iterations (5000) reached.\nDone!\n" + } + ], + "source": [ + "# Choose starting points for 3 mcmc chains\n", + "xs = [\n", + " [2, 1],\n", + " [3, 3],\n", + " [5, 4],\n", + "]\n", + "\n", + "# Set a standard deviation, to give the method a sense of scale\n", + "#sigma = [1, 1]\n", + "\n", + "# Create mcmc routine\n", + "mcmc = pints.MCMCController(log_pdf, 3, xs, method=pints.NealLangevinMCMC)\n", + "\n", + "# Add stopping criterion\n", + "mcmc.set_max_iterations(5000)\n", + "\n", + "# Set up modest logging\n", + "mcmc.set_log_to_screen(True)\n", + "mcmc.set_log_interval(100)\n", + "\n", + "# # Update step sizes used by individual samplers\n", + "for sampler in mcmc.samplers():\n", + " sampler.set_leapfrog_step_size(0.5)\n", + " sampler.set_alpha(0)\n", + " sampler.set_delta(mean=0.05)\n", + "\n", + "# Run!\n", + "print('Running...')\n", + "full_chains = mcmc.run()\n", + "print('Done!')" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAEYCAYAAABBWFftAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOy9eXTV1bn//9pnyDxPhCEQIIQxDBIExGpEUa62otZZ29tqtZqr97b39nv13tWu29tFf23v9St2QCtVC1bxq0WcqFplVJkhBkiAQICMJCHzdJKTc3L274995iEDJAR0v9Y663yG/fl89hk/+9nP87wfIaVEo9FoNBqNRqPRaDQXjmGkO6DRaDQajUaj0Wg0XxW0gaXRaDQajUaj0Wg0Q4Q2sDQajUaj0Wg0Go1miNAGlkaj0Wg0Go1Go9EMEdrA0mg0Go1Go9FoNJohwjTSHbgQUlJSZGZm5kh3Q6PRaDQXiYMHDzZIKVNHuh/+DMX9qKGrgQhTBDHmGHplL1a7lShz1NB0UKPRaDRDTqh70mVtYGVmZnLgwIGR7oZGo9FoLhJCiPKR7kMwhuJ+9MbxN0gMT2T5xOU8X/g8AFOTpnL9+OuHoosajUajGWJC3ZN0iKBGo9FoNJcAcWFxVHVU0dLd4t5W0lQygj3SaDQazfmgDSyNRqPRaC4BJJKe3h7WH1/v3pYenT6CPdJoNBrN+aANLI1Go9FoLgHGx44P2NZl7xqBnmg0Go3mQrisc7A0mksZVw5FKPLn5l+knmiGC5vNRlVVFd3d3SPdla8cERERjBs3DrPZPNJduWjkpOTwRfUX7vXR0aNp7G7k9WOvc3vW7VrwQqPRaC4TtIGl0Wg050lVVRWxsbFkZmYihBjp7nxlkFLS2NhIVVUVEydOHOnuXDSEEDw440FeO/oaALFhsdR01tDT28Pa4rU8Pudx/T3TaDSaywAdIqjRaDTnSXd3N8nJyXrQO8QIIUhOTv5aegZjzDHu5WhztM8+a6/1YndHo9FoNOeB9mBpNBrNBaCNq+Hh6/q+GoSB5ZnLqbXUYhRGn33WXisRpogR6plGo9FoBor2YGk0Go1GcwkxKWESV425ikhTpM927cHSaDSaywPtwdJoNJohYtWnJ4b0fD9elt1vm1/+8pesX78eo9GIwWDgxRdfZOHChUPaD2/y8vJ45plnyM3NPe9zHD9+nO9///sUFBTwy1/+kp/85CdD2MOvDlmJWXxe/bl7XRtYGo1Gc3mgDSyNRqO5TNm9ezebNm2ioKCA8PBwGhoa6OnpGelu9UtSUhK/+93vePfdd0e6K5c0kaZI8ufm09DVwFslb1FvqScjNmOku6XRaDSaftAhghqNRnOZUlNTQ0pKCuHh4QCkpKQwZswYAH7xi1+wYMECZs2axaOPPoqUElAeqB//+Mfk5uYyffp09u/fzx133MGUKVP46U9/CkBZWRnTpk3jgQceYPr06dx5551YLJaA63/yyScsXryYK664grvuuouOjg4Ann76aWbMmMHs2bODeqfS0tJYsGDB10qC/UIIN6rPd0/NHhzSMcK90Wg0Gk1/aANLo9FoLlNuvPFGKisryc7OJj8/nx07drj3PfHEE+zfv5+ioiK6urrYtGmTe19YWBgHDhzgscceY8WKFaxevZqioiLWrl1LY2MjACUlJeTn53Ps2DHi4uJ4/nnfum4NDQ2sXLmSzZs3U1BQQG5uLs8++yyNjY288847FBcXc/jwYbfRpjl/IoweYYtu+9dPWVGj0WguN4bdwBJCGIUQXwohNjnXJwoh9gohSoUQbwohwpzbw53rpc79mcPdN41Go7mciYmJ4eDBg6xZs4bU1FTuuece1q5dC8C2bdtYuHAhOTk5bN26leLiYvdxt956KwA5OTnMnDmT0aNHEx4ezqRJk6isrAQgIyODJUuWAPDggw/yxRdf+Fx7z549HD16lCVLljB37lzWrVtHeXk58fHxRERE8PDDD7Nx40aioi7v4rj+97CRwGTwRPPvPrt7pLqh0Wg0mgFyMTxY/wIc81r/DbBKSpkFNAMPO7c/DDQ7t69yttNoNBpNHxiNRvLy8vjv//5v/vCHP/D222/T3d1Nfn4+GzZs4MiRIzzyyCM+NaVcIYUGg8G97Fq32+1AoEy6/7qUkmXLllFYWEhhYSFHjx7l5ZdfxmQysW/fPu688042bdrE8uXLh+ulXyz872EXHSEEd2XfBUBJcwl2h30ku6PRaDSafhhWA0sIMQ64BXjJuS6ApcAGZ5N1wG3O5RXOdZz7rxdf10IoGo1GMwBKSko4efKke72wsJAJEya4jamUlBQ6OjrYsGFDqFOEpKKigt27lbdk/fr1XH311T77Fy1axM6dOyktLQWgs7OTEydO0NHRQWtrKzfffDOrVq3i0KFD5/vyRhz/e9hIEm7yGMJrDq/B5rCNYG80Go1G0xfDrSL4HPDvQKxzPRlokVK6pt+qgLHO5bFAJYCU0i6EaHW2b/A+oRDiUeBRgPHjxw9r5zUajWYwDERWfSjp6OjgySefpKWlBZPJRFZWFmvWrCEhIYFHHnmEWbNmkZ6ezoIFCwZ97qlTp7J69WoeeughZsyYweOPP+6zPzU1lbVr13LfffdhtSr58JUrVxIbG8uKFSvo7u5GSsmzzz4bcO7a2lpyc3Npa2vDYDDw3HPPcfToUeLi4s7vjRg+/O9hPlzM+1GsOZbUqFTqLfUAWO1WzGFKJMTmsGESpq9tcWaNRqO51BAuZakhP7EQ3wRullLmCyHygJ8A3wP2OMMAEUJkAB9JKWcJIYqA5VLKKue+U8BCKWVD0AsAubm58sCBA8PSf43mQnm+8Pk+9+fPzb9IPdEMF8eOHWP69Okj3Y0hp6ysjG9+85sUFRWNaD+Cvb9CiINSyvMvwjVAgt3DpJTfDNX+YtyPKtsq+eD0BwDcP+1+EiIS3BLus1Jmcc24a4b1+t70Onp5/djrLBy9kKlJUy/adTWXIVLC9l+DORKu/tFI90YzgtS2drPhYCWPXjOZMNNXQ2cv1D1pOD1YS4BbhRA3AxFAHPBbIEEIYXJ6scYB1c721UAGUCWEMAHxQOMw9k+jGVG0AabRXNIE3MOEEK9JKR8cqQ6lR6e7l10hgm+VvAVAUUMRWQlZjIkZc1H6Ut1RTYetgy0VW8hOzNbeM01ozjlTGG1dYLeCV7ir5uvFG/sqAPiitJ6l00aNcG+Gl2EzH6WU/yGlHCelzATuBbZKKR8AtgF3Opv9I/Cec/l95zrO/VvlcLnXNBqNRhOSzMzMEfdejTQh7mEjZlwBmI1mvjXpW4CqibXr7C6f/e+Wvsv+2v0XpS9/O/039/KpllMX5ZqayxWvodznz0JDad/NHb3Qq4Vcvsocqmylvt060t0YVkbCP/cU8K9CiFJUjtXLzu0vA8nO7f8KPD0CfdNoNBqN5pLFJdle2V5J4bnCgP0Xy8CSXoPmT8o/uSjX1Fym+KteHvmrc7sDqg5Ar59gy47/gc/+F2zdcOLvYO+5OP3UDAuNHcqQ6nX4+kxe21POZyfqR6JLF4WLYmBJKbe7YtellKellFdKKbOklHdJKa3O7d3O9Szn/tMXo28ajUaj+fohhJg20Lbe97CRJj48Puj2uWlzL2o/JsVPuqjX01xmHNkARRuhcj/UHQ3epvwLOPkplH3u2eYduHT4/0F1AZz8u2fbtl+pYzSXBXtPN/Lq7nJKz3VgtfcG7D9Y3jwCvbo4DLeKoEaj0Wg0lyKfAJedFG2UObBw833T7iMxIpG6zjpqOmvosndhFEbCjGHD1o86S53PusVmCdo3zQhRuQ+6W2HKsot/bXsPNDjLR9SXhG7X7vwOhcWo564W2POCZ39bjfP5rHp2ONRz1YGReV2aQbPrlJJSKKxswSASABiXGElVc9dIduuiMCADSwiRI6U8Mtyd0Wg0Go1mqBBC/C7ULiDhYvZlKPn2lG/z9sm3AZiZPJPEiEQAajrVgPTPRX/2aT/UgjnFDcV02joBSAhPoMXawodnPuSWSbcQaYoc0mtpzpPSLep57HyISrrI1w7hYZqUB6e3e9aNziGocAZTHfp/wY+zNKnntmrPNilhuIVVjn8INYfg2qfA8NVQvBtumjp7sDscpMVG+GyvbLJQ2WQBwOD83BKjzDRbbDR0WEmJuXDhk4YOK+EmA7ER5gs+11AwUA/W80KIcGAt8LqUsnX4uqTRaDSXKdt+NbTnu+4/+m3yy1/+kvXr12M0GjEYDLz44ossXLhwaPvhRV5eHs888wy5ueevlP7666/zm9/8BiklsbGxvPDCC8yZM2cIe+nm+8C/AcGyqe8bjgteDEZFjxpRldEdVTsAiDJFMS1pGntq9nDOco5Pyz+lqr2KBekLWJDef+01i82CzWELGfaoOQ+khEYv0ZG9L8LkpTB++P4TfGirgZrDgdsXPQaRicooOrXNqSjozK3qdT539REutu1XkJ7jWd/+6wH9P14QNc4i6We/hHHzh/daXwHONHTy7pfKCP7RDVNCtrtuWhqRZiM7Tpyj2WLjL7vLL7iGZGWThQ0HqxAC8vOyWL2tlKXT0piTMXLzaAMysKSU3xBCTAEeAg4KIfYBf5ZS6kBYjUajGSF2797Npk2bKCgoIDw8nIaGBnp6Lv2E8IkTJ7Jjxw4SExP56KOPePTRR9m7d+9wXGo/UCSl3OW/Qwjx8+G44EiyfOJyPj7zccB2m8OG2XDhs7p2h501h9e4100GE9mJ2eyp2QNAVXsVoIQ2XAZWt70bIQThRs8Mta3Xxp+O/Mm9/vicx7XM+/nicEBHLUgHxI9z5iz5iY6c2jr8BpbDASV/g1ov9dGE8dBSAfMeVMYVQKdT1OCL5zztenugtcr3fOMXwZh5UFMI5bvVttoLCKRqqYToFFWLa7DUFGoDqx86rHa3cQVQ29aNKYTXLylahS6PTYjiWE07AFJKqpq7SI0NJ8JsHPT1Nxyscp4HVm9TKpVbj58bUQNrwD5PKeVJ4KcoFcBrgd8JIY4LIe4Yrs5pNBqNJjQ1NTWkpKQQHq4GrykpKYwZo+og/eIXv2DBggXMmjWLRx99FFfVi7y8PH784x+Tm5vL9OnT2b9/P3fccQdTpkzhpz/9KaAKDU+bNo0HHniA6dOnc+edd2KxWAKu/8knn7B48WKuuOIK7rrrLjo6OgB4+umnmTFjBrNnz+YnP/lJwHFXXXUViYlqwLVo0SKqqqoC2gwRdwKBUnuAlHLicF10pMiIyQi63WofGjlkf1n4+aPmE+PKn/GjubuZ14+9zitFr/BK0Svu7VJKH+MKoLFbl7w8b05vg4ProOAvyojoarr4fXA4lPep1q+0w5x74ZqfQILX9zJhQuDx5btV/72Pm5QHkQnQV8hpbZGvKIYrR8sfKeHL15RR19UCnQ1wtlDJwfdFuPO7LXR4YH90dPsqRZ6s62DzsbqAdv9yvcezlTPO47nee6aJDQer2Hb83KCuK6UMUCe8VBjQt0YIMVsIsQo4BiwFviWlnO5cXjWM/dNoNBpNCG688UYqKyvJzs4mPz+fHTt2uPc98cQT7N+/n6KiIrq6uti0aZN7X1hYGAcOHOCxxx5jxYoVrF69mqKiItauXUtjoxrslpSUkJ+fz7Fjx4iLi+P5530LYzc0NLBy5Uo2b95MQUEBubm5PPvsszQ2NvLOO+9QXFzM4cOH3UZbKF5++WX+4R/+YQjfFQ9SyibAKoR4fVgucIlhNprdOVCjo0e7t39U9pG7MPGF0GJtcS9fO+5apidPD9n2jeNv0GpV2QRSSrfnq8semNy+pXzLBffta0tLuWf5y9eUAIQ/UUmBUugXQq9dhext+xUcfguK3oZ9a3zbRMSBwQhGP8/p6Nl9n3v0bEia6MmvMgQJtIqIU8/HPlChgi7Dav9LwRUGvScY9rwA+/4EJR/BAY/hj5RQV+w5V3sdWDucy7W+htzFwG69+Ne8AGrbun3WYyNM1LZ2B7QzGHw91XlTUwHY7RTDOF7bPqjrfnq0jjUf72dRxRqyGy6toLqBmuW/BwqAOVLKf5JSFgBIKc+ivFoajcaP3acaQz40mqEgJiaGgwcPsmbNGlJTU7nnnntYu3YtANu2bWPhwoXk5OSwdetWiouL3cfdeuutAOTk5DBz5kxGjx5NeHg4kyZNorKyEoCMjAyWLFkCwIMPPsgXX3zhc+09e/Zw9OhRlixZwty5c1m3bh3l5eXEx8cTERHBww8/zMaNG4mKCq0st23bNl5++WV+85vfDOXb4oOUsheYIIQYPkm9S4g7ptzBgvQFrMhawW1ZtwFQb6mnuKG4nyP7R+AZHM1MmelefnT2o6RHp/d5rN1hx9ZrY23x2oB9jd2N2P1rJQ0znbZOTreeDvDKXXYkTQ6+fdFj6tloUiIRhUM4x2Bt8yw3noLGIIWDcx8KffyVj4Te19Xiu97T4bueOMHXYALY8Rtl7FkagxuY3v31prNBCVns+F8oXA9H31dGmqPX1/gCZUQON7Yuj+H6+bMeoZLLAFuvr/ewtctj0D+xNItRcRH88NrA0g5zxl1YCF/x2Tbm1rwFQJLlTMD+VssQTiwMkoGKXNwCdDlvVAghDECElNIipfxL34dqNBqNZrgwGo3k5eWRl5dHTk4O69at49577yU/P58DBw6QkZHBz3/+c7q7PbOJrpBCg8HgXnat2+1qoOufE+O/LqVk2bJlvPHGGwF92rdvH1u2bGHDhg384Q9/YOvWrQFtDh8+zA9+8AM++ugjkpOTz/8NGBingZ1CiPeBTtdGKeWzw33hi018eLw7/8nbi2UUg89r8MeVx5UWleaz3WQw0dDV0O/x/qGBABGmCLrt3VjsFuLC4tzbW62tHKg7wDXjrhmS/DFvDtUfYmf1Tvf6otGLMFyuYWAyRJhbZKISgdi9GnrbPJLnQ4EtMFzYTVgUzP9e37lO0Slw5aNgaVC1srwZ41fPLXa073p0msrZ6uv1dNRDTKryALWUQ2Hgf5Qbl5BFS4V6tjTC4Tc9+6f+g/J2uWTnh5NKvzzUqv0qty77RujphLDo4e/DIOl1SNbuKqPNaVD96IYpPLf5JF9WeAxls9HA/QuDV8QwGATTR8e6c7EGk4rZ1RP43Tc6rPQaPPe0V3ae4fG8yeeV13WhDPQfZTPg/WuJcm7TaL7WrPr0RMiHRjPclJSUcPKk58ZfWFjIhAkT3MZUSkoKHR0dbNiwYdDnrqioYPdulVy+fv16rr76ap/9ixYtYufOnZSWqtnrzs5OTpw4QUdHB62trdx8882sWrWKQ4cOBT33HXfcwV/+8heysy9MPWqAnAI2oe55sV6PrzTeRnFZW5l7eWvFVk63nB70+WwOGymRKXx7yrcD9g3WA3Vb1m3clHkT14y9BoCSJt96SYfqD1HSVEJle+Wg+9kf3sYVQE/vpS8ME5JmZ4jgzNs828K9vtrdIbw3F0JPZ/DtUcmw5F8gYgCqkNHJkDrVE+6XcaUyCEfN9G2Xmq3UA13nFEDOXcFDB13sf0k9n/kstHEV3sfPv9kr7DLdK6Sxv5wtUGGF3iqOgyFYn6oPqv7s/B0cfe/8zjuMtFh63MYVBE7EDQSz0WOKSAkOZ05VZZOFVZ+e4FR9R9DjPjh01ieMcuHEJP4p7G/MGBPHdxZ7cv22lwwur2uoGKgHK0JK6X6FUsoOIYSuKKjRaDTeDLdssB8dHR08+eSTtLS0YDKZyMrKYs2aNSQkJPDII48wa9Ys0tPTWbCgf8lsf6ZOncrq1at56KGHmDFjBo8//rjP/tTUVNauXct9992H1apCdlauXElsbCwrVqygu7sbKSXPPhvoJPrFL35BY2Mj+flKatxkMnHgQJDQniFCSvnfAEKIKCllH9PvI0zJR5A2Q4VBDTGV7ZVIKWm2NnO86TjHm47zw9k/xGgY+Mxul72LaHN00EFUXkYe2yu3kxaVxjmLGtB8f9b3A2pyASybsIwxMWPc5wQ42njUR9rd5swZ6rYH5nFcCMFywNp72okwRQRpfYkjpcoPAkidpuTYU6b4Gjiz71Z5UhdyjeYyaDoNY6+AhlIoDTG/vvDRwZ9/wSMqxDB1Wug207+pwgLLd0HmN1TY4zU/UflXodj1e08OFSjBDFf44dz7IDxOSdj3xcIf+ta/ajoDKVl9H3PiY+XtMkcoL91gvE6hDLjC9eq57ihMv3X4638NgpPnghs/Lq7JTu33HKPiIgBP9aeSunamj45zKwO+X3iW/OsmE27y/a8629pFTt07TE6NJi05CXosEBbJTTPTkVKSFhfOuTYrcSNUF2ugBlanEOIKV+6VEGI+8NUvw6zRaDSXMPPnz2fXruA5JCtXrmTlypUB27dv3+5edoUW+u8rKyvDZDLx2muv9Xn80qVL2b9/f0Cbffv29dnvl156iZdeeqnPNkOJEGIx8DIQA4wXQswBfiilHLliUsE4W6geeU8P2SDqkZxH3KF5Lxx6wWdfcWMxs1Nn45AO/njoj1w99mpmp4YWIeiyd5ESmRJ035TEKTR1N5E7Kpde2UtDVwORpkimJk6lpLkkoK0LlyhHp60TW68Ns1MUwS6VR+xg3UFmJM8I2aeW7hYSIgaex/HBqQ8CtlW0V5Aa1f9A8JLD28AQIrgUe7JXjtapbWq95hAkZvrWlQrF588oUQuASr/fdWKmMr4AZp2noLQpDEaF/nw97cJh8nWeddfrNUerkMEyZ45obLoyOq1+A/+sZdBWpYyUxEy1bcxc9XtzMevbvrlWrgLNWTcoo/LIX/ufROt0hsrauuHgWlj8T/2/Nhc2v2G1OVIZyy4jGpRUfX9CIQ4HHP8Axi2AuDEDv/554J1THm5Wxuht88a6JdvHJfYviz9jdByfHq0jIynKXZC4ptX3vXh+m/IK/uiGKTi625G7fk+cZTHRPQ2kxiYpA726QJUGQHnS7r9yPM9tPsneM01clRX8f2s4GaiB9SPgr0KIsygHbTpwz7D1SqPRaDSaoeM54CbgfQAp5SEhxDUj26U+6Gr2DO4uELO/ipsXu87uIishy60wuKdmT0gD6/lCpSIZGUI222wwc/VYTxhptFnN3F897mrSotLIiM1g/fH1QY+dkTyDo41HeevEWzww/QFsDhunWtSAqr0ntKpYZVslH5z+gBsm3EB24sBCTZu7VTHbnJQc5qTN4bWjr7G3Zi9jY8b2K9RxydKfcZN9I5z4BCr2qAcoifP+DCyHw2NcBWPGrSp3KS20muSwMnmpZ3mCEuThwMuB7a79d6VomJKl5N9djLlCGVhZ16sQRW+Z96leyqajZysDK3Vq3/05/FffYsl9hTEGo6tJGVTdTm9O0kRo8Es3qCsKbmAdXAsp2TBqlsq7A6g/Adf+H992vTbVrwuYwOnq6eWPO06xfJbn9/LYtZOJDFMepoRIz39OSkx4wPH+GAyCHy/LRkrJc5tPUnw2dFjrmg93M7npM6ZEdTG95UPAKb6TtUwZWOeOQ9TnULUP8Y1/cx/Xbeu96HlYA8rBklLuB6YBjwOPAdOllAeHs2MajUajGRkyMzMpKirqv+FlhJTSP5lnAAkVI8TeF5VM9BAxKT5QvQvAIR1sqdhCvUUVf3UZRQClzaW8efxNHNJBp82TcxPKwApFuDGcnNQc4sND5+W4arS1WluRUtLmp/omQ8hV11rUzP7m8s3UdtYGbeNNSVMJvU5RiCVjlxBp9LyWjSc3hjrs0sRbdj0huICAm1ACJ1IGenq86S88Myx65IwrfwwG9egMIrYSKgw2dhRc+5QyrlzncOEttmFyGgn1vp7YAPzVFGMHabDbe5RIyIxbVS6aOSrQwG0uDx5K2FYDp3dAuVd+ocPuazRW7IXPnnFK25//31+TReUsflxU6/ZQuYwr/2WjYeCGXF/5WzHWOhZVrGF27UaiexpoaPdSkkzPcX7+ToO27Av1Xto9uZXbS+oH3I+hYjCyOQuA2cAVwH1CiO8OT5c0XweeL3y+z4dGo9EMIZVCiKsAKYQwCyF+gqrreGmRucSz7C8TfQGcbvUVtFg63jPz393bzbEm9Va46lYBfFL+CY3djfzx0B9ZV7zOvX2wBpYLIQQ3TriR+6bdF7AvLdqjSljTWcObJW/67H//1PtBz7m/1hOeOhADaUuFR/baIAyYjb5et8uKOqfsvjmyb8U+CJ3ftP3XKlfJ2+vijX/IGsCCh5VhtfCHA+/rxWSOV3BVeCxc/aO+2xv8hsFJE2Fcbuj2FXuDbw/2HgYz9kJh71Fy8sZwZVzNuNVj2IHKO/M+r/f1vI2ls3511b09eqe81Fx3/M/A++ZESomUkh67x2irau5yhwa6CDep9bEJ5/df4c0PvjGRMJOBic3+wjReky5mZ/6kv9COtY2bc5QK5bGaNkr7yRcbagZaaPgvwDPA1ShDawHQxzdQo9FoNJpLhseAfwLGAtXAXODSyr8CmOgXtThEhUZvnnize/mGCTcwLckz4K631Pso9VW2VfY5yXUhcuZZiVkkRiQGbE8K94RDbqvc5l4eH6c8M9Ud1f2eOyF84HlYc9M83gnvkMhQnrJLkm6nYMMVA5jrNkcogYpQVB0INBAsTZ7iwTNvhyX/rB4xaep5iEJYh5zEiSAMKozuqif6Nz79mXMvTFkWev+pwJITALR4OchdYbkd5/qWiPfmi1XKcPIuCO79fRx/lWf5wCuw549K1AGUnHsoXEZez4Vr+zy3+STPbT7JgbImn+1Wm28NLCEE31+SyW3zxg76Go9e4+ttj3UKVLSG++aSnUlUk1HjEiOh7aza6B86WbmP7FEx7tUPDp0ddH8uhIH+U+YCS6SU+VLKJ52Pfx7Ojmk0Go1GM0RMlVI+IKUcJaVMk1I+CFwisU1+eOUNUPCqGuj2ha3Lt/Bqc7nKs/EaMGfGZ/LD2T/k7ql3u3OVQoUNfnA6UATCmzDj0NdrTolKcRteLi9atDmaOalz3G22lPsWXfU3AmPCYvDHIR00dTdhsVlwSIe7nta8tHk+7RaPWQwMXmp+xOi1QbkqoTBgQyf7ptACDVUH1IDde0B/tsCzHBGnvFaXYB2mAISAvKdg2i1De15v+fjeIMVrXduSJyuxDBfNZQOTyilqoFcAACAASURBVJdOI6XVezLB6/OYcBUB7PytCiEMdv7r/gOSnYqHlibVFiioaOasS0Bi26/6zrEDalu7WfXpCc62eLyZVc1qWTr7PDcjcHIjISqMMNPgJ2MivfKkbncaaHdcMZZx+IYA10erfLiMRC9B88SJvifrrD8v2fihYqAZeEUoYYshrFSn0VzePF/4PAVtjf031Gg0I83vUeHt/W0beUxhMHU5lHysZmZPfAxz7w/d/ovn1PN1/6EGeS5J51PbfAbURoPRRwFw+cTl/PHQH3FI39nnvlgydgnjY/vJ9zkPzAYz9027z8doumXSLaREppAenU5tZy0lzSVcMeoKEiMSffp8ZfqV1HTWUNleycdlHzM+djyNXY0caThCfHi822CLMkVhc9iYnDA5IMwxzKCMxqLGIsbGjA0opHzJcXzT+R8blayK6QZj+6+VkMPUm8HqJS5yOUrYDzXjF3nCMj97Rj1f/SPlIZMSTn6its28Q4XzLXpMGa2gjKy+lP86vPKDXAqHAK4C2y5Rimv/PTC077P/VSqHqKK/CDBOcnrCXXW1it8BwO5wYLU7KG+0kB4XQV1bN2k7/gfj0v8M2bWyRpV/ebret/ZZfU8pld0HmRlzC9dNG7pahi7BCyxN0FkNZDPa2E5yko2D7dAQnUVpUh4IA/E3/Qd0FcDEa9XBrppqLoII/Nh7HZiMF6eo+EANrBTgqBBiH+CeKpNS3josvdJoNJrLkKHOH8yf238U2y9/+UvWr1+P0WjEYDDw4osvsnBhELnmISIvL49nnnmG3NzzjxJ/7733+NnPfobBYMBkMvHcc88FFDIeCpzy7FcBqUKIf/XaFQdcXEmpwZAyVRlYg6Fib+jwpRDclX1XQL5TX3h7lIYbl7fJ25h64/gb5M/N9ykMnJue6/7dnW457VNA2TunzGJXIVIudUJvXF653WeVV+iR2Y/QZe9iy6m/cdOEG4mKSh6ql3VhdLfBmR2enJu+iuWGIvchJVceFgtnvwwML6svUQ9vb5U2sFRo5KgZSubdxaltMM3PGHXlSkV6hcIe/5sSYgjlTWn0FItn9t2e5XELlAR9pvO/MZRYh/M3staymNHtRdx8rfr/b027EsOZfcSi6tK51PnaIsaw94wKl6tp7Q45y9TU2YOlR3m49nuFBUopqexWOndjkwc+QTNg9r/kMTrH5ULVAcKMBhZPSobrHmP1tlJ67A6mjkkCg1c4Z5xXSKLRDLbAsMjNx+pYPmv00Pc5CAM1434O3Ab8f8D/9XpoNBqNZoTYvXs3mzZtoqCggMOHD7N582YyMjJGulv9cv3113Po0CEKCwt55ZVX+MEPfjBclwpD1b4yAbFejzbgzuG66AXjnTfS3Rq6nTfBjCvvwWAQkiOTfWpSeRf6vXuqZ6D33Rnf5ZGcRwbWjwvgjikeuXGXgZWVEFjY1SUrnztKGflXjQkSPhWC0dGBg6two6+U9LaKbbx78l1qjr/PG5/+iILagxTv/YOSvR4JbF3KC7J7tZJXb3AOyM9HaMJoUl6S6GSYckPodj1Oj8XU5UrZbhhosfTgcFxGeW9JfmG10qFqg7lk0f3xroG1/dfKEOvrO5Qw3teIMoWp2l/enpj4sZ59rv+Jng4cUtIWPoaS1Jvc7V850EBRdRu1bUoN0tLTCwgq4j2/8wZj8PpvzZ09rNtVxqFK3/+f66alkTb6JPPGJ7B4cjLfmDIM9aW8PXpVXgXoncbnw1dP5DuLJwQqFHrXgkudqs7Ta+eBRR6v+7Ga9ouWazkgD5aUcocQYgIwRUq5WQgRxaU8+6fR9MNAPA35c/NZ9WnoP0MdHqgZaWpqakhJSSE8XA0QU1I8N7tf/OIXfPDBB3R1dXHVVVfx4osvIoQgLy+PefPm8fnnn9PZ2cmrr77Kr371K44cOcI999zDypUrKSsrY/ny5cyfP5+CggJmzpzJq6++SlSU70Drk08+4b/+67+wWq1MnjyZP//5z8TExPD000/z/vvvYzKZuPHGG3nmmWd8jouJ8eTLdHZ2DlucvJRyB7BDCLFWSlkuhIiSUl54tvdwIwTk3AlHNkBXS+h2/eRP0FzWbxHXZROWsXD0QgwYiAmLYWbyTCJNkQghuHbctSREJATNbxoOvEPzXF6lOalzmJY0jVeKPKqKLs9UuFNlbW7aXGo7awPUEoNxxajA+Xr/vLLSFo/cttVhZ8+pTXDuODMt7f0Xmh0OXGGg/vRR42zA5NwFneeUxHcwxswLvv0CeXN/BWdb1MD/x8uGLsRsWEmbAce8wjNrj/jun/+P7kW7w87fKjYz29bGRLMzdG3XH9TzN/5NGUigJlBc77137S3geNNxxsaMJTYsFovNQpgxDFPqNJWnNfseNanSWg2V+7D1OtwesiNVrXxZ6cnBPNPQSXpcBLHhJj5L+jZWczx7xj/K5MbtxHcHF5Dp7An+3zIxJZpdjRXumlJHGo6QGZ8Z6h0LwO6wYxTG8/vPdxbNjjAbQ9e0mrxUPcp3qfUjb5E2937++fop/G6Lmpg4Vd9BVtp5eH8HyUBVBB8BNgAvOjeNBd4drk5pNF91dp9qDPnQaAbKjTfeSGVlJdnZ2eTn57Njh2eQ9MQTT7B//36Kioro6upi0ybPwCAsLIwDBw7w2GOPsWLFClavXk1RURFr166lsVF9B0tKSsjPz+fYsWPExcXx/PO+kxINDQ2sXLmSzZs3U1BQQG5uLs8++yyNjY288847FBcXc/jwYX76058G7fs777zDtGnTuOWWW3jllaGTJA/BGCHEUeA4gBBijhDi0q4HkeLxLLlVsvyxB5HRvuK7kPe0GnwPcAAeFxbnNqKizFHuwc/MlJmMjRm8Etj54q1QaHTWbhJCEGGKIDlChek5pIMeR4+73y68PXH+JEV4hCAmxE0I2N+vcMe54wDYpMNXUGSIsfXaeL7weRq7LuJ9ICULOX4xHVNvV0IY3lz15LBd1mVcXVYYjHDFd0Lvj/Z4g6o7qqm21PJRcpBwtMLXVXimlFDqJd4S4RGL6LJ3sbViKx+d+YjazlrWFq/l3dJ3Vdjggochfpw7VLSn10FBhWciZvOxOho7PGG0LtrDUxk7xluNTxIrulQttG2/Ut5RJ44QkX9RYUa3uifgo0AaCikln1V9Rqu1lTWH17C3NoTU/VDi+k03l4OUGA3CLbrxwaGLIycx0BDBfwKWoMIqkFKeBC7xLFDNVxldR0ujUZ6ggwcPsmbNGlJTU7nnnntYu3YtANu2bWPhwoXk5OSwdetWiouL3cfdeqtKn83JyWHmzJmMHj2a8PBwJk2aRGWlumFmZGSwZImSwn3wwQf54osvfK69Z88ejh49ypIlS5g7dy7r1q2jvLyc+Ph4IiIiePjhh9m4cWOA18vF7bffzvHjx3n33Xf52c9+NtRvjT/PATcBjQBSykPANX0ecSng8j4dXBd8v3+R2NFzVAiREEpdLlR9o5FgkIVN/We4c1JzAGjvacfhHP15Fy+eFD+Jb03+VtBz3ZR5E2NjxoYMc4wwBskxCjLCrLS3hxaIuBCc9YX+dORPAL55cf7hTJOXwqLH4Zr/M2SX31Zyjj8VG1h1NAa79+sOHx7PZUlte/+NLlXixykvpn/Y5Ji5PhMaAuf312hCLvGrxdVeq3IsWyp8ixd71eRy1Z5r6Gpw13g7ZzmnftsxzuG3s0Byq8VGW3jwvKL6aOUdPFzdwsGYpZiMdqZm1vHdqzKYaD+D1e7A+tlzOKSEYx/Atl8hm87wdkGV+xyj7ZXktG6j19CEAxtmg7nPwuHe1HbW8kLhaopqD/L6sdcBKKgr6Psgo0k9FnvlII8fZF6xt+fVmbOZnzfZvamhw8q59uE18gcqcmGVUva4/vCEECZ89CM1mqFFG0kazcAwGo3k5eWRl5dHTk4O69at49577yU/P58DBw6QkZHBz3/+c7q7PTcTV0ihwWBwL7vW7XYVGuI/wPVfl1KybNky3ngjsM7Lvn372LJlCxs2bOAPf/gDW7eGFl+45pprOH36NA0NDT4hjkONlLLS7zUMbsR/EXDlBrj76e9ZkVLlcbjUslzJ9RHxSmlsmqfeFaZIsJ/nAOL4hxCb3nftpMFg61JhbuMXKgOhD+6eejcdPYEFQV0DuraeNrcHy6X+B+o9y4j15B/ePfVuSltKSQhPIDEikRVZK0JeM8ocRaQpknlp86i11HK65TSzI0dBeAqHrZ5isUaEMnaX/PPQSZafOw7F71CdNkUVSjWoYZmUUn0PzvoNRh02iBx4za+B4J1nc7alm/FJA8+56nVIfrflJHlTU5k3PrDGWTC+rLiEDH/Aau/FYu0lMXoQJQjGXAFlXpNOU2702e0t+W8zGvE/s0328taRl7neLkk3RQV4D0Ope1p7rZ6cwVEzwdrO2R3vYMDzmZ3rOYFD2pmfPp+Uibdz6MRpuszqsylu2UtMbAMTu1NoyViKqfQTCipaGBUbTmZKNB1WO01bX4Z4VV9t3vgErix7E5EIJxL28vKRAuLD4xEIRkePpqazBod0hKyPt/HkRmg4ofKhMpeoGmVtZ1V+aLDw5V67eoxboP7Xsm5QhuuYuYFt+8JgVNcr26mM2NGzfe5hf9ldDsAPr51EVNhATaFBdmGA7XYIIf4TiBRCLAP+CvRdLEOj0Wg0w0pJSQknT3oUqAoLC5kwYYLbmEpJSaGjo4MNGzYM+twVFRXs3q1U1davXx+g8rdo0SJ27txJaanKV+ns7OTEiRN0dHTQ2trKzTffzKpVqzh06FDAuUtLS93GREFBAVarleTkYVVqqxRCXAVIIYRZCPET4FhfBwghMoQQ24QQR4UQxUKIfxnODgL8eWcZbx3wCrlJ8cpN6ahXifK7V3uKhrY6217xHVj4qO/JjGb3zO2g6DgHNYfgxN9V2NCF4nB4BqIV/YcGpUSmBM3pcHmZrHYr2yu3A87QPkuT8gg46xDdMeUOFo9ZTEpkCotGL/IpqtwX35/1feamzWVG0gyQklnVxVwdOYbvxc3gthg18/2pxfl+tw1hiFG9+hqeKt+uPBpOqjqqcNi64YRT/jttmkrcHz9wQY/zYVPUCtp6jUoSPAS9DsmJunYcDsm6XWUAbC+pD9nexeajdfx55xlqWn0N/6Lq1hETu6ht7eb5badY63wdA2b8IpiU51n3U/jzLo5d11mnij2jDOeG3i4+7CyntfEkGztKaejt8pnMKDxXGPKyrsmHVZ+e4O2DVcioFCw9vTgMJu7KHcfU9Fiqur/krPUI1c1d9PRKt3EFYO1V4iXbKrcxdtQoTx/brew900Tx2Tafz+fa7FTsJgelthZoOgNS0mptpcXa4g7L7e5vIsclWtFcpnLOGk/RXvRXOPxWYNtqpU7oVrfMWDB448qFS6ildLN67mzglnFdpHR6cuuHy7iCgXuwngYeBo4APwQ+BF4ark5pNJcCI1XnypWHZQ2iNnTZJAN/TRmIrPpQ0tHRwZNPPklLSwsmk4msrCzWrFlDQkICjzzyCLNmzSI9PZ0FCxb0fzI/pk6dyurVq3nooYeYMWMGjz/+uM/+1NRU1q5dy3333YfVqvJSVq5cSWxsLCtWrKC7uxspJc8++2zAud9++21effVVzGYzkZGRvPnmm8NdEPIx4Leo/OFq4BNU6Htf2IF/k1IWCCFigYNCiE+llH1L810ArV02Wru8ipgme0Ja2O91y7V1qRClyn1q3RzEm2IMUwObPX+Embcpj9RAqD/uu+5w+IQuDZqzX/oqgZXthLjRgYps/RDhlAq39npyoMwGM+x90dNo8T+RHp1OevQAX2sQxseNJ99qBKeXIOq6/8S8/dcA9Ein07NqH6T4qhtKKalsr2Rc7LiQs/lBsSsjuNjaCPYwZSxmLGJ75XasJ/7OD+JdBW4FzLr9vF/XQLGa4tg/9h+5PpQkOLjFAuZPSPT5vm44WMW12amkxIQF/T0fqfZVpFs2YxSfHq1zP66fnsbscQP3zp2q7yAjMYowk4H2bhvHatpZkJk4qP+SN/Z5jFq313AgGM0wYbH6HQZRpeu0eepGfXD6A/Kzl0PxuxT1NPJ5l29O5VuGLlx3jlMtp9h1dlfA+fIy8theuZ0ue5dbOr2iyUJjugpLbA9LIzk6nE67Jxer0vE3lsXdi9XRQY/DwknLNhZNSgJn+GKEw1fv51z0VNI6PSGLt84dw4G6A+xv8/pPiIyHmFGEGcOIMimvmcVuIcoc3Os5KWESp/lcrbRWuwsp/6XtOPmGMPXeeb/nZ5x5xEPhPXfltNmt8OVr0FLJFCSNjU00R07g2hnDq7g7UBVBB/An50Oj0VwECtoC69M8X+g7y3+xB/SaS4v58+eza1fgzRiUsbNy5cqA7du3b3cvu0IL/feVlZVhMpl47bXX+jx+6dKl7N+/P6DNvn37+uz3U089xVNPPdVnm6FEStkAPDDIY2qAGudyuxDiGMpAGzYDy+vanoHexG/Amc99G/Rafb1BwQwgV25HVzMc+LOv+l19iZrd9R/E1J9QBpA3O34TqJzn6FUKaumz+ze+/PPAznymnufe51tUtR9cQhQ7qjxCLgGD4Y5zgcVGzwfvPhuMmOc9SGTFx3Sd3q62NZcHHPLCoRcAmJs6l6vGDtDLJCU0eSkf9vYwPyKNgzYL7QYDyF66HXYiDCaYETrE8UJJiwunx+6gxaKMpabOHv6yu4yrp6QyMSV0KKSrrpKLyiYLr+0pZ974BPKm+qbplzf6FqoFmDU2nk+P1rnXtxw7N2ADq8XSw/uFZ5maHsvNOaPZe7qJI9WtZCRFEh9pxmQw4JASh5QhvRT+ct3PbVaG471XZjA6PjLYIYGMDl4bzuhvoKZNpyd5MvsPvwxlfqI1zt+BzWHj72V/d29enrmcj8tUPTyXyMvn1Z9zTfpt7jYFLZFUpn2TtvB0wk0GFk9O4PM6MxOSookwGzjevhPiqjl5to2ZY+J8fjMV4b6v8XTytRjopbPzIPXdh8lMnsLB434Tvc7Qxfmj5ruNqk5bp08Rc29svTZSw+OptwaWm/jEUsGN23/t+/8SOxpaq2DSdUHPNygyFoLrN9uivM8CQaTZyIKqdcy58X8v/Bp9MFAVwTNCiNP+j2HtmUaj0Wg0Q4AQYqIQ4lkhxEYhxPuuxyCOzwTmAXv9tj8qhDgghDhQX99/iNRA6ezxTg8LMqNut/ZfVNg/v8HSpAb0jaegaKMKAfSn6G3PcrKXh2bfnzzhNgCVe6HkIzjnEU4JSTClQ4DCwNy9vjAJk49n6Npx1wY2ag+htjgYvEUeFjjrsyVOoMvpvfq4s1ypCYagsL6QyvZKqjuq2VG5g/I2ZYxZbBZaur0k9x0O+MxTviBMGJkclsA0cyK0ecLL6nu74MpHQhepvQBO1Xdwrq2bXockJcaTi1nV3EVDRw/bjp/r8/huW/A0xsomP89IWzcbC3zlwO9ecGHeA6tdfQYlte2s+vSE2zt2vKadF3ecZvW2Ul7YfooXdwQOVe29Dt46UOk2qPz5f/v6V8bzpq6zjjeOv0FJUwk9vT2UNJVwstn33HaHnZeOvES3kKp4ruu7nDYdhMBis9DZ42uETkqYRJQpivjweFKjlEJhtDma9m6P17D4bBttEWP4RnYaBoPAJruZlh5HZJiSQj9nOUdcpJnFk5OJi/RVFT3YthOu+3f2ZjzEngwlADPB1EJjUgfjko5iENDQ7ifj3qkibOamziXSpAw0S5CCvgA9vT1UNp2kw9bJwgjlVU41eTxdpT0tlPQ4JzNs3eo/ptUprmHyZK05pIN9Nfv6D0X0J8Tkz9yMBFW02Pv/bhgYqB87F1jgfHwD+B0QOLWp0Wg0msuezMxMioqK+m94+fAuUAb8Hvi/Xo9+EULEAG8DP5JS+kzZSynXSClzpZS5qanBC3YOhkWT1Cx1WYPXQMsUHtjQO7cqlLpWxiLf9aPvqVA977yHs186z2fzlYsGVYfLRWeDUhhz4RoI2kIYT97U9vE96k9Z0NGrcjLsPQghfBL/06PTA0OzynYOWq0wAG+DMMbzmaZHp8OYeZy2tfKn1iJlsIJ67zp9Q8k/OPUB75W+R3FjMX87/TcA1havZf3x9fS6+ld9QIlaAHLm7dhwkGgIJ0wYlSeu8ZQ6fUwqRA9c/KWps4cOaz/10Zy8X3iW1/dWYLU5gtYVSo5Rg9zGDis7TtTjcEgaOwJl6r81Z4zPekNHD7tOKXGQg+VNvL63wmf/k0uzGJsQ3EM00CKwVltwI7ewso+6cYCt18Hvt5ZS3TyA7+4AKKgr4J3Sd2jubmZLxRZeOvISWyq2BLRbc3iNZ8UciVsnzhn6urZ4LW09bQHHfXfmd7lv2n0YhIGUyBRMwkRTEAn23ExVimAgRoir2LYQgi/bNtDhaAUhuPfKDGYv+457SuevJ/4K5zwO+3hjONg6GRMzBiGE24PlqhvnkA52nd3lzhMrbyuHlnK6HHYineItHY4eFmd7vLFbLJU8v+8ZaravhJ2/C9rfirYKDtQd4IvqL4LuHxTeypgNJwf2H3aeDMjAklI2ej2qpZTPAbcMW680msuYcW0HAx7DeZxmZLlYVeG/bgzx+9otpfydlHKblHKH69HfQUIIM8q4el1KuXEoOxSM7FHq5v/p0TraXLPUaTOUWpg3DV6z40mTCUp0MuR+37PusAeG65Wo8COq9nvyuUAl5Pt7TLwLHg/0s2mp6Ht/ez9iERW7lcjDF848vo5zyrDpaibZIYPL0J/aNrC+hcKVg+ZXYPf68df7DM6ky3A8+h6OvS+GrlUGHqMK2FzhTLgv3YJdOjjYfY4TJoGMG4MhbQbhzvpfrvN9aGugur06wFvUYulh1acn3KF3J+qUJ2fdrjL+9Nlp/rzzDI0dVs61BR9wN3V6BukdVjtGg8rxfWChp8aRyWDgRF07r+4up6C8mfoOK6/uDgyPTIwKrLe293QTx2ra+OxEg8/2b18xDpPRM/R0hSBek62M2e4QhpM/3faBG9JHz7bR6xTR2HCwKmD/E0uzArYNREq+qbuJPTV7Qir+AZgMwcMTEw3OiROvCZRNpz21Cu+eejegasO5PLfhxnA6eizsPaOM+2uyleHtbazWdylPemxY8EK6aVFp3D7FN5evTu6goO1N/nrqZRpc4qrnjtFgqfep+zbdnEh+zDRuqzwG3W0qBxJVC6ustYw3S96k8FyhW1be5rC5PXXTUnJYHDma+2KymTHtdhX67BLxqT7IOx2n6HTYsDjskO2ryOiiK5Q3vC/mf893PXu5b0Fn8wBDQc+DgYYIXuH1yBVCPMbABTI0Go3mK0lERASNjY3ayBpipJQ0NjYSERGkPtH58VshxH8JIRZ738/6OkCoZIWXgWNSykCljmHAO1fk5c/PqIWwKJhxq2/D2iPOThogMbBwrpvYdLd6GZ0NHoUuf0772Zq5D6vnrOs923p7lLdm5+8852kuC31tgLNeamh5T0PcGL/9X/Z9fM1h9SylCiGqL4G6YsLqjqmwRdf1xy9UCnug6n8NltPbPblhLtU+v4FXXFgcMWaPgdVld4ZFNZzkmK0ZGk+FFEjwLsZ6quWU+//iT23F7E0cpTweSZMQ4+ZjmOyXe2IwsfbwX3lh+ylWfXqCBqcHaf3hLRS0vcmGAnW+vx32NVZbLDZe3V3O63srKKpuxd7r4KXPT7P7VCNF1a1u9T8XLrGKtLgIosKUkWfrdficN5RnLDyI9wvg46Jan/Unl2YxPtlXDOFbc8bweN5k4p3haz4iLyHotNoDXu+DiyaQFEJm/e/FtW6PWq2fguHSaWmYjYFD4cLKQOO902rn9b3l9DjDE6vaqtl9qpHT9YFlBQBmp87mOzO+E7Dt4ZyHuWvJz/jB1Ht5fF5gMefvzfxe0Jym2LBYKls93tL4SPV6vV93UYMy/O+bdl/A8ePjxnNn9p3ua7iYkhbDzDFxyqDu8AqP9JahT83mXK+XgVOucn9dQhcflr5H87H34czndFTsosHSwPbSD6C9ln+IzsSQ823mLX+WiOt/RrgxnNuzbg/wzq9rO8batqM4QgjgOKSDo41H2V8bmPcbkrjRcO1T7vIHmKOUKuE1P1H/ScPIQI0k71AKOyrU4u6+DhBCZACvAqNQvtA1UsrfCiGSgDeBTNd5pJTNzpvZb4GbAQvwPSllP9XINJoLx6Xap7mE8ZeL9k+6HyHGjRtHVVUVQ5l/o1FEREQwbty4oTpdDvAdYCngmm6WzvVQLHEec0QI4bIU/lNK+eFQdcqfMNMg1fqm3NB/m3nfUcZIKKr9brMxaR6hiIwrPaGDPZ2w/2XfXCxnGFtI6pw5WrO+rTxis+8Ba5uqb/P5s2AI9Hz4kDzZ078vVrEiZhLvdZwmwVUHqNPpHUmfo/pcX3J+tb/KVTkCnyLCE3yFKoQQfHfmdyk1xPHJ8TexGI1EHX2Pxt5udliUVyS7o4USeztEJvkUov3wjO9X5oPS9xjbfU4ZWs73WkpJW2saDbG+nhmbFDR0WInrrSLBPI6/7C7n+0sy2V2tlBkL297jTEPfiowulT6APaeD3+9unOFRXnz46ols/LKaFotvKNr7hR4v3bVTU9nhlGaPDjPyj1dlYjQIPimupSpE+J0piCFjNAiMBiMJTi9YS1cP6fF9T6zsc3pwvEmNDffxyvlzoKzZHYLrzdR05ekxGQRhJgNmo4HWLhvpQUQu1nym8rm2Hj/H/ElGfr9HpXHWtVmZlBpYlHnJmCUBRvfVY53lLpInqQfwyOxH+NNhz280lCJfj81EYdU55sVKbp07hokp0Vw1OZm54wOFQYJ5zuameuTOo8xR3J51O++UvoPJaCAuUn025e0V6jvZ7ReuGDOKxb1RnhzFs19C9k1YrG3QUKJ+0y66W3nrk392e7ozTbGqLp8XYcYw32O8qO5uJCNSSctLKd1173plr7tEw4L0QSjjpQ837QAAIABJREFUGgzucFz3xImxn/+eIWCgKoLnI+cRVOIW+B6wRUr5ayHE0ygJ+KeAfwCmOB8LgReczxrNoLnUChUHC/eript/fifzVhRrbr1kjI2vI2azmYkTJ450NzT9cxcwSUo54MJQUsovCKowMXwYDYJxiZHBB6hz71depCNeNc3GDEDKuL/8nTqvHKm4MTDbb+40+0aPVydYSF5Xi6fwba9NzRS7BpWx6Up2PNUZCmSO8HjUQA3Spi7vo3Neb78QjDXFcH1UBhkm52DWVYQ3LFoNmIxmsAb3JgyIc15y1CEGYOFp0+E47KjYxreJZYvFM+O/1CopaT0DnFEhUCGoai6lqrsWUqa4t1ntDgrKOjjZ08RDcTOot3fx/NmjNHc30RmWSgM7yRLXYhaRvPLFGZ/z/ddnqwC4Iu6e83jRiuhwz3DQZDQQF2HuM09pXkYCJoNgWrpSpnN5UVbMHcvqbaUB7Sel9l2Y2eXB+uxEPafrO7k2O9Xdp+qWLqLDjCREhbH1eJ1PYWSA66enBZxvSVYKhypbfLxuh6tUmKvRIPjHqzJp6uxx5549njcZIQRGgwjo/8dFNW5RDVCevXNdje5wxunRy7kmfRRd1Lm9K/dPuz/AuJo/Kvg932wwYxRGemUv12WEHm5/flpNaHT0nmNSSjYGg2Chl9Focyjv36yUWQA8NOshdlTt4BtjvxHUaBsdM5rH5zzuVsAEaO5Wv/FMcxxlNmVkmVOysQHx4xf7qoyWfAjdzSps1+Jn9DqNqwRjOMJoChCcSIpI4voJN+A4V8Y2SxXEj3VLuO+s3U9eWAzp0elsPLmROouaHKjtrPU6ff+S+lJKytvKGR83HkNqtlJJPR8P93kyIANLCPGvfe0PFj7Rh8TtCiDP2WwdsB1lYK0AXpXKd75HCJEghBjtPI9Go9FoNOdLEZAA9C2LdglwV24Gz20+gZQqYX9uhtN48Q8FDIsauLLcFd+FgleD73MOarjqCQgPkrcxdr7HwArGnhfU4Gjy9eoaE78Bmc5ZeoOp7xDG/rB3QWSiMuycA7apYZ6iqe5cMFeoUWQiWBoYFL1Bwt4iQ0uFJ8eoMMfe9lqIjaVLeo4XQjA5LIFKWzs9qJCu9h5PLs/4uPFUtFV4hDTCPEaH1eYgQhixhCVhSplGnCGGmPpOqsM8A8JSiwrlHBseXBpcSgdCGLhyYlJQL48/U0bFcLIuuEHaEETMwhshRFBJ9TCTgX++foq7VhbAj26YEtDOH1eYXqe1l5Ladkpq23lg4XgSosJ4a78yYscmRFLd4jH6bp07hvcLz7rzuHLGxnOkupUrJiRy5cQkrpyYhN0pagG488EWTUomPtLsNurA17sWZjS4wwABjtX45mNFmI10WpWndFzEPCKN8Xx6pJsf3ZDLuJhxyiMX4XlvHpzxIJWtZ5mWPDXk6//OjO9wquVUn4WxbdZ4oIoe2YXB4Pvbb7W28vqx1wFIjlRGV4Qpgpsybwp5PlCfo8u4cxOVTFmTMuLDDSbuX/QUQhiUIMfYXDj5dzUZUXOYByYu5XXnxMT9sVOJM4Txx9Yj7lO19FpVTb4g152aNBUWPE5iVz0b6w+6/4uarM1sPLmRO7PvdBtX/hysO0hueq7biBoTM8ZdysGFy3BckL6ABTPvcEvMXywGGiLoUhF0ydp+C9gHBNe49MNP4naUl9FUiwohBGV8eWtjVjm3+RhYQohHgUcBxo8fj0YzEIYrDFALUWg0lwUJwHEhxH7APXKUUt4a+pCR44bpqgDrtuPnmD023ncwdfWPlChFZmgPSQDxY1Vid8lHkHWDyqHKvNpXGTCYceViyjI4+Wno/a3VHgOufLfHwLJ39z9j3GsL9BZ1Niojx9YdXEXRm6RJHkMzKhk6gg/IQtIWKHrgbfj4ExUeS3R4HKlSDZ/GmWIowcpjkUps5Kao8Ugp2Z0yh6nJ03izRNUzfGjWQ9gddl49+irUOZXZTBE8NOshXil6BZvDQQQghZFDCdcTbjJiT45CWj4L6EO19RAA0eYYOm0eA+l7V49j2zFllJ9t6aKquYt7r8zwkR2PCTfRYbUzOS2GW3JGUzoquIFV3+5rYIWZDCyalMS+M808sKjvsZfRGW7XY3cwf8LgCv9641IflFIi6fUxrgAmp8bw42XZ7vXrp6eRkRTFlDRPuJ7JaODJpVluIwvUe9AXZqNwF/MNZmg2W3o4bakkzBBJWpjn+sVn25g1dnRA+84uM58UGjgcX8l9VwZ/76LMUeSk5oTsk6XHTpI5kxprMW4FQi9cxhVApHFwwg0/nPNDAP5c9Ge67F2IhAxk7Ggo30WWOZ5Ib+9XWBTMvB3OqbD9+DOePC1X6G5+wmwqbe180HmG66MyIKmPKI+kSYySE6H+IGlZyznX6Rnyn7OEng/bV7uPUy2nmJE8g8+rVVTP/dPu9zFsXdR21qr/CBG6ePZwMFADaxxwhZSyHUAI8XPgb1LKB/s70F/i1vuHJqWUQohBZYdLKdcAawByc3N1ZrnmK42/AVfplxO+u6mRPXZVCND7RqPRaHz4r5HuwGDwDtf67ZaTPJ432SOjbY6EidcM/qRj5qoHQMYC5f3xNrD6wnvQMnqOqlFTGSLR3GGHHosaiNm73TLUAaRNU7PgPR0QFqsGQAajOnbfGtXXptMqzHD6N+GYU2FtcT6Yo+EzZ5FQ74Ku9m4VqtRrB+MAhzeuelxj5nlEN1JDexEAIozhtPWowb5t0jUkITHET3OrMgohuEqaIdITvhXheh+8BHGWTryJCFMEN4z9/9l78/A46ivf+3O6te+rJduSLe/7gjHYrAYMBCZsmUDCwCSEJBDCZCaTO/NMZt67vHPvc+97c+fOHSZ3Ek9CQgJJIEBIAIewxICxzeYNL3hfZFnWZsnad7Vav/ePql6qu9WS7JZay/k8j56u5VdVp0rdXX3qnPM9n+elvWfBPpXtJy6wbk4eWQnTWZP1Rc5276TRU8HymVkcqg7UxhRnJ9NvBjjbaAluNPRU8/nLrSjJzUuK2F/VwmsVv+KU5wKz3Lfz7ZtWUNtVSU7SDHJTLSdkQVFkx/rP18/mVx+f9e9rQVEGKYluLp89vBQrn2pfRsql66HV9B3kfO8xVmTcRaJrcOdBRPw1VcGE1n4N5WA1d3lotpsubz8RXl9b3dxNQpYHtzgjJluOnGf5zEBdkS+Nzefg1rX28MSWE/z1zQtG5HR6vAP8eFs5CWI5MKtnR3egLtah9an0GWP45mXfomHePRQkhdeWAZbT1HQm8jqgNDGTxz/3a+sznBW9llZEeGDxA6QlpnGw4SC76ixFU18PucFo7Gn0O1cAzx17DoDb5tzGnKyAUzdYE+TRZrjv/CIgOHe9j0DkaVAGkbg970v9E5HpBFI2qoHgznMl9jJFURRFuWiGI8k+nigLUVrbV9nCVfPCC/QvieAfYUM5bOlBx249B+u+AYhT2j2Yj34YKCofLAJVus5ysD59yRKryJgGV3wNeu10LJ8CYXsdTFsWcLBCC+ODJet9/cG2/29YcicUL4987MqPrSjelY8GlhWvsBysxFQoiV5A3+jpgP5ueo2X8t4mevu9nMpfwPzrllk/KA+/bImDlF7Jw8sfpi+ob9ntxesxDeeYm5gNeYstBcD9raS6nU/efVLcf33zAjafqKSiozVM7e7Komuo6PmAs41dZKYkcLrltNWUNrWQ3PQkCvLOc7Taw7IZ2cCHdHln8caZNwB4fPXjjn15B7y4g5zVwsxkZuSksGxGtsNpGC4+Bys9afgO1pevmh0mA+8Z6OZ8r5WC1uatJd9lCUMMFUUL5cF1s/wRsZTE6GIy07KSqW/rxTtg/M5rMAOmn4auJlwk8MC6WTS09/pFRJo6++j2ePnt3ir/NQjlQkcfhZlDRGaD+IEdfXNLIgumZTM9xxmJ8Yb0fivJuDRxoLVFaxERpmVHaQZdtNzvYD2YtZhul8DiP7EaBRevDKj2DaIIGIov8lSUFnAtgh2szy/4PL89ObzGwG+eeZN10wMSDvvq93HVjKuGtW0sGe47/xfALhF52Z6/B6t+alCiSNxuBh4Cvme/vhq0/Fsi8jyWuEWr1l8pyigSqswHE0cwYyLbrow5IrIeq8nwEiAJK1bQaYzJiqthgyAiFGYm+9O0QtXcYsaGv7N6UWUP8YMsNddK9etqgoV2TUfhosEdrIGguqbBnoD7omI+JcAO+1lrb4T+Q74C+WDBjqQ0K9oVTOl6aLV/hB39vWXHjNXOMcYEemX5VA7BirRt+K41PUQEIK9oJU1VO6nr7wTyOFzdBs01VmQiP9BTqb69h8KMFFKDFNTmdLVBYrY/jXKovk8iwuzcAqq7rWswf1oGjR29TM9J5YZ5C3j68AdcNiuHRLeLirYKKtoqALhp1k2Op/sAr5eHC2AaY3jl1CvUdtZy25zbmJsd+EH8xSsuvgxj+cxsDlW3Upo3vHS1PXV7SHYn85c3LWPHqQu8fnoL3Z4eipOX+sec7d5NXkIZNy4uYlrmyFo4TMtKITXJTXefl/yM6M7NvMIM6tt6OVLjVNJ7cP0skt1u/svbz9HvaUIkh5REN8tnZnOsrp1zTV1h8veRaO/xDNvB6gyRxs9KdXGg4QDXzLzGv6y51xKm2FC6gWX5IT3zRsDGWRt5p/IdFudHj+ACjs9ItiuJbN/9d3rk+sDhkpUc/pV88+ybKUovYk3RGj45/wkLcxdyovlE1P3srN3pmG/tbSU7eeQPCi6F4aoI/g8ReQPwJX0/bIwZooFFZIlbLMfqRRH5GnCWgNz761gS7aewZNofRlGUqGx2naKqzcrx37R/hE+4Ww7yeM7KocepM6NMfH4A3A/8Bqum+MvAuM6pfeDKWfxuXzXnmro4VtfO7SvCazsuGZd7aOfKR3Km5WD5Gphml1jfA77vh0W3W2lDH4UouA7WIy4pghR1bzs0hUi/L7jFel33DauHjY+Ft8Gh38GK+wLLCkP+pcffCHewgp2qHluNLrPIciCHmVp1Rd5S3qraSYctcFGSZP3Ybevpx+0SMgoWcOjgHrZ8dJaSvDSuK2inOLHHeupf+bG1EzOAxzvAu8ecdSY3LZ4WtmxR3iJOt5wmLyUPOEphZjKPrXrML0yQEqEP1buV74YtcwgZ2JxrP0etXfdS3V7tcLAuhZuXTOOGRYURe0xFwpcWtqJwBTcumsbR7lZ2VzSRlLiQlSXZpCS6qWjspMvbTGbKzIuy6bENgzTlDuG83Zz57aOBer6bl1hOXb93gCZPJXgALpBkn9/S6VmcawqPdkVi84EaMpITaO/pHzJd0CcND3Dv5SX8vjL8er54/MVhHXcoFuUtYm7OXH8D4ahMW2o9wDj9LmQMmdA2bLKTs/nKsq/w9OGn/ct878kriq5gSd4S+rx9nGg+wcrClVS0VvCFRV/grYq3HP3mQvHVqIVGbkeTkSTHpgFtxpifi0ihiMwxxgyagDmExO3G0AW2euBfjMAeRVFiTSRnSlEmAcaYUyLiNsZ4gZ+LyD5g3D4pcLmEey8v4ac7ymnv6ef1T2v5zLJi3K6Lq6+4ZJbcBQ3HwkUroj1sySm1Uu+Gy/nD4REsX5pS6HELF8H6x6zoWjR6OyA5KIp2Jihb1G6WSs7s4SsyAqmFSyBzOtuyLafXbf+U8smnf6WkkPaeflbV/YYj3s9y5sCzFM/NhxNv+ffhyZnjT/0CKMpK4boFBZTmpYU5WKkJqXx+4efZXhUQvHCJC0EoySxhecFy3jzz5qD2rp++np21O+n0BHqYtfS0ICL+uhu4+NqdSIgIie7h7S/YrgvdF/yRhivK8rh6RiYf1ljXd05+OiXpXcyf5qyzqmitoLu/myX5S2Jie0FGMuUNAZuuXVDAihLLptDPn693na8582A8uH4Wz37sE+2A9h7LOW9o72VaVuRo3EBQiuGfrplJaV4a6zzr2Fm7k037N4VFHAtTC4d7ioMyLOcKrM/L9FWXHLGKRFpiGgWpBVzotqLbvp5ebpfb/954ZOUjJLoS/X3F7px3J73eXp769CnHvhbnLeZY0zHiwXBl2v9frKd+i4CfA4nAr7CiVIoyZkympsATQYFwU8vByCtC+4yd2RF5HDijZBr5UuJDl4gkAftF5J+w1GlH2NU3PswpSOdgVSvH69pJS3Jzw6Lwnj9jQnIGlKwdetzsqywlwcFk34PJLYPmisD86a2W4mF6QSB1MCPK+UZyrvLnQ2NQH6OzH1q9vPr7wNtrpzaGCHTMWh/dzhCSE9OgYH7QEueP7s0nelgIpHpauLzGenJe397jT2urbOrit3udDZH/7MpSv4NTnJ1CXWsPD6xzpugtyFnAoQuHuHm21WBaRLhrniWEGdqsNphEVyImRHnOJwgQ3JvpYMPBQCPcGNPl6WJf/T6uLL6SxBDVyMbuwH39xeMv8uCSB/3zPiW5Ly76Ii8cf4Ga7uNUtM6jLLvMP8bXyDlWDtZVc/MdMvdXlAWc+511O5k/LYNT9R3MT9vgd7imZYWn/H3zhnn8dEc5Hq+hMCOZGxdPY2uI8/zszkq+ddN8th6r53BNG/dcNtMvO9/TH4g4+tIaM5MCn6k3z7zpj8gUpBYwLS1O3w2jwMrClbxb+a6/p1cokRzBZHcyDy17iGcOByqYVhaudDhY7X3tjms4mgw3gvU5LJn1TwCMMTV282BlDHliS/ScU1WRU8aMKA6VooxDvoTlUH0L+A6WoNLn42rRMPE9IQdL7CJuDtZwmXuD9TccVtxnSc67EuDU29ayrkbImwdXPnJxx5+1zulgVe+1HKwd/8eazy0Lr9+KIsseyqHqVtJTLWflbGMnDe29LE9zqpS1J4X/j043dJKXnkRtaw/7POG1TcHRoz9dM5PuPi85aU6VuukZ0wdNcUp0JfL1FV/ndMtptp7b6lg3w+7dFYmTzc5uO5v2b+KxVY/hktg+f/ig5gNONp8kwZXgECAAZwQLYFtVIMp4quUUgpCbEnCmd9bu5HzXeVYWrnTUt13ovjCoYlxlWyWV7ZUcbDjIxlkbKc0sJSUhJeJ5BrdFKMrtpcvT5W/U+8n5TyjMTOZUfQdZCcX+cWlJCZQVpFFxoYsH1s2iyI5K3blqBvXtvYgIq0tzwhwswBHJfGVftf+3XGev5WD9yYrpfuVDE5JyW9Ve5T/3ycTC3IX0eftYmr906MFBpCem88DiB3i/5n0+M/szYc787rrd3DTrpliaOijD/QT12Sl8BkBEhv9tpCiKoihxQkTcwP9njOkxxrQZY/6rMeY/GGNODbnxOOCaefGRGB4T3AlWxKv0Csiya8w8PSNyeMLImWVFzy4LREEcdWDNFUOnFQ6CMYYtR87zuz0NeLwD1LT04PGasNQ6T0Jk+8sbOqlq7qYryVkve/dqpwOUnOAOc66GQ5I7icV5ix2Kad9Y+Q3yU/O5esbVEbdp67OEHBbmBh7Q9vT3RBx7Kfgcub3n97Ll7BYONgSyIyrbKx1jfU6DjyR3Ei5x+SM07Z529p7fy9tn33aMe/H4i2ytdDqXACeaT/Ba+Wv+Y75T+Q5PH36a3538XdhYH3++fjaFmYk0u7fz+9NWO4Ngtb6vr7k7LMJ416qZPLZhnt+5Apidn+6IgAXvfzD6vZbwic8ZC05LDK2R23x6M5MRl7hYWbjSnx44EnJScrhj7h1+52puTuCaZSQOIrozCgzXwXpRRH4M5IjII8DbQORYtKIoE4ZNLQej/inKRMeuuZptpwhOOFwu4evXzSE1yU1yogtjDN194WIFE56CRYFp1yU2BE3OtBytQnufu550rk/NhaV2j+lFtw97t7391g9fl7iprbV+XBcmzY841iy4ld4EZ6JPY6elBulxBX6AlxWkMbcwdj/6RITLpl3G/Yvv58ElD/ql1xfnBZThHln5CCWZTnGT4vRANCa4LisW/LHij475k80neb/aalBb1V7F6RZL2OSK4sjy+L4eYvcuvJeC1AK/7P259nNhzWiPNh31R3lae1v5/enfhzliPqI1si3MTObKRR5EhMYeK4XRJ8QBcH3ZCocjBZYjlDpELdZNiy0nsSAjiesWRH54cqimDWOMv7FyclAUOzQi42PjrDBpA8Xmllm38LUVXyM9MZ12TwSV0lFiSNfQllt/AVgMtGHVYf0XY0yUtu7KxTJUGqASXyZC3dSgjIe0vlARDa3JUsaGcuADEdkM+PORQlqIjFsyUxK5oiyX7Scu8MuPz9LY0cdXri4jN31C+oyRKV0H5e9Z054YRVCyS6HhuKV+GEz+fJi2xFJCiyLscK6pi5f2VnHHyunMzk+nK8ixzU+aS9dAE8VJTlnslSXZtHZ7uGLVzbyetYy66rOUeCppHUhhTrPlVHhd1v/tirI81s0dXuPekWIpDgZISUhh46yNGAyJrkSum3kdvz5mNVlekLuA2VmBiEpXfxf5xK7v2qmWyMHiyrZKXit/zT/vc7B21zlr5ILTAIOnAV468VLYflt6W9hXv29Y4gZPffoU9y68l+zkbI41HePDmg95aOlDuF1uv6OW4EpgU1Dd8W1lt120IMiq0hxWlVotCpbPzGbHyfDUvq3H6mnuDLRmKMl1nvNd8+7iaNNRR3pncARSceJ2uXHjRhCONx3nptKbYiroMhhDOljGGCMirxtjVgDqVCmKMrqokqESe07bfy5gQtYP+7LcGjusH161rT1+B6uzt58/HKxlRk4ql83KIT155Gk1ccflsvpQVX40PDGN4TBYqpsv7WiIH1kv7bVS1V47WMvM3FTWzAo0A06QJOakBtLu/mrjAvoHBkhOCEQw7l49E1bPpOLCKl7eV01mbx0FXaeYU5TLvjZLGGG4MuaxYFFeIEoYXNOU5EoiMymTO+bewWvlr/H707+PmZx1a2/roOuCnatHVj7itzHUweoP6quW7B66f5TPcRwOvd5enj36LPfMv8cvbd/h6SAtIc2fPhl8fICZmRcnEx9KSqKbnLREWro8AHz9ujn8dIelRLn/XIt/XKgzUJJZQl5KnsPBGguHYaLT4ekArDTVtcUx+o6JwnC/hT8RkSuMMbuHHqooyljij6qdCXrKNee6yIMVZQpijPmv8bbhUlkyPcvxtDtYYeyTymaqW7qpbulmd0XTxBU8crmgLIbixDMug9Zz0HzWmi+9wlIQHEaNV1//ABnJCXTYjV6rm7upbrZStlaVZnPgnOU4/Pn62eSmJeJ2iT8dL5SygnSmZSVzxns1s8rmsWzlCvrPNDO3IL7l7LOzZnO27aw/cpSfGohaGWPVlm3av4n0xHQeWvbQsPZ5vOk471S+A8C8nHn+9D+w0hDrOuvCtpmWNs2vCpeWEOh1trxgOYcuHHIIVwwmI740fylHGo9EtW1t0VqS3El8WPNh2LpXTr3in+7wdPj7JkUiyRW7yHFBRjItXVbj4cyU8HP79sYFEbdLC+oJ53NOlej43u8nW06OKwdrHfDnIlKBlV4hWMGtYXQpVcaKaOmFE/aGG0cmWjrguZagvPl9fwxbX5qTGrYs7mi0ShkDRKQQ+DtgGeAvnDDGjI2cVAwIjUp19vbT2NFLfkYyeyqa42TVOCc5A1Y/YPXXSiuwGgqXrhtSPr68oYNX99cMuv6mxUV+BystyU3CMKJQD66bTY/HS3LCCkSEm5fGrjnrxfLZuZ91zAc7N30Dff5oUaenkw+rP2RN0Rp/PdRgBDsvwc7VZdMuY1XhKkcDWR83lN7gn05wJfC1FV+jf6Cf9MR0FuYudDh+vqhSKNfOvDaqg/X5BZ+nKN265oVphbx66tVBx7b0tAy6DmIbLbpj5XQ+Km9kzSwroviNDXP58TaruXBuWqJD0XAwht27aopzY+mNPH34aXKTL07kZqREdbBEZJYxphL4zJhYo4waE8n5mky9rhRFGRc8i1VLfAfwGPAQ0BBXiy6RPRXN7Klo5qvXzglb54s+jCV9/QO8e6ye6xcWkJY0zlIUi4LqpIbqzQVRnSsf37xhHtUt3SNKx0xJvETxjlFGRJibPZfy1nIONhxkzbQ1/nX7G/ZzovkEX1n+laj7CO23BZYDtTR/KcYYZmTMoCyrjMV5i3m/+n02lGwIE25Idif7nbtg8Q3fvp47+hxzsudQ3lpOTnIO9y28jwRXAt9c9U32nN/D7rrdZCRmMDdnLgcbDpKXkueoSZuZMZO75t01qAJfsEx8MFfPuDrmnysR4eogpdDgz07yEO+XO+feGVNbJju++r3y1vIxOd5Q3wyvAGuMMWdF5LfGmAnRN2S8M9mFLDaFNqFVpjRDqRE6GhGPwvaKAuQbY54SkW8bY7YB20RkwqW8J7oFj9f5A/Zn758JG1fT2sPMMY5Y/3CrJWRgjOH2FdPH9Nix5rJZOeyrDEQxMlMSaO9x1uGkJLqZF0P1v/HC7KzZlLeWM2AG/M2IfXT1dw2yVYBQifcZGTP8vYxEhHvm3+Nf52uYPBKyk7P55upvYoyhubfZ4TiJCFcUX+FQIxyscXJJZgmPr36c3XW7w2q+gilOLyYjMYMl+UsozSwdsb2XQl1rdLGX0qyxtWeiM9YPnYZysIKtmTvoKEVRFEUZv3js11oR+SxQA4yOfNso8hc3zscY+P47J8PWXT0vn/yMZH5/oIajNW1j7mD5GAgPYEw4TtVbxfArS7JZWZJDXnoSFzp6eW5n5RBbTnzm58xn67mt7D0fOUXe4/UMKhUOMD19OrWdtaybvo6dtTup6Rg6GngxiEiYUuLF4HPIjDHUddbx8qmXHesX5i5kecHySz7OSHCJMGAmwQdpHHJ50eV8Uv8J3gHvoDWTsWIoB8sMMq0oijK+iFTPpTLwisV/F5Fs4G+AfwOygO/E16SRIyKIwO0rinnjU6dYQHAz06auvtBNx4zi7KFV3gajx+PlnaP1nG/rYXFxJlfPH/smy3vPNvmjVRuXBOqkirJSWFzXda+BAAAgAElEQVScyaz8tME2nRREc54AXj/zOnfPvzviuoauBmo7a0lJSGFFwQp21u7k+pLrR8PMmCMiTM+Y7hDLWJS3iCV5S8bclq9dN4efbC/n/is1QhVrBMEYQ2tfa0wc9GgM5WCtEpE2rEhWqj0NAZGLrFG1TlFGiYkmYBELHCIYIYxLAQxFuUREJAWr5mo+MBN4yhhzY3ytunTmh6Sm3b6i2FEM71O7Gyu8QWGrxo4+vAMGd4Ti/L7+AZo6+yjOjiyUcOBcCyfOW41Ad55p4qp5+WOe1hMtAjfRUx8vhiR3kr+xL0B1R/WgY321Sz39PSS5k2Im9T6WTE+fzpHGI2yctdEhaz+WZCQnjLva+MmCz6nq6OuIr4NljBnfFZlKTJhIAhjK5GOoGqtL2n7/pgl5k1dixjNY6YE7gNuBpcC342pRDEhwu/jOLQv5zZ5z9HkHWFQULtzg8Q6MWY+lxs5e//Thmja6PV6rB1QIbx6u43R9B49eP5f05AQ83gHeP3WBoswUFhVn8mGIwNF7Jxq4cdG0UbcfrNqx53efoyOk1moqsnHWRr/U+pXFV5Kfmu9Q3RswA7gk/L3l63m1cdbGsTF0FFiYu5DclFympY3N+04ZW3JSrF5271e/zwNZD4zqscaZ1M/kYbILWQxFNCXAq+bFrkO8oihKFJYaY1YAiMhTwK442xNT7ls7eArRD949NWYPyJ792FmbVN7QGXHcabu26cPTjdyytIijtW3st8Uk3j56Pmz8/sqWMXOw2nr6HaICD19TNibHHY/Mz5nPnvN7aOttY1HeIpLdyTy++nEOXTjE9qrtdHm6yEgKF/jo9VqOdrwiP7FARNS5msSkuK3oeUtvy6irraqDpYw5KsM+/hiN9MHxkpI4HFVLjXJNWnziFhhj+sc63Swe5KYl0tzlGXpgDOjt90bswTUtK7wOqybo+yAv3arz6eoLNEv2DpKb5+v1Ndq09zivWU5a7JrJTjTcLjcPLnkwbHlWklUVUt5azspCp3rrsaZjY2KbolwKwQ8GtlVtc/RgizXqYCmKMnk5syN82Zzrwsc0tzqXqTjGZGFVSO1walBd8aSsI15ZmsO241aLrzc+reVYXTurS3O4cXHgqfyh6laO1LTxhSuGX0Tf4/GyeX8NNy2ZRkFGMmcudPLKPmc9zr2Xl7D9ZAPdQY6Tj6O1gQaxHb3W+kgP2woyk3nwyll+pcRffHR2TCJxv9lT5Z+O5CAq+HtTvV/9fpiD9W7luwBcM/OaMbdLUS6GI41HuHbmtSS4RscVUgdrCKZ6qp+ijDfiERkbKgqmEbDxyaXWEYvIbcD3ATfwU2PM92Ji2CiyYma238E6VmcJRuw/1+JwsLYcsdLx/ni4jluXFYfvJIT2Hg8v7qmirdvDu0fr+cIVpWHOFUCCW6hvs9LEalu7mZ5tfR6NMZxtDPRQOlHXzoaFhRRnp4T1+rljxXRcLuGR6+fyk+3llOSOfrS7qy9Qd3XnqhljcsyJSLCsdXAdVkdfh395WsLkVllUJj6rCldxoOEAAG4ZPakJdbCUEaONhKcW0Rya8Xa88ZKWqEx8RMQN/BC4BagCdovIZmPMkfhaFp1IwhYJLmFgwNDbP0BqUuAHxeGatiEdrO4+Lz/dEWhmXN3SHfXBY0FGEhc6+nh1fw2PbZgHwL++HejblZTgoqO3n+bOPtwuYUZOCmX56f66rNx0KzUvIzmB4uyUsMbKxhhaujz+cbHgx9vK/dPzp02+5sGxIj8lUD+9q24XZ1rPcP+i++kbCKgMjlY0QFFixVUzrqKtrw23uEe1BmtsJIYURVHGC2d2OP8UJTJXAqeMMeXGmD7geSByA6Bxhs+x8dE/YPj+Oyf50bbTeLwD5GdYzklB5tCpcPsqw2usIrFsRhbTMlO4+zJLPbC7z0u/dyBsXHaqVX/1wp5z9Hq8pCUlsLYsj5sWT2PpdGfGZnKCi8aOXkxQ09VPq1t5+sMKnthygq6+fo7UtOGJcJyLwXddlMiICLfOvhWAT85/QnNPM30DffT0B6KQqQn6IEsZ37jExe1zbufWsltH9Tj6qEGZ0IT2s6rKujxOligjYayjYkMeM2fs7FAmDDOBc0HzVcC64AEi8ijwKMCsWbPGzrIhSE1y8+2NC6hp7XbUFgG0dHlo7LAiDknuoZ/e9kVxXnLSEun3GjJSEvyRsMzkwM+Kt4/Wc+vSQLPey2fnss9WDezu8+IdMBRnp+J2CatKwz+Es/LSONvYRW//ACmJbqtBaHdAjMIXeXrrMHxjw1zSkkb+k6bHE6gX+8ww0iWnOjMyZjjmt57b6o9srSlaQ1FaUaTNFGXKoQ6WMumZik2FFUUZfYwxTwJPAqxduzZKi9qxx+USSnLD62F+9fFZ/3Rf/9CRn2gntbAok5Ul2SS4AskwIsKfr5/Nrz4+y9HaNhJtJ+76hYWsmZVDeUOHX+Wwr3+A9OTBayB86Tt/OFhLZVPXoOMAfvb+Gb5104IhzyeUNtthu25BAUVZkRsgKwFCI1TlLeWUYzm666evj4dJijIuUQdLuWjGWm59OI6SOlOKosSIaiBYZq/EXjahuGPldF47WBtx3YWOPp7YcoK/2rgAtys8mnWszupTlZLoZmZuqr+PVaJbuKIsjzWzcyPWfBUGpR4erLIUOtOTrXqHB9bNZvuJBj6ttpYnJwzuYM0vzGD7iYYhnSsAj9fQ1uMhKyVxyLHBtPdaAheRnFElnKnQ6kBRYoE6WEpUIhUzf9KmfawURZn07AYWiMgcLMfqfuCB+Jo0cgZzYC6bleNP19typI7blk+nsrGLouxk/zZvfFoHWGl0d62aQWNHL42dfSwsyhzyuEtnZHGkJiDN3uuxomVJCS4un50b5GANXgqeFiW6FYkdJy7w2ZXThzX2aG0bH55uJCXROn5Giv4cGi4+1dRgwSt1vBTFyZT/RlEZdkVRwtj6P53zLQfD+2cpkxq7MfG3gLewZNp/Zow5HGezRoyvp1NhZjIN7b3+5cGO19HadtbNyee3n1j1WoP1ncrPSB5209/PLCt2OFgrS7L907npSX6J9kgRMB8JEaJqPr69cQGdff0MDMCphg62n2ggKchZu9DRyy8/OsuXrppNQQSb3zxkOY9tdmlmWuLoyTVPVh5e/jA/P/RzALKTsocYrShTiynvYCnhfNL2QrxNUBRFiTvGmNeB1+Ntx6WQkujmsQ3zSHQLJ+s7/I5FZVOnY9zTH1b4p40x7D0bUA+8b23JJdsRGuHwzUWLYA0WFUlLcuNyCZl2OuCaWTlsP9HgcMh++dFZ/+twGhW7ojhzSmRSE1K5e/7dvHrqVbKT1cFSlGDUwZpgxML5WZP1xRhYoiiTh00tB+NtgqKMGr7eV9OzLRGHktxUTBT1ivp2KxUQYN3cvIuuT7pp8TTePVbPxiXTwtb5Dp8UxcECuH1FMRUXukhPdpOa6KasIJ20JGe0SUQoyEymrccSrPAOjExvxHddlJEzI30G66avY0nekniboijjCnWwFEVRouCTd6+KIOpy1TxLnnio5tu+mgVFiSc5aUl884Z5JCe46B8wHKxqZe/ZJjp7vY5xR2racImQluTm6nkFF328VaU5EeXXAVaX5vBmax25adF7Ty0uzmJxcVbUMQAZyW7KGzqpbOziWF0gNbFwkF5fKYluv0R7kTpYF42IcHmRtkdRlFDUwRpnaHqehaoBKmNJPPpyjTWX6gQOtf1w9qHEnxS71ijRLVw+O5cVM7P54dZTjjH7z7WMuh1LpmexZPrQjtNwqbhgKQ366sh8NLT3Ut7QQYLL5V935Zw8R/+rvCGcPEVRlJGiDtYURJ04RVFCGY4DpUw+khJcrJ+bz8flE1sddlFxJsfr2iOue3V/jWN+15kmwEoNnFuY4RDgUBRFiQXjysESkduA72MpNv3UGPO9OJukjAEarVImAqHv06osTYsJRVMlJyZXzQs4WFmpif7mu9/eOPLGvfHixkXTwhysxcWZHBvE6QIoK0jnyjl5o22aoihTkHHjYImIG/ghcAtQBewWkc3GmCPxtSy2aPRIUSYPoc22Q52w0pxUmHPdmESH1HlRLoXs1ERauz309gdS5yaSsl5qkpuvXF3mV0NcNyePnXakajAumxW5PkxRFOVSGTcOFnAlcMoYUw4gIs8DdwOTysFSFGVyMN4ir5rip1wK919ZSmu3h+4+L6/ur+Hy2bnxNmnE5KYHaqlWluZQmpfGS3sDNVm3LC1iy5HzANy4eNqgTZgVRVEuFTHRtFrHEBG5F7jNGPN1e/5LwDpjzLdCxj0KPGrPLgKOR9hdAXBhFM0db0yl851K5wp6vpMdPd+RM9sYUxgLY2KJiDQAZ2Owq6n2nhgOek0io9clHL0mkdHrEk6srknEe9J4imANC2PMk8CT0caIyB5jzNoxMinuTKXznUrnCnq+kx0938lDrJy+yXyNLha9JpHR6xKOXpPI6HUJZ7SvSfQOf2NLNVAaNF9iL1MURVEURVEURZkQjCcHazewQETmiEgScD+wOc42KYqiKIqiKIqiDJtxkyJojOkXkW8Bb2HJtP/MGHP4IncXNYVwEjKVzncqnSvo+U529HyVUPQahaPXJDJ6XcLRaxIZvS7hjOo1GTciF4qiKIqiKIqiKBOd8ZQiqCiKoiiKoiiKMqFRB0tRFEVRFEVRFCVGTFoHS0TuE5HDIjIgIpNSmlJEbhOR4yJySkT+Pt72jCYi8jMRqReRQ/G2ZSwQkVIR2SoiR+z38bfjbdNoIiIpIrJLRA7Y5/tf423TaCMibhHZJyKvxduWsUBEKkTkUxHZLyJ74m3PeGMqfZ9D5O90EckTkS0ictJ+zbWXi4j8X/vaHBSRNUHbPGSPPykiD8XjXGLFYN/7el0i3x9sUbSd9vm/YAukISLJ9vwpe31Z0L7+wV5+XEQ+E58zih2h9xG9JpHvNXH5DBljJuUfsASrEfF7wNp42zMK5+cGTgNzgSTgALA03naN4vleD6wBDsXbljE63+nAGns6Ezgxyf+/AmTY04nATmB9vO0a5XP+D8BzwGvxtmWMzrcCKIi3HePxb6p9n9vnHPadDvwT8Pf29N8D/8ue/hPgDft7Yj2w016eB5Tbr7n2dG68z+0SrknE7329LpHvD8CLwP328h8B37SnHwd+ZE/fD7xgTy+1P1vJwBz7M+eO9/ld4rVx3Ef0mkS+18TjMzRpI1jGmKPGmOPxtmMUuRI4ZYwpN8b0Ac8Dd8fZplHDGLMdaIq3HWOFMabWGPOJPd0OHAVmxteq0cNYdNizifbfpFXgEZES4LPAT+NtizIumFLf5zDod/rdwDP29DPAPUHLf2F/T3wM5IjIdOAzwBZjTJMxphnYAtw2+taPDlG+96f6dRns/nAT8JK9PPS6+K7XS8BGERF7+fPGmF5jzBngFNZnb0ISeh+xz3FKX5MojPlnaNI6WFOAmcC5oPkqJvEP8KmMHcq/DOup3aTFTnXYD9RjfbFN5vP9V+DvgIF4GzKGGOCPIrJXRB6NtzHjDP0+tygyxtTa03VAkT092PWZtNct5Ht/yl+X0PsDVqSlxRjTbw8JPkf/+dvrW4F8Jt91Cb2P5KPXBCLfa8b8MzRu+mBdDCLyNlAcYdV/NMa8Otb2KEqsEZEM4LfAXxtj2uJtz2hijPECq0UkB3hZRJYbYyZdzZ2I3AHUG2P2isgN8bZnDLnWGFMtItOALSJyzI5iKEoYxhgjIpM2ih2N0O99K9BgMVWvS+j9AVgcZ5PiyhS+jwyHsHtN8Mqx+gxN6AiWMeZmY8zyCH9TwbmqBkqD5kvsZcokQUQSsW6yzxpjfhdve8YKY0wLsJUJnNIyBNcAd4lIBVYq2E0i8qv4mjT6GGOq7dd6rB9IkzEN5WLR73OL83Z6DvZrvb18sOsz6a7bIN/7U/66+Ai6P1yFlc7lCxQEn6P//O312UAjk+u6hN1HgO8zta8JMOi9Zsw/QxPawZri7AYW2IoxSVhFi5vjbJMSI+zc6KeAo8aYf4m3PaONiBTaTyYRkVTgFuBY9K0mJsaYfzDGlBhjyrA+t+8aY/48zmaNKiKSLiKZvmngVmDSRScvAf0+t9gM+NS6HgJeDVr+ZVvxaz3Qaqf7vAXcKiK5tirYrfayCUmU7/2pfl0i3R+OYjla99rDQq+L73rdi/Uda+zl99uKenOABcCusTmL2DLIfeRBpvA1gaj3mrH/DI1EEWMi/QGfw8qZ7AXOA2/F26ZROMc/wVIZOo2VFhl3m0bxXH8N1AIe+//6tXjbNMrney1WHvFBYL/99yfxtmsUz3clsM8+30PAf4m3TWN03jcwBVQEsdTxDth/hyf799VFXqMp831un2/YdzpWTcg7wEngbSDPHivAD+1r8ylBysDAV7EK808BD8f7vC7xmkT83tfrEvn+YH+v7LLP8TdAsr08xZ4/Za+fG7Sv/2hfr+PA7fE+txhdH/99ZKpfk8HuNfH4DIm9E0VRFEVRFEVRFOUS0RRBRVEURVEURVGUGKEOlqIoiqIoiqIoSoxQB0tRFEVRFEVRFCVGqIOlKIqiKIqiKIoSI9TBUhRFURRFURRFiRHqYClKDBARr4jsF5FDIvIbEUkbBzbdICJXX8R2+SKyVUQ6ROQHo2GboiiKEh9EpMN+LRORB2K87/8nZP7DWO5fUSYK6mApSmzoNsasNsYsB/qAx4azUVDH9dHgBmBEDpZtTw/wn4G/HQWbFEVRlPFBGTAiB2sY9yyHg2WMGfFDPkWZDKiDpSixZwcwX0TuFJGdIrJPRN4WkSIAEflHEfmliHwA/NJ+irhDRD6x/662x90gIttE5FURKReR74nIgyKyS0Q+FZF59rhCEfmtiOy2/64RkTIsJ+87dmTtukjjItljjOk0xryP5WgpiqIok5PvAdfZ94jviIhbRP63fX84KCLfAP+9aIeIbAaO2MteEZG9InJYRB61l30PSLX396y9zBctE3vfh+z71xeD9v2eiLwkIsdE5FkRkThcC0WJKaP59FxRphz2073bgTeB94H1xhgjIl8H/g74G3voUuBaY0y3nU54izGmR0QWAL8G1trjVgFLgCagHPipMeZKEfk28JfAXwPfB54wxrwvIrOAt4wxS0TkR0CHMeafbdueCx1n79thz6hdHEVRFGU88ffA3xpj7gCwHaVWY8wVIpIMfCAif7THrgGWG2PO2PNfNcY0iUgqsFtEfmuM+XsR+ZYxZnWEY/0psBrrnlZgb7PdXncZsAyoAT4ArsG6fyrKhEUdLEWJDakist+e3gE8BSwCXhCR6UAScCZo/OYgZyYR+IGIrAa8wMKgcbuNMbUAInIa8N3sPgVutKdvBpYGPfTLEpGMCDZGG7dZnStFUZQpza3AShG5157PBhZgpb3vCnKuAP5KRD5nT5fa4xqj7Pta4NfGGC9wXkS2AVcAbfa+qwDs+2gZ6mApExx1sBQlNnSHPrUTkX8D/sUYs1lEbgD+MWh1Z9D0d4DzWE/2XDhT83qDpgeC5gcIfH5dWJEyR0pfhCyLaOM6QwcriqIoUwoB/tIY85ZjoXX/6gyZvxm4yhjTJSLvASmXcNzg+5wX/W2qTAK0BktRRo9soNqefmiIcbXGmAHgS4B7hMf5I1a6IAB2JAygHcgcxjhFURRl6hF6j3gL+KaIJAKIyEIRSY+wXTbQbDtXi4H1Qes8vu1D2AF80a7zKgSuB3bF5CwUZRyiDpaijB7/CPxGRPYCF6KM2wQ8JCIHgMWMPJr0V8Bauyj5CAEFw98Dn/OJXEQZF4aIVAD/AnxFRKpEZOkIbVIURVHGNwcBr4gcEJHvAD/FErH4REQOAT8mcjTpTSBBRI5iCWV8HLTuSeCgT+QiiJft4x0A3gX+zhhTF9OzUZRxhBhj4m2DoiiKoiiKoijKpEAjWIqiKIqiKIqiKDFCHSxFURRFURRFUZQYoQ6WoiiKoiiKoihKjFAHS1EURVEURVEUJUaog6UoiqIoiqIoihIj1MFSFEVRFEVRFEWJEepgKYqiKIqiKIqixAh1sBRFURRFURRFUWKEOliKoiiKoiiKoigxQh0sRVEURVEURVGUGKEOlqIoiqIoiqIoSoxQB0tRFEVRFEVRFCVGqIOlKIqiKBEQkRwReUlEjonIURG5Kt42KYqiKOOfhHgboCiKoijjlO8Dbxpj7hWRJCAt3gYpiqIo4x8xxsTbBkVRFEUZV4hINrAfmGv0RqkoiqKMgAkdwSooKDBlZWXxNkNRFEUZI/bu3XvBGFM4BoeaAzQAPxeRVcBe4NvGmE7fABF5FHgUID09/fLFixePgVmKMkExA9BRb02nF8CA15pOSI6fTYpyiQx2T5rQEay1a9eaPXv2xNsMRVEUZYwQkb3GmLVjcJy1wMfANcaYnSLyfaDNGPOfI43X+5GiDEFHPex+ypouuwYqPrCmr/k2JA2SfdtWAz1tME0fXijjk8HuSSpyoSiKoijhVAFVxpid9vxLwJo42qMoE5uetsC0z7kC6GqMPP7Tl2DvM3D45dG1S1FGgVF3sETELSL7ROQ1e36OiOwUkVMi8oJdOIyIJNvzp+z1ZaNtm6IoiqJEwhhTB5wTkUX2oo3AkTiapCgTF2Pg099EXrfvV+HLupvhwsnAvC+dUFEmCGNRg/Vt4CiQZc//L+AJY8zzIvIj4GvAv9uvzcaY+SJyvz3ui2Ngn6JMOp7YciLq+u/csnCMLFGUCc1fAs/aDwLLgYfjbI+iTCzqj8LhV+Dqv4w+bmAAXEHP/H21Wj62/RNc/7fgThz+sZvPQnapc7+KMkaM6rtOREqAzwI/tecFuAkr1QLgGeAee/puex57/UZ7vKIoiqKMOcaY/caYtcaYlcaYe4wxzfG2SVHGLd0t0BmS7nf2Q/s1KCVw1rrwbZvPOOc7G8LHbP/n6MevPwpb/yf0dkD5e7D/OdjzFHi6hzRdUWLNaLv1/wr8HTBgz+cDLcaYfnu+CphpT88EzgHY61vt8Q5E5FER2SMiexoaInwAFUVRFGWK0NLTgsfrGfPjGmPoH+gfeqASH4yB5grrdaz4+N9h15POZb123VX1J9Zr2TVQdl34tj2tgWljrOjTUHQ1WZEvH4dfsV4vHIezH1nTnRfgyKvDs19RYsioOVgicgdQb4zZG8v9GmOetJ8ori0sHAulXkVRFEUZf/R5+3ju2HO8eOJFGrrG5oHjpw2fsmn/Jv79wL/z5MEnh95AiQ91B2H/r62oTryo2Q+eHuey0nVWmt/0lbD887D+MWu5K6hi5fxhaKm0pjd817m9t99yHJvOwM4fw/E/WMuDj3Pij85t2msv+VQUZaSMZgTrGuAuEakAnsdKDfw+kCMivk9SCVBtT1cDpQD2+mxgEGkZRVEURZnavFv5LgCtva385sQgAgIxotfby/aq7eyo3uFY7lXxgfGHMZYDAtDdFJ/jAxx/w7k8NTfQ82rxZ6FwIbiTrPngKOzR3wemXS6Yd1Ng3tNlOY4Hnrfm6w5Zr10XBrfH0+Pcv6KMAaPmYBlj/sEYU2KMKQPuB941xjwIbAXutYc9BPhit5vteez175qJ3KRLURRFUUaRHq8zOjCaqYK/PvprDl04FLa8s78zwmglrnz0g0DkaiwcYK8HDv02MD/QHzk1sTtCCaPbdri8veHrZq23X9fBnOut6caT4eO6m+GTX0a38fS70dcrEwbvgKGxI8L7ZZwxFiqCoXwXeF5E/juwD7C7zvEU8EsROQU0YTlliqIMwlBKgYqiTG4ykzId86+feR23y80dc++I6XE6+jro6u+KuO5XR37FN1Z+A7fL7V/W0NVAQWoBqlM1hhgD7/8LzL/FEnnwEcsI1oAXWqsgd7ZzecNxaAi6H3m6Iej9QOFC5/pgfOPKt8Hsq6H9fGDdnA2B6ewS6zU0/Q+cEa9g1n3DSiMEqwZs4Wcij1MmFB+XN7LrTBNfvXYO2akjUJUcY8bEwTLGvAe8Z0+XA1dGGNMD3DcW9iiKoijKROVgw0Her36fwjRnHXJ1h5Vx7/F6SByJnPUQ1HTWOOavmnEVH9V85J/vG+gj1ZUKwLZz2zjceJjLiy5n9bTVJPsiFMro0nga+vvg2B+cy+uPwaLeQGrepVDxvqUKuOZLAYcHwh2cuoPQEeQozb3RcrDcEX5yBjvhLZWw71lrOr3AKa+eOX1wu1qrA9NJ6ZaDd4Ndu1WwwNlPSxkTfr2rkrrWHv765gX8/mAtp+s7+OubF8TkocvpBusBQkdv/7h2sLQ5gKIoiqJMIN6vfh9gUGGLF0+86J/u8nRR1V51Scdr6nFGQVYUrGBZ/jL/fJ+3D4D+gX4ONx4GYO/5vTz16VPUd4X0MxoGZ9vO0uWJHDFTBqH1nHO+7JrA9I5/sZyvS8Unud7bHn3cmR2BiNWqL0KyHWnNmxd5fIrdJtXnXIFVrxVMQtLwbLzqL+C6vwnMr7g3MH1u1/D2oVwyda1W+vKFjj5O11sOUZ93INomQ9LQ3svR2jYaO6z3cmfv+FYxVQdLURRFUSYAe+r2sGn/JseyrKQsVhaudCxr7Q1IXm+r2sbm05v5+aGfX9Qx99Xv45PzlsT2g0se5JGVj5DgSmBD6QauL7HqYlp6WzjYcJA3K94M2/6lEy+FLYuGx+vhD+V/4OnDT1+UvVOOAa/lPFV+7FyePs05X/lh7I4ZXEvlHeJHblKmpRp45aOw5M7IY6YtGd4yHylZMHdD5DEud3ikbK6danjqnei2KjGnuy9QA7j7zKW1EfzVx2d581Cdf769J+i9N+B1psaOA+JRg6UoiqIoygg43nScXXXhT+Db+tq4ZsY1HGw46Fge6oh193dzsvkk+an55KXkDeuYHX0djlTA7ORsx/oZGTMAqGqv4kDDgWHtMxq1HbW8fOrlS97PlMEY2PZPkdclJEHeXGgqt+bPfmTVNMWiLs5XLwVwPlz4xAjDdbkAACAASURBVEFSmvWaHtbWNEBw3RXAZQ9Cdmn4uLw5IC5Y9jnLaQOnDP38jYPYkBHdRh/9vZYEfOGi4Y1XIhKsT/fbTwLR890VTVy7oCDqtluP1bP/XAv3Xl5CaV5a1LFdfUEO1sktULMPrv/bwHsjzmgES1EURVHGOe9URn76npaQNuy6hi1nt/D8seeHfcxOT3SFwAS7d1EsnCsgLALmGVBp7ah0RpEmR2Dp3c5F730vdsduqbRSBX1S7NNXWaISoSSkDr2vxBTnfM6syI7gqvth5Rci/4C+7EEoDSvvt0gOcrD6orynd/4IDv3Oqmc79rrV7Livy4oQ+hxVZUi8A8MXAN9xsoET5wMpp/vPtQDw0l5nWnN9e0g/NWBPRVBErGaf9Rr1MzG2qIOlKIqiKOOY5p7w1Jr0xHS+vPTLfHnZlx3LH135aMyO2xtJOjsIV4x/QiS4nEk1Woc1BBeOO+cl6P+RlG45Ljf+g3PMwEXWwfSHvBf2PQvVewPzmUWQlgdZIWIUrmG8R4qDUlxXfXFkdq38guV45cwafExaUNSk7tPIYwYGLGcK4OCLUHsA9j8HH3wfjm6GAy9AT2vkbScx3gHDE1tOcMB2fKLx5PbTbD1WT2//8N5jv/z4LHsqmvnDQasRdE1Lt2P9QJCj9uzHlYPvKNip2vt0oEl1nNEUQUVRFEUZp/T09/DrY78OW37XvLvICEp9enj5w/QP9Ic5KWA5Lv0DgXSanv4eUhJSwsaFUtVhPUW+esbVEcenJ6aHLfv6iq/T6enkQvcF6rvqOdBwAGPMoFG2mo4aspKyyEjKYMA4f5g9e/RZrpt5HSsKVwxp65TD22+JSQSTMQ3a62DejdZ0JPo6AqISI8EX+cksCqT0ndsdWD9tqfV62Zes1MVIioGDkRT0PsqbOzK78gcRzggmJQtKroCq3XB6a6C/VjBHXhl8e58K4RRpVnzmQiev7KvmkesD/4t3j9WzqjRn0G2aO/vo7PWy/1wLi4ozBx337rHz3LS4CGMMF9qdTrsnRASjsqmLsoLw7xiAlSXZHKxq5aPTjVxV+RPnynO7ojvcY4RGsBRFURRlHGKMoa2vLeK63BSnylpqQmpYXywfs7OcfYt+duhnwzr+/vr9ACzOW8zivMVh64OdputmXsfjqx8nyZ1EbkouC3IX+FMH/3g2Qu8im1dOvcLzx620xVAHC2BH9Y6wZQpOGXQfPrW+lOzwdT7OH744R6H5jPWaURxY5nPaE1Mg0U4FjCQyMRTp0yCz2IpEjRbzboy8vPksfPwjq5fXUOz6ydBjJij93gHeOlxHW4+HT6utSF1Vcxc/2T50auTAgOHpDyv88y/sPhc2JifNSus8cM7adyRFQV/k6/qFVvuJl/dVh4351k3zefzGef4+1h+XN9JOSBrqhZM015111ILFA3WwFEVRFGUc8osjv3Co8A0n6hTM3GzrCfTF1DKdawv8SIrWy8otVqPY5QXLBx1zuuU0dZ11YcvPtVvH8Mm8J7uTERE+O/ezI7Z3yhEUkaT0Clj8J5A/35pPDRExKVwYmC5/D3Y/NfzjdDdDV1OgwW8kufTLHx7+/iLhcsHahy0Ri9EiuPGxj/pjVhpg9wjU7eL8oz0qAwMX5TzXtnbzb++e4khNG298WktaonWtjtQ4H+4M5rB8Ujn09Wvpctq1aevpsDG9HsvByk1z1thVB6UOJnq7SW46iQGyu6tI7WviULmzXqu128O2be9wds+bsPV/xu1/pg6WoiiKoowzWntbHSITi3IX8fCyh3GLm6tnXB1121lZVnrM2uK1AKwsWMlVM67i2pnX+se8Xv561H28fiawPpqIxhcXfZHb59weccxXl3/VP/27k78LW+/rmeWj19vL0ryljoibLw3RGMMLx15g0/5N/O7k7yJGu6YU+58LTM+/2RKZmL4Krv6WlcYXzOI7LQfGx3AdivqjVnRn548Dy4pXho8bwvH3eAcobxgHEto5s5zRtcMRFCuHUhD0iSmMN1qrYdv/gu3/PGKH4vldgYcpTZ0ealoth+Zso7MG8khtwOE63dDBE1tO8NLeKnacjCwssbDIiqg+fE0ZX7rK+kynJrkjOmqtXR76vJak+4wcKyKVn2E58y/aEbGkBJdVH3f4ZW7MOMuShtdZVWc9gPq0uhU2fBcyptHY2UtRxxFajm61dv7e96CthrFGa7AURVGUSY2IJBpjPCHLCowx40dyKoRgBwfg2pJrERG+sSqCUlsIt86+laaeJgpSC3h89eNAwOnyNSmuaKuIug+v8UZd7yMnJYeclMi1GaERt9BarG5P4Mn022ffpru/m4ZuZ/PkPm8fhy4coiyrjMaeRgDqOuuo7axlZsbMYdk46Tgf5Jhe8bXAtEggTTCYhCQrBc/ltvoFgRXtGEqA4nCEuqT0wvBloSqAIWw9Vs/hmjY+u3K6/0d3JE43dDAtM5nMlFGS2c4ogg47khoq2uFj2eegp8UStDj7IUxfDUVLrUgIwIm3rHqzIc55zBjwWrVlwUIPXo8z0thWA3ufsd4Dax8OOGAi1Lc51fl6PF56PJE/+388fJ5lM6z00y1HrBTVc02RhWjWzM5lw8JCPktA9GRuYTodvf30B4lXzMhJoaalh0/ONZPocuF2CckJLmbnp9FnpwyKWCavn5sH5db/L+H0OyyYlsFJu4nxOddMliK4Vj/I+YP/CYA+b5AjV3cIsmZEtHW00AiWoiiKMikRkRtFpAqoFZE/ikhZ0OrBC4PGAaHKgdHS9EJJcidRnF4ccd3cnEDh+qb9m3jx+ItjFg1699y7/ummniaHSuGJ5hMA1HfVA3DNzGtIT0zHM+Bhe9V2Pr3gVH/r6Q+XbY4lngHP+IySdTfDkc2B+cHELCKx4r7A9OmLaLq74Fbr1+6N/xBZKCKE7j4vHu+AXx3Opxb3SWUzb3xa6xjb1z/A5v01/OKjs1Rc6AwTPIgZ/X2Ws7RnkMbbIpCaC7llsPoBy7kCp+T9vl8OfRxjoGb/6AtjNBy3hDuC1RFD1TdP2O0P2ussm977Hux6Eqr38lF5Y9gukxKiuwbGGEcD4UhsWBjuiCe4XPR7jeN/e89l1kOSzOQEdlc04R2wHsIkJ7j9NVmLiy1RljUhIht56QEnMrf7LJu2nuJft571L8tKCYohxeGzrA6WoiiKMln5J+AzxpgC4Elgi4j4fhnGoOPq6DMvZx6PrXosZvu7rew2x/yF7gsRo1mRFAIvhptm3eSfPt4UEBJ4/tjzNPU0hY2/vuR6AFYVrqI0M9Bsdl+9MzWrx+t0sOo662LWjwvgJwd/whtn3ojZ/mLGxz+6+G3z5sDyP7Wmq/ZYTXUj0dkYWZK8OKjOzpcqOOe6iLuob+/hR9tO887R8xRmOqM92443cKyu3ZEq1t5jOSJ9/QO8vK+aHSedkcyY0BMkNR6cJjnzclhxrzONMhSfowXD67XUfMbqEbb9n0du50iIlL7bcMw5nx2kqFdup83ZdXVFWNdhWlbgAU5fFJl1YwzvnYj8v7lqntVMem5h5O+OBLfg8Q74a7sWF2eS5HaR6JawNMNuj5emzj6MsRyygowkpK/dMcYlQnaqFe30uFOtyFjQ9XAFX5vGk9DqrNUabYblYImIaqQqiqIoE40kY8xhAGPMS8A9wDMicg8wbqvVN+3fBMD8nPl8puwzuCS2z0LvW3ifY3537e6wpsIucVGQWsAjKx65pGOFqg8Gy8VHYlpaICJTklky6LjQHlkvn3qZD6o/wHMREQOfyIYP3z7Otp3lmcPPjHh/o0b9saHHDIVPCANg/6+tSIunx5kyt+tJ+GhT+LbuoLSz9Hy48lGYfU3Ew/j6Fh2tbXc0kg12qoIb0v7io0DkAaDiwij0QBss2rfwVihYYKXQxYoLpwZfd/6IJXHfeNqSFL8UItVbebqsKN2pt6356j2BdXlOWfusI8+yvvJJvrA0nSXTA/L9M3Isp/iey2Zy1+pAat1rB2vZXxneEys/I4n1c/P5zi0LuXt1eOpuT38Pb1X+jvrORr8ohssliAieoFQ+n8BFS5f1mfzXt09yqr6DCx19Ed+TS6ZbKaeHiu4OW+eIgvZ2wCfDiDzGkOF+a28SkV0i8riIRNH/VBRFUZRxg0dE/L+abGdrI/CPwIJ4GRWNYAckLTFtVI5RmFbIhtIN/vnGnka2ntvqn2/uaaa9r53i9GIS3ZdeDxMcxWrsdqYkJbmdqnT5Kfn+6dSEEPllrH5fuSm57K7bzab9m/ypgr4f7qGOYjSMMdR01PDTT39KeWtAjrq6IyAP3enpvCgVxlGhKVx5bcSEqunt+Gd4/wmroS4MLpCw8gvh0ZL0/MgRlCj869sn/dMv7rEiCpFqflq7R+GaR3IGh5Hq6KcsIBJDd5TGu/19zibMnp6Aw1W1F468ajk/B1+EUyNI1fR6rH0H0xsU1fHVhVXutF59fcqC/6dB9Xse74D/OifseZIrygKtHzp7vXznloXMKUhnbkE6s/Ks76JT9ZHFSm5cFD1Vtaq9ioauRmr7DtHZ6x10G5+vdX1IimFyf+R2FYJw1WUr6XUHavt2ln6N/PQky3G75tvODXw1iLufgg/+b1SbL5VhOVjGmOuAB4FSYK+IPCcit4yqZYqiKIpyafw94JBUM8ZUARuA78XFoiEIri1KdI1SsT+wLH+ZY76110oJO9BwwN/Y2FcXdakszlvMHXPvAKCr3xmZuHPunY55d5ADUJxWHCZkkZqQSllWmX/+Z4d+5rDzuWPPcbzpOBe6nSlHDV0NtIekGG2v2s4rpywhhz9WBEryfNLzPs53Rug5NdY0nYHag4H5wkVOgYuLxWs79ANeSwwhVPxh5uWw+s+G19AXeGLLCd4fRFUulPNtPTR19vFMUA8lH4WZw685HDYuN4gL0gsCywbrjxWJ4HTIM9sGH7fj/zjn338CPv2NFVU6GaH0c2B4gjJ8+G/h++5phYRkqy7u2u+Eb7Nn8J53wb2oBCF/3w+Z1mFFSX3pfmCpiEYSJ5mZk8r07BRuXlJEaV70h0EucXHZrByMXQvldknEWq/rF1j/m9RE52fwc2wNG0uG7YTNv8Xh6K+dU8iJrPVUJ5TS705xCr+01WCM4aODR9l14hxmFGvkhp13YIw5Cfwn4LtYN6f/KyLHRORPR8s4RVEURblYjDFvA4dE5NmQ5a3GmP8RJ7OiEiz8MJoOViitva209rbyQfUH/mWLcoeQrB4BvmjctnPb/CmQ66evpyi9iC8t/RIAC3KdQcVEdyJ3z7+bz83/HIBfnj40svX22bcd8+9UvsOLx190LPvNid/wyyPOFKFgmfhgQYuPaj9yjPOpF/rYtH+TwyEbEw48H5jOnW3VUo1E4GI47H3GcgaCcSfQkjyD2tbuyNvYGGOouGBFD3dXhNfWDcYzH1bQZQsmLJ2RxX1rrbTQhvZenthyIvbNYm/4rhWNg5FFr3yk2T3Gzh+JvN4bPQU2Itv+CT78AXTUW1GqvkHSIyMpH/Z3Q7RId3vkhwPeJXc7Ujd9+7/eWFEvn0S6j+REp7twzfwC7lo9g/uvnMWKkqET2zwDHlIS3bT219A70OFID/3qNYH+Z1l2TVVqUsDByuytI2XAviZZ0yHFTmVccR/M3QCZxXznloV89do5zM5PY21ZLicTF3Oi8Fbq2nqc9XP1R2l9479Z12DAIK7RE1Mfbg3WShF5AjgK3ATcaYxZYk8/EXVjRVEURYkTxhgvMFtEInRIHX8Ey6MPVyr9YvnTBc7no5tPb3bMX1cSWcDgYkhxW+lLwREsn2R7ZlImj69+nFtmR06MmZ4xna+v+Dqrp60GwtMKB6PX2xu1JiuSjHyvtzcs+rWrdhfVHdU0djf6ncNTLVFqbEabVX92adtv+K4VlRoO+fP5+QcVPL/rHP2DKPv19ns5UtvGy/uqw9Y9tsGKfK2b62x+vH5uftjYFTOzKcl1Ogv/9u6pqKILF0VKNqz7BszZMPTYUNYGRQ27IjiSjRf5vuhtt9LWtv+zla55/rAzYhlMi923as/PLUdvOH3NFt4Kax+mb+YVtBRfzUf1bno84de1JCeVP7tyFtNChEmSQ6JNV87J+//Ze+/oOK/zXvfZ04FB750gWMDexKZCipRIFduqlmVF1U1ySXHJOScnZ517krPuPTe5p8RxnFiJHduxLdmyHMm2ukVJVKNEihKb2AtAEh0gepu+7x97yvdNAQYgQIDUftaahZn9ldkzGAz273vf9/fisidp3pwET8DD6+djqZBHhl40bc/NtEfNKgrDzoCZBoFVPnAoFu266guw6gElrly5MOeaaPQqN8PO3WuqcNmtUaE+7A2q33NuOBLe8lFU3DXmXzfhFNeJkK50+z7wr8B/kVJGL2NIKVuFEP91Wmam0Wg0Gs3U0ADsEkI8B0SLdKSUfzdzU0qOsYboVO8p1pWtm7bnirdyj0+hm0qyHFkJY0UZRUn2TI5RVDksyQVWvivfZG//449/jN1i5875d0bH/CE/doudYCiYYPX++MHHybLH5nnbvNt4/szz+EN+fn/69ymt76edngbz44tdFFosyoY8Qn5tgqPgUN0tdGfUMicvH1ApmCP+IDlWtdA92KRqkN480UUoRZRpRVUuGQ4r396+ECklI94gH7f047BZTK51EezWxGv+wZDk2X3N3Le+JmHbRZFZMP4+ybDa1MLe068E0fX/UY03fwi5VbHmxVY7XP0niRHBdIlY8Zcnaey8/wmVEjjYnvr4jDxznVgoBNllvNoY4lTHEDkZdoJld5Pl7WSbLebQKYSgLDexx5cxne/hq+ckbDdyoucEH7R/wAOLH8AiLPzbkX9L2McfMkdEP7e2imFvEFv4M2D8LBSMnsVlN/y+MvLUbQwiFu6j/qBKDV39kLKnR6VDAnRkLR7zHBdLuimCnwZ+GRFXQgiLECITQEp5aW05NBqNRqOZGGeAF1D/87INt1mH0Ro83oFvOoi3bb+UVLgn1/gzlfnHXfPv4oHFD5jG/CE/x3ti7nvecJpVqvqyiMAtcBWYbOJBWcEbCaZbO3OxnN89PeeN1LutvM/cIwv45dksnj3YZUrRi9hr7zjawRvHO3njeGdKcQVQWxSz6xZCsG1JKX96w3y+fv28hBobALtVLXwj0YcIbf3T2/NsPEIhyZDXkPoXcbAMBVTj4Z1/A6d2mHtrLb9HmU4kM4mJiCZnNlz9x2M/+ZkktUdgNq4wPkfk3PENoctXAnCqQ5lUDIz6GXYU0ZG1mOIb/2zsOQAum/p9zS1yU5g1dn3c6+dfZ9A3yKBvkEAokLSf3A1LzAI322U3CTubRX0WLCE/62sLsAoBJel/H7psVoSA4cjvzXBRIigl5/M2cOea1C6lU0G6EazXgG1AxD4kE9Wk8ZrpmJRGo9FoNFOFlPK/AwghMqWU0+D/PHWUZpbSMdLBbXW3jWlTPlXU5dXhsDpMVuWbKjdRm1s75c/1R4v+KGqg4ba7TYYWEyHHoWow1pWto9/bz8nOg7hbD+Jy1eJa9ClsFlvMjdE/yonTL0JuNQiBJ+ghiyyG/DE3tM8u+CzPnHoGAIkk15nLfYvuG3ceO5t2sm3Otkm9hgnRa7AwXzaFZe/XfgsI9w4qMti3F85juEMt4F871hkdznLa+O3+5nEt1G9ZVkYgKJlXnBi1jEQoynNduJ3WqKOccVtVfiafXVPFM/tifYuklNGU0kvN7oZu9jT28NjmOtxOm9mUomVf8oMiEcI1D6tIF8CS2yGrDByZIKww7wawOVQ0LZxu+MvBE2RbHNzmDtclnd+tbvGtGt40ePQYzS3qPwULb4G3/5d6PHcz1Ca30gdwOWwId6FKGz3yLFw4Be2HzT3PgLxMO9sWlzK/JPF3moonjz3JVaVXmcaq8jNo7h1lJIUrYAQhlAnG4qbfYq0Of08svSvt57ZYBFlOW7S/GgD2DPCPKtElJEVZ05s1nq7Ackkpo99GUsqhSARLo9Fcfnx3x9juYN/evvASzUSjmX6EEFcDPwaygBohxErgq1LKb8zszBIpyihiwDdAdU71+DtPES6rKyqwNlVuYnnxFLe+DPjgnf9Dftlyvrjsi3gDXvJcY6f4jEWWI4tHlj5Cpi2Toz1HOXnoCYZDfmg7CPW38sDiB2L9q7pO4PMOQkYBOLOiJiLNg7HFe3xT5YijYioiAu784PlJv4ZJ4S5S7oEXQSgk8QVDWITAZrFjsSQRLd1nAFXvdrgl9l7sOJqem+LC0mysyc5rQAjBY5vnmf4X2QzHxGup9gEP5bmJtv0TRUrJ26cu0N4/Smufh9tXVSQVgkYawuYdQ96AElgWC6SoRwPMUanMIiSSV1tdHA3YWVTmY93cLIrqDZHjDV+Fd/8e/KP0Bb30JWsLkCQKBKjm0cYLFUIo8WaxMerx8Pr+s2wuW0+Oy8757kRh/LXr69Qdi0WlPgIce165RtozDKcVJjMLKSWPH3ycdWXrTGnM8aYkH3V8ZHr8p+se4F8PPsXHfW+yGbOTaTxfuKYW6xhmjeMx6AlwrG2QW5aVq4H6Wwl8/CxHfGV0FCxKmpI6laR79mEhxJrIAyHEVcDYljIajeayYeP5H5pu7PwbddNorgz+HrgZ6AaQUh4ENs/ojFLgC/nSNnGYKuoLYov2JYVLxthzEvSei1lLt39MRkiOLa6khK6Tyk1tDNx2N0IIlcZndFfzDpBpM1z/jUYb1MLPE/DQNNBE23AbALfMvQW33W16D4zcWHMjW6q3mMbm5KgalGSpT9NK9fqLPsXOE508/uYZ/mnnaf7l7YbkO0Vc9iZATUEmj22u45FrascVV0aq8jNYXpnLgxvnmEwT4m3aj7WNHfFIl94RP/vO9dLap9IOnzvQyrnusXunRcReIOJ8N5ZrX1ZxzOUOwGLBe91fcLREtSk43j7IL+KaKgOw8eumY1j94LivBUgd1alaR3u/B28glLJ3FWCOChpTDfc/MebTBqSKEO9t38vbzW9Hx8dq7eC2u8m0Z1CU5Rw/Gnl+N+7O/bjc4UzutV8ce/90KK7n+8HPcrL4JoJW16wRWN8CfiOEeEcI8S7wa+BPpm9aGo1Go9FMHVLKprihtApohBBWIcR+IcQL0zAtE/3efk71nho3gjLVrC1dS75LNRmdbNpeSg780vz46O+hvzm585mUymzh8DPQtMe8racx1qzVQI4jh1yrK5ZSNdiu0ouiIjUsgsIpg56gh+FAbEE9J3sOQghurLkxOmZMa6ovqDeJztvqbouaXVxKG31sjmgdzcUQqaOCJA1+r/oCzN+WVs+r5ZWxaMbSihy2LSnF7bRFzQXS5XNrq9m2pDRBUMW71sW72k2WZE2NXz48hlkEMVOEtr5Ruoe8sOI+c9PhitUq7Q+SOhO+39CdMJaAzfD6Mwogrxo2fSdxv6vjgu62FPVQVWsJWBy0Zq+IRgZ9cVG3BI1TZTDUGR67l1nLYMwx8vCFwwn1iEYDG4uwcPeCu7ln4T3RiyuR75ukhEKq9uz0a5BZBDkVkD15g5ndDd009Yyo312YpRU5E7oQMBnSShGUUu4VQiwCIpd4TkgpZ0lrc43mk0HEHjjCvgH1pb0m5/MzMR2N5nKiSQhxDSCFEHbgm6i2I+kQ2TdnvB0vliePPTn+TtOAEIK7F9xtcjCcNnrPmh3rqtepRX3nMTjyu9h4fziFb/8TMVtqgPWPgdtg8X38JR7IXqiiBp4BOPwsrPsyX1n+FQB+0PQFtV+4P5E34DWZZCQTlOvL4iJFx1/k3gvt2NY/Rl5OFVWyil0tuxj2DzPiHyHTOwwOd2yRPVECXlWD07ofMvJhztWxbTJcI1V1cW6SETe+QMicwuUPhmJX8nPKIafc1KMIYH5JFhI4E46EfHv7QkIhycfh9MGblk69u6IQguWVubjsVvae7WHH0Q4GPQFTA9xk9I34+OmuswB8Y+s83jl5gS31xdH6rt4RX8Ixo76YOAiFJJ2DXpPhQkSIvHPqAu+cuqBS6OduAptLiQCbE//oEIOeAAVxnycpJQfO95EOXUGVGBbIqaZn2EeB26nEW2vM5Q+jG+fcMYLwDjcNix4j0DrAoeZ+WvtGOdZmdgl9dFNdwjFs+g68M765avNQs+nxCw0vcMf8O6JOpMZWBzmOHJMD54L8BYnNu/2jqtF1ZgHs/ufYeN95s+PlBNgwt4A9jT28fyZR4E7HZzaeiXTYWgfUho9ZI4RASvnzaZmVRqNJm30Dv046roWXRhPla8D3gEqgBWXSNG79lRCiCuWi+z+AJJeTrxycVidO69juYNNC014lsIziClRqn3/ULK4A+s6aBVbbQfXTY0gh2/tj5YpXND/mthYKYBVWPEFPQv+rCOvL1nOk+0hi+lLbIYqsGdB5HLwjiOKFuO1uhv3DPHfiae7ralO20cY0r4lw8g+q71GEmo2xVX3Qp17DRf5uDjT10tybWNnh8QcTUqVGfEqM1hW7uXpeISXZLnyBEP/UGYsgWixi2mt1ty0pRUoZbVy8u6F7XIH1QWOsN9UPdp4BIMtli/bdevVIbGE/ryQrKhoj7GnsYXdDN/dvqKE0R31Ohr0pmgeXr4TRHqi5mg/fVL2d1npHMcY1e0eSxyLa+z0JduhDKz8PJ5/hQJuHQH8j37mpHupvUWLuwC+heJG53moM8wqA1j71++4a9NI1GIveZLtsDHrC9WTx2JyQXQoY/gZCIZW2aODIhSOmx3aLndHAKB+0fwDAvLx5nOlT73+f1ywwLcLCgG+AYCgYu8Bx+FklppIR10IgXZwp+nQlaxEwHaTbaPgXwP8GrkMJrXXA2mmcl0aj0Wg0U0W9lPIBKWWplLJESvkgkE4TlL8H/hPRPLPpQ0qJVagFwWMrHpvup7v0xLmSmWh4M3HMN6xu8ZzZqQwBPHE1Odml5scf/waAjRnqSvX2whVYLVa6R7s5NEd7lQAAIABJREFU2KVE2b315lqjtWVreWTubfDe92MpjMai/aa9Kn0RohbuvadfVdtG+5Q5xFBX0pfY3DtCQ1eKWpgO82KVrpitPJFeXbZY6t27py7w3R0nEwwFWoZa+MGBHyREInuHfbx9MnnKV+9wogAY8ChBsawyN5qa57BZWF2Tx2dWlCd/DdNEvNiNf83xJEtRPNjUx9snleV8Ydg57t511dy+soL6MlXjE2mivDucztcXFka+QIhBj1lgRedgc8DCm8Hu4nDpHYAgEGftb6x/emxzHZ9fp7ab3O3CWJ3Z4C7CH5SMhvr4sP0jRvwjKrK0/lEltAA2/fmY9u6BYIjDLf3R1xDPgxvn8KVr56Y8noz8WA3kBz+Ct/4/09/Bke4jCU3QW4ZaONQVa4y8fc52Hln6CEsKl/Dl5V827ZttV+/5vxz6l1hmztDYaZqTwdis2MhnVkyuPcRESTeCtRZYIsf7ZGs0mlnNxvM/nOkpaDQzwfeBNWmMRRFCfAbolFJ+JITYkmKfx4DHAGpqLq4RqkRyffX15DnzsFkmklwyQVo+gqJ6cBpSjaQET59aWE0lkfS2mquh7npl/5yMc+8njo10qwhWPEG/uvU0QMUqdX4poaAOBuPSjnwjrLHlsSYvD5wF7BjqomkwFhErdCWJhuz5F/Vz9z/D5v+Y3L0t4FOpUAEvUkpO+/qosmXhOvS02rziXkayi6N28gC/+VClVCVEfZr2Ru/2Bj20BkdYeuR3ULJY1as5w+ewxaIpkYhOW7+HirwMBn2DZNmz2HF2BwD7O/dzXWWsRmgoLgKzvDKXOYWZvHCojWf2NfPNGxeY3AR/t1/V12TFRTi21JckvheXGG8gZDLDiOedU4lCcsQX5KNzvXx0rpc5hZk4rBYq85RD3ol2ldLWeGGYBaWx1ni+gPq9ewKJNVuvHetk+xKzoB9ylrK75lF2v9/Ot7fHfu+7Tqv5rKrJw+20EVlEj/gSzxtxuAQ4M/oOu1pcdHsucHPtzeYdbQ6T4I5n15lu9p1LUuMIrKrOY1/XHg50HuC+RfdR4ErScNnqhKBX/Z1FarECXtXXC3irKdHazx/yRx0Dr6+6Houw4La7EwxiALKkiH03+D3IgA9hcym30SkkPtU1gjuF8Jpq0jW5OAzMUAtzjUYDQOM7plvVwEdUDXw0/nEazScUIcTVQog/B4qFEN8x3P4aGO+/7LXA7UKIs8BTwA1CCJO1lpTyh1LKtVLKtcXFxcnOkTYWYWFRwSJTrcKU4x2Ck6/Cobi04rPvKEERn45nZLBDRY8mcp1VhtT+qQRj/a3mxw6zXTqdY5TJDbQoO2lhhaIFULtZ2V0bndB2fS92P4lYS0gFjHcufPt/qYVmPO//o1oMN6l0qFdHzvPySMwZ7u3zr/PE0Sfwx9ltDwe7GfIaFpHth1UNT5hfDZ7krZFm+kM+tbDtOMrRPa8qkwR7Br5AKBphARj1Bxn2D/OTj3/G62d3UZ6lokvdo+aak2GfWWBtWlhEviHSMxgnwCLiwjHNLmuToalnJGUUK5RiQW3EHwzhMBho3LhYicZ4w4PXjimxHhEqxo+K0bo+Gee7R3jv9AV+9UEs5W3LQvX9EGmw/MZx1V9sxBegZ1h9JnxBX7Rxsz80SiAoJ1UX2TOc+JkNyQB3XJXH1kUlHOg8AMBTx59KfgKbQwkqY+Nk3xAeTz99ceY0n677dMLhRoOLBAbbcXz879B3Tn0fNe/F9/b/TPz7zI31AJQO97iRy2QYf8/Zrth3kO0Sfa7TfZYi4KgQ4g9CiOcit+mcmEaj0Wg0F4kD1fvKBmQbbgPAPWMdKKX8SylllZSyFrgPeCOcWnj5Emm+O9RpHj+7S/0cHCNN58izquFpsrQ9KVUUKrJNSmUq0XXC/Lzzb1QLp5oNKt0p3hks/twt4QtIax6G0jj7+LZDSqCEAlA4X9WIZBbA5v8AS+5InKN/JDESkPAaf5s41pXEdjrgZXvZRvN0DM6Ex4dUBOitprcIhiT9I34GAu2cGH6Nv3n/+7GDjj0fvfvaSEzc+mUwKoIvjHrwEWQoYOGfdp7mUHNscf/cgVY8AQ+nO4f4+f43OdWraqRahlpUalmYSLQk02HFabfgtFlN0akn95zjD0cSf/cO2+wQWPeuq6YiT0VPXjjUljRKBbF+VWPR2ufhnKEfVFW+MiaJjEXqriLsDxtUfGp5OV+6LpZW5zVEtkbiBOwz+5rZ09hDe78nOhYR80Yh1zHg4ae7zvKz984CyuEyEIwJCU8gSPtwe4JDXzK6h7w0dA2x83gn/kDsHNfXK2F3zrOXV87/e4JZlhFf0Kds1q0OCPoJDnfhD0dwQwMt/OTlr/HLV74Rvciyfc525uTMSTCFie8rZ+LMG8yz56qLOWHzDq8MJl7cWPMQbPgqDdlFPO4M8JuTvxn3PYhnYWk225eU8mc3LoimZl5K0s1D+OvpnIRGo5k8yaJYzTlXJdlz6tCNijWXA1LKt4C3hBD/JqU8J4TIlFImdtv8pHDMcF00kqJjLCzvOaNc/ZIxGi5UD3jM6YUAQx2qjqq/SfVQOr/bXFc1ELZ0rl5v7uUUiku/u/ab0LxXOaWdejU2nlMBuXeAuxgaknQejU9tjKTXRcitBO9gtH8VwP2L7k98fd1nEs9tnIeB/H2Jjo+eUACrsIB/BPrOc1JKmprn0Tfip9Wr6lNaetXHLxD0s8/TwWpnMXZh4dBIN22BbIpFP7t7uilkhByXjZctjQCUe11AbMEuwwtff8gfrbXxB0M4bSpC0jbUzqmWTKoLMjgedo/78nVzo1fvXXYr25eUsuNoB15/iKOtA1w1J5+irJgBwHT3CUqXyrwMrl9YEo0IfXSul80Li5FS0tw7SlV+BkII/OE6qk+vKKe20E3viI8XD7XRP5ra9DonHNnwBkIMeQN0DMTeY+P/uQUlWaaI5w92nuHBjXN44VBr9P0vy3WZRNV4HGsbwBcI4Q0N09DfwJ62Paa0ts4BL/mZDj5o/4CrK65OeR6PP8jPk/XWQqWDZtitPH26B0g0dwiEAtGU5J1NOznTd4ZCmUUh8OLwWZoDQ3wjbwWeo4bvjoCHopxqFuQvAFRbg4i5BahG4CaCfmg9EI3WCiH4Qs4SfjF4nKAM4TPWc61/NGo9LzPyecXmB1wmV8IIUkoCoQB2a+p2CcvC7QSyXXbKc10TbiNwMaRr0/6WEGIOsEBK+ZoQIpPx0ys0Gs0MksxdsNOirnDeHpp/qaej0cwkFUKIl1HRrBohxErgq1LKcZ0EAaSUbwJvTt/0JoF3CGQQXLF+RAy0KcOE+TcmaXID9Md613DmDbXfBcPFkp5GJY5qNiYeG+GDHynr6HlbYz14Io1+A17wexJNKxYlphEBKuq09S9jTc0dmapWC6B1X6z+I/JaclIUpzuzzY9NzVNtKjI22meqbct15pqP2f147P7aL8GHPzFvn78NKtcox7+wc+EyZyGHQ6Nq3DvIT/qbsXv6os2NmxqPU1R5AxZhxSHBI/0EQ3aklBze8z0+9HTQGhimaO5n+fjCEEGHg8Cwj1JGKSRDmU2ENc6HLebrAkeGX8AvR8lvjKVS+QJKYH10rocPGp5mZfbdpga98WlwC0qz2HE0Vrc24g0SylQL/EVl2bMmggWQkaRu5nTnEC8cauOmpaUIRDQKV52ficNmoTTHlVRc3b4q9jmKCM5jbQNjNjOOiKst9cW8eUIZmbT2jZqMJFKlVD64cY7p8e2rKnjuQCunO4foD7RyZuQd/uo1WFGVizERLpI6uL9zP2XuMubmqgialDI6H18gxONvJrkwAPzZjQuwWgSLy3Mo7kjunNfY3xgVSgM+9frf9bRxB9AcUAYdfhnEKw1RulBQ1Rf2ngWLDWFI53t0+aOJT3Lgl8qC3UCmxcZn3LX8fqgBT0RgrXkI3LH0Qk/QLFZbhlqozKoEoNfTy6+O/wpQtu/b52xP+vqM3Lf+4upkJ0q6LoKPAv8OhKs/qQR+l/oIjUajuYTs/JvEm0YT4++Bm4FuACnlQWCMJjKXAe99H97/gYoCvfd9JZj2/0JFgOLTbZLRui9cHxV39ffMTvPj7jNKNJmO3Q/NH8Yee8LRLasDzrye+Fyu3MQxIxu/Dtf8qXksWaNTR3biGKjUwHjmb1M/591I1HJ6pIerSq+iJqcmFo3oaYQTL5uPzS5NtFyvWK0sshfeAkItnTKFXUWrhFB9uEqX4AeCUkaNJYK9v8cTHCCr7zUqBlUU6293/wNt7WpR3BoY4kcn9xKwuJBY6Mms5bhFmVhIw3L7TE8L/lCsTsUXGkVKaB2IpQx6AyG2zdmGLyDJt5tTomwWkVBzFol2RQiEQtFmtKW5U9PYd6pIZkwQESCnO4dMKY4u+9hL26r8DNPjSPphOhjLvDoHzbVOt6+qoLYosRdafBPlecVZVOS5GPQEaBzdFR0f8gYIBiWZVhWRtVti8/rnD/+d7+44Sf+In79/7RSHW/o51THIz98/m3Ku6TTS3XFuBy3hlNbhcIpui8Pw/lSs4hVfBy8Ox54n15bBDTU3wIFfwb5fQH8LX16ues8ljSbFiasIzrBrqjcisAxCDaBtqM30+PenY1Hp18/HvmdO9Z4ilMSMpt/bf8mbthtJ9/LEH6MKfgcApJSngJm3k9ForkB+cOAHSW8ajWbySCnjHRzGL2y4HDj1BxXNOr8nGjnhgxRuoQ53rO4pGIDGt2M24EZGe9Xi6ewuOPQ07Pt5YpSo8e3Y/eMvqZ/WSbofZuQlph2ueSj88+HYWGbB2M1VjVReBcvuVsIoUph//n02ZFTwGWthTIQefEqlL0VYcW9sTqsMaYSR12axqJRDoMrmBnvcgjoUpLXfQ8WwcpLrHdlN24V/Nu1ytHWAo/0jNPWN0uO3mRbtIaEWqH6CHMtfR7+ziras5ZwceYOPh54jJIMsqYi51B03NI8d9ASYkz0Pp8VNSAYZCsQs4y1pLLY9/hC/P6AW2xNJdbsU2KwW0+sGJWQBGrrMtVdGIbmiSol7o8iJF5ZluWbBdXNcE9qvXT8ven9BaexzGm92YbdauGu1WSSkIlIXFy8Mcq0LKHUsAqDIPg+PP8j7Z7pp7fPgD43yk10qZXTH0Q5+8MFzvNX5JCGZ2Kdr04JYJEhKicD8+19XFksFfrv5bUb8I4wEwlFSqy1ae4XNRZOnm4GQErP3ZM3ngZqbcRjPt+/nOK1OHNYU6XeFcRkzdhds/Uscc7dCfi1/KCxXtZNxRC4wGJ0O24fbaehroHPEXEf6i6O/SDj+yWNPzljzdki/BssrpfRFPrRCCBswcUsPjUZzSbhYd8H3w05VuwNj11ppNJcJTUKIawAphLAD3wTGsKi7jDCKgwjeQSWOjI1IAz6VKpdpsCbvOgHeASUegoZF2omXofdcrMHniNmVLkqkjitCTyNkTdG119wqlT5oRAj1muwZKlUPEo0yIlgsUFyv7q+4VwnFtkPqBkp01V6XeFxBXex+/pywFXzcteiw41mOxQlFC9hctZm3m9827ZJPLPrg9seicY7gMAGLkwuoxflJa2zxuSBzK6dGdtKTMZfnvW20y5PgNNuB2wtf54ZFX+XVViedA+YISnu/B18ghE246PGfo8d/jhrXWizCxrnB3Wzt/ixLCmNmIad7T9Ptb6TQrlLPDjX30RYWVovLzWJmNnDz0jKae0cZGPXz3R0nTc5woJzi4nscLS7P4VBzP8GQ5Btb5yWU/QFsml8UdQv87JoqynJd/MHQmsyYnpjjsvO16+fxz2+Z0/I2L4y5iH71+jo6B7y8dbKLLfXJ3UWT9aga9ATI884nzyaZkxEi31aNd9AJ7AOgcXQXC93bovtf8DUA4A0NkWHNA5QxiS8QMjnl+UN+UzR0a/VWFhUsYm+7ahEw7B9OECw/soT7d1lsJudQl8WmItg5E+iHZomLPm74GgDO2mtgUH0N/+DjH/Ho8kfZ076HXEcuy4uXR1MEb6q9Kep42O/tN0WvIsS7LQZCiaLzUpOuwHpLCPFfgAwhxHbgG8Dz4xyj0Wguc1L1zdpdcwU2QtVcyXwN+B4qvb0FeBWVmXH5klmYWviAijAZBdZgOE3HaGphPL5uS6x2qjd5wXwCo73myFbQr6zZ7S5Yfq+KfF3zJ+mdayJUrlG3dCmclzjWdjBaSxVFWBJr1+Kt5CEa9cvMLuOra7+E1WJlWdEyXjn7Cg3u49B3HmeSMvV73fN5evg4wXCUKpIWCDA/83qybUqc5hRV0N6vrtqvm5vP3saYNbbNamF/537qitwmgbUm5/PqnEGJRcSWdqOhPrp8qvb2zaY3WZi/EJvFxoBvgFfPvUpOQQAGlcBqM0StagoSU91mAwOGmqr4BsBb6ksoi0ttjDSbrS/LTohcRbBYBDUFmZzvGaG6wBzNStZYOb4e7LHNdbgNroyZDhu1RTZqi8Zw0yPWsLgiz0VrnwfPaA5khk0g1l7N8wfbmJezAr83l1MjOxkKdjMY6MBtLTT9joeDF1hUWoTAwfluJf5PtA+wqlqJrtGAGru28lqWFy3HEnfBwBf08VLjS+bJ5VWrixzGv4eMPDKETfWgO/OGef/mj6AqhblWfMqyVUUTnVZz6uSvjv+KIb8SdrvbdrO0cCmgGhPfPu92njuTnnn5zvM7OdYTu37mC/pSR9emkXRTBP8z0AV8DHwVeAn4r2MdIISoFkLsFEIcFUIcEUJ8MzxeIITYIYQ4Ff6ZHx4XQoh/EEKcFkIcEkJM4NtTo9FoNJrkSCkvSCkfkFKWSilLpJQPSinHUCeXAcE0mnKO9qp6xNb9sShMMsEAMCe1S1mU5XHO9o1vwdv/2zw20AbZFSqNbutfJqYWzmaSNRVORtkK9TMjH6vh6vwN1TcQKlJRswzs5LhslGY7Kct24rBaWFaQR32oAKtUC84+VyydLNOi6m7KnUuoLcxkeWUuG+YWYLNYcDvNC/qG/gaEEGRYE2vbntnXTFD6KMpyUF+WTabV3Ez5tfPKye1kj8pOyHLZuHtNZcJ50qnfmQnuXJ041wjzS7ISxvIyHXzx2lo2zE1Spxd33q9dPw8hYrVqDpvF1HzYyJo5MedKtzN1rOJU7ykeP/A4vri/15uWltIw+i4AW+qWsTzrDuZlxNJfHVb1O2/pHSXLqtL9rMLOqZE3OTD4TNRFEuC85yO6La9z1+oqti1RIn1pReyzcXbgrDqnxZEgruLJshveQyGUMKnZyLq6m9m+7lvYI8d3HI17oa+m7pFnjC6tf0xFl8PU5cYixhFxBSrqdqBLRedtFhvZ4fpLY01VrjOXr6+M1UpKKWkbajOJK4BnTj2T+gVPI+m6CIaAH4Vv6RIA/lxKuU8IkQ18JITYAXwBeF1K+bdCiP+MEm9/AdwKLAjfNgCPh39qNLOeVDVS31iVlknZJee5sJtgPLPeXVCbV2gmgRBiLvCnQC2G/3tSyttnak5pMdqr+kst2G5uoBsKqjTA8dgdrv1peBPywz18sstg3Zdh749j+0Xc+cqWQ/vHqc/nDKeNFdSpq9idx5PvZ7v0V4svKRFTjdyYkYSUkmEP3FRzJ6+2reKII4ucob9FAFW2LArtPuxWK/UUcAJlYpFhr2VJ9k3Rc9gsAre1ECE6yDKkv9UWuTnSMhA1Z+jxqOML7XUEbX7q8ksJ+lRq2KAnQLFjPg73MQrcDgqzMzl3Kjb1ZKlTJbkWkzvebGZukZvibCddcQYTmxembm6blzn+59FqEabI1AMbasgcQzhtml/E6po83I6xl9FvN7+NRDLoG6QwIyZ2a4tsBK2dLCvNUVbjBkOLTy0vx+WIiRAhLHxm6SL2t56jpddPYZaDDp8SEdkuG3arBX9YtC+tyGVRWU5UIB++cJhdLcpIw9imAODuBXfz7KlnTWOrS1bzTss70cdLCpdwTcU1qV9g6VLlXAow0gPuwsR9PAPKBKZmY8L2+CiWEbfdzbB/GCEELpt6fz7siJnrPLD4AQAWFyzmWM8xBnwDsToyA72e3oSxS0FaAksI0UiSmispZV2S3SPb2oC28P1BIcQxVHrGHcCW8G4/Q1nf/kV4/OdSxUx3CyHyhBDl4fNopgndz2jm0MYV00wqMRZf16H5JPA74Meo1PY0wxSzgKa9Ko0tp1yZNUTwx9zkuP4vVOTl7f+lHletNTv8gXIB7Axf1bU5Vd+ovGrV7BNikanFn1HpbxdOwabvwDt/FzvHhq8qYbHuKyoF8L1/ND9H9To1X4imAM0qqtdD0wfKXt7olGh8HzZ8Nb1zFS9WlvTlK6ND//5RM8294d+Lo5gblpbh+LiGELBw1cNqIfrud/E4iwgEm7BaBL2yl0jr2jtXVzK3yM2Ar5Qnjh6lJqeGT89V9vaPH3ycq+clLlwrS/rw963nvtW1nO4cijbgzbDk0+8NUJTlpNWnmrlG3O1cVrVQ9YViEZXjPcdZXbOayvwMntx9ntnOnasr+dHbDaaxkuypdT0syRn7fBaLIMcVNiQJ+vndmd+xtXor2Y5sk2jwBpUQjKTpRfjZ0Z+xPGzAsalyE6cbYjVQuRn2hNfT7emipiAzmroZDLVSGszDZU9MezRGH421gRk2c/pjmbuMR5Y+ws+O/Cw6lpBKF7/yj09NnncD9DaCb0SZ62z5z+a0wtFe9X2VP0cZz8RhbJ0Qj7GuKl6IrS6JfR/Oz5vPsZ5jjPhHONV7imS0D7dTmlma4KQ5naRbg7XWcN8FfA4YO95qQAhRC6wG9gClBtHUDkQqOCsBo8tTc3jMJLCEEI8BjwHU1FxaT/vLkfEElEYzGXRtluYywyOl/IeZnsSEkBJawmY1J16B8lVq4fLO38X6Ti36VDjdxgJzN0HjO5A3R9min05ilw4Q6f+0+kG1+Ilv0mtMA1xxr2oSXFQfi9pkFSdPBarbGhNYszGCFTHDiLeMz58Lyz+nivnji/FTYbUpIWsgKq7COGyC+dv/RjVfzp8Tfa6r/GexD5RywCX5o5X38kY4YJifqRbrOY4c7pp/F3muvOhi8J6F9+C0OhMc0T63ZDtFGSVYLYLcjFiE02XJoaa4nsFQM06blY11BawrW8eHHR9ysvck2+Zs40TPiej+mTa1aC9yq0VsfdnsTuvMctp4YGMNv/mwmbvXVNI95EuwXp8M/d5+BrwDVOeYLe5H/CMqJdOW/Dl+9LFK7nr6xNNALHPl5caY/b9RYAVDZgPTPFce2a4eBj0BCrMcCXVkNQWZdGDGahGm9NRkHO02p/ElExfG17S6ZDWDPnNkvL6g3nxAvO25MwuW3KFcR0G1fzAKqQ9/qn7mJl+vLy5czMcXYlFzh9XB8qLlfNQxtlHX/LxYtk3EGn40OEpDf0PS/Z899SwbyzeypvTSVR+lmyIYn6v+90KIj4D/Nt6xQogs4BngW1LKAeMvWEophRATciOUUv4Q+CHA2rVrtZOh5qK43FL7NBrNpPieEOKvUOYW0dwiKeW+mZvSOFyIuxLrH1VNgQOG1CijRXjtdVCyJCaE/CMqvTAeQ/1DgriKp3BecoMIIeD6/wRv/U/DedMUJzNFyRL1erPLzdE5qyPWMHmS/HJPYtQn22VX73W+IS3L5iSHUa7LKec6gLJ6sqxDnL0wbBJI5VlmY4WSzOTOjKXumMOgsQ5ofkkOty27jZ8e+QneoBchBOvL10fTq3xBn2nB7w+p9DKLRfDo5jpcs6jBcCpKsl388Va1yC7PvXhxBUQFbJY9i4eWPIQQgvbh9mga3ddWfm3cGiZQaZhWYaWxvzE6tqtlV7Shb8Bgqx5Jc7tpSRnP7GvmhkWx3/UXrqnFZhVku+w8c7KUjpF4mWXmdO9p5ufHhMfutt3jztX4egKhAOvL1nOm7wy31t2qmgnHk1VqblgOplRZBtvN2yLfV8XJs6GKMoq4puIaDnYdZNg/zFeWf4U+T19UYBVlJE/9tBv690Wibq80vhIdW1+2nvKsclPvrJahltknsOIMJyyoiNa4x4btcJ8BnpRSRhI9OyKpf0KIciASF20BjJcNqsJjGs0nkvfPmK9rVA2Mptjz8kOnpmouMcuBh4AbiKUIyvDj2cfxF2N24hG8g4kNcePTeYwNd0uXJRdYU4VRULnjFkERe/fZhBCxWjObE677tooQVq8b+7gx8PiDPP7mmaTbSrKTiDajpX5+LaCazs4rTjRnSMaDSx6k19NLSIaYmzvXtK0iT4mMxeU53LJMResi6WkrileY9t3Ttsf0OLIfqOjQVPJiw4ucGzjHw0seJsuR3uu8VIRkiObBZna37ebCaMxKf8g/xM6mnWyu2swLDS9Exwd9g+Q6x2maDfzw0A8TxMlIYIRgKEjXaFdUsF1TcU30fDWFmXxj6zyT02G+O/b3fdeCu+jx9HCy9yQHOtXn6I75d7Dj7I5o3VGkNi+Cx9Djrsydop0BcP+i+3m+4XlWlqzEarHy+UWfT/3ilt2jLvSceDn6GcZihY1fUzWfbYdUk2+bU6UNRhjjd7+qZBWrSlbFdjV8r3267tPR+59b+DlO9Z3CbXeT58qLjkcisBGEEKwtUxHmXGdu1BgjPjo33aT7l/R/DPcDwFng3rEOECpU9WPgmJTSkMjNc8AjwN+Gf/7eMP4nQoinUOYW/br+SqPRTIZIH69kpNPbSwu8K47PAXVSyjSs92YB8eIKoCuJocREF6wrxvy3PXlWPWB+XLhgep5nKrG7zDb2k+B055Dp8eqaPPaf7wOSp2NRex2cVc5xCY6MaZDjyEkeVQjzrW3J3/fIMQ6rA1/QF03JWlO6hn0d+9jTtoerSlNYbF8k5waU5X+ft2/WCKx3W96lIquC0cAobzW9lXSf4z3HOd5j/ps70XMCh9VhEgMQM2MwMuAbSDhnv6/fZCphcuwjsQGyEYuwUJRRZIqKZdgyWFy4OBrt+bDjQxr7G9lctZn2kVgk6ZbaWxLb7zIaAAAgAElEQVQMLozkufJ4aMlDKbebcGSq3nAV5vfAFA3vPq1qDnd9LzY2gdonY9qi2x6zui/OLKY4M7GvWMQAI0KkdhFUhDCSqdTn7Ut7DlNBWnFgKeVWw227lPJRKeWJcQ67lvAVQyHEgfDtUyhhtV0IcQrYFn4Myvq9ATiNcivUOVoajUajmQoOA3nj7jUbOPp78+OI8cK592JjkYiRY4w+OxlJyqQLUvpSTY5ln1WOhI7wFeQNX4WSxTB389jHXSGM+s21NJsXFHPz0jK2LylNfsDcTbH7RlfIKcJoMQ5Q4DJ/Bu5fdL/p8brSyUfvJsrFmgv4g37ahtqivaOSEQgFeKnhJVM0KuE8IT+Hug7xSuMrtA+3p9wvGR92fMh7re8lzMFmsbEgfwH31idewLix5sbo/XgRVpc38b/Hhfmxi3/5znzWla3jnoUxsd7t6ea3p3/L+62x6HVdXt249VpTQqT28uhzylEwQvX6CZ1GCMHt827nwSUPTmoaY0Xr4uvfppN0UwS/M9b2uAhVZOxdINVf1I3xA2H3wMu78aNGE4d2CtRoZgV5wHEhxF7MNVizx6Y9FFJ9peL7yzjjIhYLb1ZXh4cvqChMKiwWZWTReRRawqVmU+2gFV9XkVkAS++c2ueYxRgb/Wa7bFgsgiUVqSNMl5prK67l+YbnqchSqZGZdnMqlXHR3TLUQr4zH5fNlVadUToY67w6hjuozErew6qxv5GWoRauq7wu5bkiRhJV2VXcPi/5n+2p3lOcHThL23AbX17+5ej42f6zHO85zi1zbzGliYkkS9Tq7GqaBpsSxo20D7eb6uQCoQA2YSPfmZ8QzXLb3dxWdxvPNzxP00DsvJurNk/qfc515pLvyqfX06sENSJljR5AuTuxUfK0seYR+CDczanb0Aom4E2+/xhUZVeNv5OB2pxazg6cpTq7OsEJ0fg7/fWJX3P/4vvpGO6gJLNkWl0FJ+IiuA6VxgdwG/ABkNwPUXPFcCXUykylyNGC6dJjes/7YqlT38hbkWTvqWGsz/3l8JnXJPBXMz2BtDifpCg9/sqzK1fVN+SmbrgaJa9a3Vpmr5fH5Uy2oVfVyuo0A6SbvgNJelFNB9U51Xx95ddNi8hNlZt4p+WdaBpWXV4dDX0NUTOA6uxqbpt325Q8vzHFbnfb7qQGA/6QP+q2Nyd7ToKDXzxjRZ0igs4b9PLzIz/nzgV3kmnL5KXGl6Ljhy8cju4fSV80YrPYmJMzx7Qt/vFvT/+Wb6z6Bn2ePg5dOMSwf5gLngtYLVYeWfoIPZ4enjr+FACVWZXRGrdI49x1ZetYVrRszNc5FvcsuMdklAFw5/w7+d3p3yXse9eCuyb9PBPGmKpndDFdeMu0P/Wtc2/l0IVDLMhLTJO9bd5tnO49zavnXqXP28fR7qO82fQmML2GZukKrCpgjZRyEEAI8dfAi1LKycXvNBrNFc1sbg+QymI+Fdp6/vJHSpm80GI2YUlxNVsIKFsG7eGFYXbq9JeUzLkGcid2RVgzPh+dizUwLc5K04nQ5gQuXZ+w+Cv0iwoXcbj7cDRatLRwKQ19MWvrpsEm+r39aZk5jMfBzoPR+5EoWgQpJW3DbXSPxupln2943rTgfa/lPdwON0sKl0THxorIGOt1hvxDPHH0CTZVxtIyz/afNVmXRwTZF5d9kT5PH789/Vvm5c3jbP9Z03nn5s5NEGM/PfxT8px5tA0rq4A52bEaJ4dFRVAKXYUIIXBanQghoqmF1dlji8jxsFvt2DGnmFZkVXBt5bXRpsIA11dff1HPM2EcbpX6GvTHxupvTf3dNoUIIVhZvDLl9ohTJhAVV6CMTqYqYhtPugKrFDAWB/uI9a/SaK44dKRKo7lyEEJsBL4PLAYcgBUYllLOnnwuUP1kjv4+sclv/aeVi2BW6dh1V6mou8QLrU8AxjqcL10312SzPpuxW+z80aI/ij5Ottg/N3AuwXlwMkTc7ZxWJ61DrXSPdlOYoRomn+w9yevnE3u1RcSdlDIa8TGaHjQNNvHE0SeS1ueEZGIP8Xda3one7xjpYFHBooT+UBm2DDKyMnhsxWPYLLaEZrXJ0tVGA6MmQWfcJ8uRxdbqrdTkqN5PEZEVcfUbq0boYqjJrmEXu9hQvmHaTEvGRAiVwnzsBcPg7Oim5EzRimG6xBWkL7B+DnwghPht+PGdwM/G2F9ziZjNkQKNZjxSR5P+9yWdh+aK5x+B+4DfoFLeHwZmX65n6RJ1A9VEOOK6ZrHAqvtTH6e55LxxvDN6/3IRV+nyfuv7CQLrjfNvcLznOA8teYhsR3qNiAtcBfR4eqjIqqCxv5Ffn/g1dbl1NPQ3mPoYGfnl8V/y9ZVfN6XAvXbuNdM+Roe+7tFujvcc55qKa/CFxjYJPXzhMNmObGwWG4EkaZo2i1oSG6MdAG6bm3J3eTRaFSEoY4YJ8a9nceFi02NfcPoNTPNd+TPfw9NY5+cugrLpS+WfCHNz5rKieAWHumJlBvG1WlNNuo2G/4cQ4mUgEmv9opRy//RNS6OZODrqdPE8ZzmddPz20Pyk4zNFU98o7/ektmLXaOKRUp4WQlillEHgp0KI/cBfzvS8UlKeOt1FM/Mcau6f6SlMGV9Z/hX+9eN/jT42OtVFiNRT/eLoL9JaxEspo32ZjNbiDf0qHTFexCwrWsbhC4eRUvL0iaf5TN1nEs5ZX1DPiR6zgfWvT/wagLrcOlN6XDLynHlRq+7KrEpahlrYUr0lYb91ZevYcXYHdy24ixH/CFaLlVUlq2hrNAsso5lFJDKXioihxtUVV4+532WPMcI+74ZZ04BcCMF1ldeZBNaXl315jCMunol0lMsEBqSUPxVCFAsh5kopG8c9SqPRfGJIFZGajjqmVGIQZp8g1Mw4I0IIB3BACPE/gTbSbFOi0QAcbunHGwhx1Zx80/hXNs1NccTlg8PqYHPVZtx2Ny83vszZgbOm7fFiCJRpRWlmaULD4wgtQy2AimIFZTDa7DUV68vWRw0oLoxeSGq1vrhgMad6TxGSITwBj6n/0ctnY024H13+aNR1EOCq0qs4N3Aues7FBYvZUr2F5qFmqrIS0/8qsyr5wrIvAERr0SLpgEUZRYwGRhn2D5uiUuOlmgkhQJL0+a4ojO0hLFPbtHoqeGDxAzx1/CnuWnDXtDoIQpr/YIQQfwX8BbGrfXbgiemalEaj0Wg0U8hDqP93fwIMA9XAZ2d0RhdBKCTpHb48eiZfCew928OOox28fbILX0DV+bjsVgqzHGS7roz0wGVFy6JiKWL+MOIfYU/bHn506EcJ++/r2Bd1/0vGc2eU6fSqklV8vv7zYz53VXZVQrPYFxpeSNivIquCTVUqkSrizBchUt8EygTi7gV3Rx9bhdWUEpjjzEEIQXV2ddqL7HxnPg6rgw3lG8hzmh0jb669edzjIxGs+Nd5xWEzpN1dIrfMiZDrzOWrK786prX9VJGuvLwLWA3sA5BStgoh0kvC1Wg0E6NRFeVWDYyOs+OVi7G2cN9ALBVwNrwnk25dsPNvko9vnb1ZalcCQggr8P9KKR8APMB/n+EpXTQ/2dXIoCfAlzfNJecKWeDPVvpGfOw6HYum/NPO03xr2wKCoRBV+VkzOLPp592Wdzndl5gpYBQ3Q74hshyp34fSzNJobVM8OY4cBnwD5DiU10ykPisZX1n+FSBmeBGJqpVkltA5EquHizT2Lc2M+bB5gh5TFC7TZu4Hlg52qz06h0HfYDRCd2PNjczLmzfu8XNz53Ky9yQu6xUusAA2/Tm0H5r6xuaXGekKLJ+UUgohJIAQYhI2RprJMNtNLHS/IM10YEw17BwjFfBScCnTHjVTj5QyKISYI4RwSCmviLDPoEddGR72BkwCa9QXJBAKXTFRlZnmdOcQzx9sTRj3BkL4gxK3Y/alQF0sZe4y2ofbOdp91FQ7BTAvbx5n+s7QNdIVHfMEPWShBFbzYDMjgRFTDVe83fvG8o3sblP93m6qvYkTPSeijnebqzZTmFHIRx0fRR0B71t0H6OB0aghgV2oz/bpvtMUZRQlpC9G9hNCcE3FNbzX+l6CoUV8w+WJsrRwKW83vw2ourB02FK9hbWla7FbPwF/mzYHVK2d6VnMOOl+OzwthPgXIE8I8SjwJSAxZqzRaDSTZKyaqtnIVDkgpjJnmXE3qCuLBmCXEOI5VIogAFLKv0t9yOznqQ+aWFyezS3LVG+gf37rTHTbyupcblhk7qYipZz2uoMriWTiCuDxN9X7bLFcee9lXW4d7cPtpl5BEVYWr+RM3xlTxMgoXiJpgcaIVaQ2KeLCt7x4Od2ebk71nqLQVRhN+QMlfNaVrWNv+97oWL4znwJXrK4nhBJe+zr2sbF8I76gj/qCerpHu7kwegGbiD13xDo9vlGw0fZ9MgghuLHmxoRUwbGwWWzkudLfX3P5M67AEurb+NfAImAAqAf+m5RyxzTPTXOFM+lUK41Go5kYZ8I3C3BZp7cHQ+a+MsfaBlk/t5COAY9p/GBTv0lgtfSN8vTeJu65qorqgou7gj9ZDjb1sfdsD1/ZNPtTh+Lfz2TMLbryknlSWVdvm7MNp1X1EuoY6YiOd4x0UOYuM0WSXml8JeH42+bdhi/ow26xs7V6KxvKN2BNw2Eu/oJAZVYloPp3SSnxBDxk2DKitU3S0HepKKOIR1c8it1i592WdwGoyamhKKNo3Ocdj3QjV5pPLuMKrHBq4EtSyuWAFlUajUajuayQUl72dVcR3jrZmTB2rnuYN090JYz7gyHsVhVBePljZTH97x81z9jFq0jvqO/uOMk3b1wwayNAHn+QX+45bxpbVplLpsPKB4090bG8K6z/FUChK9Fu/K75d1GeVR61JTemDu5q2cUHbR8kdRq8Z+E90fs2iy0a2bJZbNG6q4lis9jIc+bhsDoIhAIEZRCX1cX6svX0jPYkmBdE+lPdOvdWDnUdYkv1lmltLqvRREg3RXCfEGKdlHLv+LtqNBrNzHK59PPSXBqEEMXAfwKWAtEqcynlDTM2qUlysCnR7jqZuAIlaG5eWgbE6rZmC75gCNcs6ZED8MrhNnIzHEgpKcgyR3E21BVwdV0hu06be+/ZrFfeQt3ocuewOnh4ycPRqFaq1Lpk4gqSi7WJUJ1dnXS8z9tHn7ePdWXrADXnMndZ1Fo9GUUZRdxQc9n9uWsuY9IVWBuAB4UQZ1H56wIV3JodLZo1Go3mItCC7IrnSVSq+2eArwGPAMlVySynKMvBhSEfD2yowWa18LP3zibsU5mXQUvfKEdbB7h5aRmdg7F0N5fdij+o6ljs0ygQuoe89I36mVesDBBGfUHT9pa+0ei2mSYYkhxrG0wYrynIZOuiEgrcSmD0jMQ8Uq6E/lfJMEaWrq+63pQyaIz8ZNoyGQmMpDzPXfPvSisFMBlbq7eys2knn5r7qTH3e+r4UwCfDGc+zWXHmAJLCFEjpTwPjG/yr9HEMdsdEGecsB27RqOZdgqllD8WQnxTSvkW8JYQ4rLMyMh02KjIs1CSk3xR+e3tCxnxBfiXt5TddSAY4sndsXQ3jz/IP75xOrrvdPHLPecJhCQPXz2HwiynyYAD4P0z3dMisFr7Rmm8MMy189Ovs+kfTR6BMYorgJuXlnI4L4M1NXlXrFmIEILb593Oe63vMT8v8QLTquJVHOg6wPLi5XgDXg50HTBtv3vB3dgstouqc1pcuJjFhYvT3t9pc076uTSa6WK8CNbvgDVSynNCiGeklJdtY0aNRqOZSX7Qdyj5hvxNycdT9c2aCLrHVoTICrpNCPFpoBUoGGP/WYk3EOR8zwgZjrEjA5kOG5V5GbT1e/jF7ph7Wl6mnb6RmJjoGPBQmkKoXSyBsBnHz98/l3R7Rd70PO+v9zYBsLQiB18gRJbLRmYSO/VQSNkhWC0iaRQQMIkrAKfNylVz8qd6yrOOquwq7q2/N+m2Ad8AoNwDq7KrogLr7gV3k2XPGrMn1lRxS+0tvHI2ZqRhdBnUaGYL4wks4yWa2W/7o9HMRq6ASJVOoUuf93/8H5KON1lUk+TqvIuzCNZMiv9HCJEL/DnwfSAH+PZYBwghqoGfA6WABH4opfzedE90LLoGVYNXY7rdtfOLoo1wty+JuQaW5DjpGvJGBVVuhp01NflRowlQNu/f3LZgyueZTvbCwaZ+tiwsmTaji/1NfRw43wckj9R97/VTKbcBOGxXXn3VVFCbW0tDfwO5zlxTP6kyd9klm0PEfj3CxdquazTTwXgCS6a4r9HMGKn6Bmk0lyWpBHjeFJS4poqCfUIiW0IIF6rmaj5QCfxYSrk1zcMDwJ9LKfcJIbKBj4QQO6SUR6dpuuMik/wXzgxHs8pzXSyrjDV1ddgs+AKh6GOX3Zpgzx5KdsI0+e6OkzhsFv54q/kiyzunUpe2LS7PJsdlZ0/YiW/IF8Bps9A34p+SSNrJjlgdVURcgUqLdFgtUTEnDa+7oWso6blWVumeRcmoz68nz5lHaWYp3qB3RuZgrAtLFWnTaGaa8QTWSiHEACqSlRG+DzGTi8n5bGo0mk8UqZvyXlout2bGmovmZ6j0wHeAW4ElwDfTOVBK2Qa0he8PCiGOoUTajAksb1gw3bGqIjq2qCybC0NeNtaZHdt6h811RSO+QELKG8CwN8CLh9po6RtN2zo9IlB8gRCvHmnnprBT4bA3wIdne6P7xYs8EFwzvygqsPqG/TyzrxmA+zfUXLTIiph3xPP4m2eoyHPx+XU1at6G/X5/INZM+KGr5xAISkpznFdsjdXFIoSIRqtcNhd3zL+DfOelT5u8f9H9WC1Wsh2XdVs7zRXMmAJLSjl7PFQ1Gs1lwydZyHySX/ssZEm4hyNCiB8DH0zmJEKIWmA1sCdu/DHgMYCampqLmWdaPH9QiYEcQ/8lm9XClvqShH1tVrNAyM9U4ureddVRUQUw5A3Q0qfSV5t7R6kpTN2EuH/UT7bTZhIoR1oHogLr2f0tpv19gRD1ZdmcaFeRpWGv2So+Iq5ApT9ORmCdaB/kpY/beOSa2oQmzEZa+zwMevyEZOqoVVGWNkuYKJHGv5eaPJeOMGpmN+natGs008a+gV+n2PJ/XdJ5aDSaK45oGEdKGZhMVEIIkQU8A3xLSjlg3Cal/CHwQ4C1a9desjT6iFgai/rSbI62xqZ79TwV4aoM1wC619l4em8TO452RPdpuDAUFVgfN/dTlZ9BvtvBqY5B/nCkHX9QUlfsTnDoO9c9zJxCNxcGE1PGPrW8nJuWlPLG8c6oQcTV8wp5/4y5p9SOox10DXnZmkQsjsVL4QbKP3vvLHXF7jH3/dd3GlNue3SzLjPXaDRThxZYGo1GMwtJ5Tr4jamozfrksDIutT3DkPY+bpq7EMKOEldPSimfnd6ppiYYkibHKWsaaXy1RW6+vX0hgWAoaUPcbJf6999lEEX7z/expb6Etv5RXjumhNfK6lxTc+OGrmE8fnNPq2f3tfDw1XOij1dV53GgqS8qqGxWSzTKBbC4PCdBYIGqm6otdDO3aGyhlIqGrmFsFhF1MAS4YVGJydgjGfmZdrKcejmk0WimDv2NotHMEE3htBzN7EWn+13eXEyau1Dhrh8Dx6SUfzd1s5o4//D6qair3cLSidWcJBNXAG6HDSGSG2ccbolFvoziKkJrnydhLJIGCKp/1HULirClEIK5GXYevnpOUgv33+1vSbs/V7Kaq0BcmuCKqtyUAqvA7aBn2Mdda6qSbtdoNJrJogWWZtby0DP/95jbIykvGo1GMw1cCzwEfCyEiHRT/S9Sypcu5SRCoZihBEDXYKK4mQxWi8Blt5os3yOYjSnSI2JcEcGeQthFKDTUOy0qy+a4QaDFEwiG+KedZ9hSX8zK6ljtzYg3ce4Af3bjAl471sGamnyEECyrzOVwi1kozi/J4raVFUmP12g0motFCyyNRqO5hIwXudR9smYHUsp3MfeCnBGGfWZjiLtWT120JZkpRHPviMnufCzyM+30jpjdCm9aWppi70TW1RbQ1j9KZlx63unOIeaXxBrWPru/hZCUvHG8Myqweod9vBiuvzKS7bJhtQhuNqQkbltcwrrafH666ywAD26ck9RRUaPRaKYKLbCmmfEaLqabCqGZRVwBjYM1n3BS9cdKxSekb9ZsJOL2FyE3055iz4kTiVRlOW0MhR3+fvNhM5V5GVFnQVD25b94/xwZjljEa1V1Hv2j/gSBNZH6qesWKLMMfzBEodvBma4hGrqGef5gK1/ZNJcMuxWLELT0xubSP+InJ8PGv713Njr2wMYa3A4b75zqYtviRIEnhCDX4LxYnK3dAjUazfSiBZZGo9FoNLOUtn6VElhdkMni8qnt+bO4PJtjbYN89qoqfmYQLC1xUdbcDDvr5xawsDSbJ3aruqkt9cUM+4I0947w8sft0X2dtomXvdmtFpZV5vKxIY3vqQ+aGPIGmGeIZAH8ZFeiE6DbYcPttHHLsvKUz6H7Wmk0mkuJFliaS0JqK/ZZjI5UaWYhqdwFQTsMXsncvboyrSbAE+GmJWWsrsmnwO3gpqWlvHqkw7Q922Vj0BPAZhEJ1uxCCLKcNhaV5ZgEVjoOh6kIGEwrslwqqnamcwin3YLXn7ouzJ2mA+C3ty+MNknWaDSa6UQLrBlmvBRCjUajSRdt7X7lEApJ9jf1AmCziCkXVwAWi4g2911akYvVIkxi6b71NfQO+0zRn8+sKI+mE0a4e00lz+4zNxmeDHesruS90xc41jaIw2CSkWm3ku20cWHIl3DMQwZ7+HTQkSyNRnMp0AJLo9FMGm1jrtFMDyc6Bnn75AUArq8vviTPuagsB6fNyouHWtm+pIwspy2hP9SCJDbxmY6pWUrkuOzcsqycY22DnO8ZiY77giEqszMTBNaty8soytL1VBqNZvahBdZFoiNQmlToPleayTArXQZTmWJo84tp45XDsUiSdxK26ZNlbpGbP7lhwYSOcdnHtmS/WIa9QbJdNnIz7Fw1Jz/a18o9RcJOo9Fophr97aTRaDRXODp18PKif9TszLe8MneGZpIeLrsytsifIofDVdV5HGjqM40NewN86bq5AFGBpd0ANRrNbEULLM2UcinNLN4/0z3mdt2IWKOZZnRka8qRUvKTd81OeREBM1uxWy18fcs8U93UxTAYV+MFKk0wHqdteiNnGo1GM1m0wNJMisvSFVCj0WhmOZcyHXAqmUoRWJmXwZnOIdPY1kUlCftpwwqNRjNb0QJLo9FoNJpZgMcf5PE3z0Qfb6wrZP3cghmc0cywpiaP8lwX2S4bLx5q49611SYXxQc21CR1FNRoNJrZghZY46BNLDSp0CYWGo1mKmkPNxWOkJdpv6i+UpcrQggqwmYu962vSdhekuOiJGwvr9FoNLORWSWwhBC3AN8DrMC/Sin/drqfUwsojUZzOTErXQY1U8I5gzU5wOLynBmaiUaj0WguhlkjsIQQVuCfgO1AM7BXCPGclPLozM5Mc7lRNfARAE37Z3giGs0nFW1+MWH8wRD7zvVGHz+2uW4GZ6PRaDSai2E2WfCsB05LKRuklD7gKeCOGZ6TRqPRaDTTjt3gwPfFa2txO2fN9U+NRqPRTBAhpZzpOQD8/+3daZBcVRnG8f9DEiACJkAwlSLRRAlLQA0pwLBWZAmgIKKUpERIqVQUCUvUwsAHxeUDqKWiliKVYCGyB5GISMBiC7EgIfsGEgIUCUuAsIZNwuuHewZ6unuGBG7P6Z5+flVdfe/t03fe+9bceefce/o0kk4AjoqIU9P6ycBnImJyVbtJwKS0uhvwYMmhDAKeLXmfrcz5qOWcdOZ81HJOapWVk49FxE4l7KdUkp4BHithV/7dqeWc1Oe81HJO6nNeajW0JrXcJbKIuAS4pFH7l3R/ROzTqP23GuejlnPSmfNRyzmp1dtzUlanr7fn6f1wTupzXmo5J/U5L7UanZNmGiK4FhhWsT40bTMzMzMzM2sJzdTBmgeMlDRC0pbABGBm5pjMzMzMzMw2WdMMEYyItyRNBmZRTNN+aUQszxBKw4Yftijno5Zz0pnzUcs5qeWcbBrnqZZzUp/zUss5qc95qdXQnDTNJBdmZmZmZmatrpmGCJqZmZmZmbU0d7DMzMzMzMxK4g5WIulSSeskLcsdSzOQNEzSHZJWSFou6azcMeUkaWtJcyUtTvn4ce6YmoWkPpIWSropdyzNQNKjkpZKWiTp/tzx5CZpoKQZkh6QtFLS/rljakaSjpL0oKRVkqbmjqfR6tVcSTtIuk3SQ+l5+7Rdkn6bcrNE0piK90xM7R+SNDHHsZSlq7rrvNSvv2lStPvS8V+TJkhD0lZpfVV6fXjFvs5N2x+UdGSeIypPdf11TurX4CznUET4UXwO7RBgDLAsdyzN8ACGAGPS8nbAf4FRuePKmA8B26blfsB9wNjccTXDA/gucCVwU+5YmuEBPAoMyh1HszyAy4BT0/KWwMDcMTXbg2Jip4eBj6ccLe7tf2/r1Vzg58DUtDwVuDAtfw74V/o7PBa4L23fAVidnrdPy9vnPrYPkJO6ddd5qV9/gWuBCWn7xcBpafk7wMVpeQJwTVoelc6trYAR6Zzrk/v4PmBuOtVf56R+Dc5xDvkOVhIRdwPrc8fRLCLiyYhYkJZfBlYCO+eNKp8ovJJW+6VH288QI2ko8HlgWu5YrPlIGkDxj/R0gIh4MyJeyBtVU9oPWBURqyPiTeBq4LjMMTVUFzX3OIoOOen5ixXb/5L+Dt8LDJQ0BDgSuC0i1kfE88BtwFGNj74xuqm77Z6XrurvocCMtL06Lx35mgEcJklp+9UR8UZEPAKsojj3WlJ1/U3H2NY56UaPn0PuYNl7SreS96a4atS20q34RcA6ihOvrfOR/AY4B3g7dyBNJIBbJc2XNCl3MJmNAJ4B/pyGsUyTtE3uoJrQzsDjFetraM8LWoMj4r/nAW4AAAcQSURBVMm0/BQwOC13lZ9em7equtv2eamuvxR3Wl6IiLdSk8pjfOf40+svAjvS+/JSXX93xDmB+jW4x88hd7CsW5K2Ba4Hzo6Il3LHk1NEbIyI0cBQYD9Je+WOKSdJxwDrImJ+7liazEERMQY4Gjhd0iG5A8qoL8UwsD9GxN7ABorhGWbdimKcTluOEuiu7rZrXqrrL7B75pCycv3tVrc1uKfOIXewrEuS+lH8kb8iIv6WO55mkYY43UELD7koyYHAFyQ9SjGk6VBJf80bUn4RsTY9rwNuoHcOt9hUa4A1FXd7Z1B0uKyztcCwivWhaVu7eToNzyE9r0vbu8pPr8tbF3W37fPSoaL+7k8xnKtveqnyGN85/vT6AOA5eldeauovcBHtnROgyxrc4+eQO1hWVxqbOx1YGRG/yh1PbpJ2kjQwLfcHjgAeyBtVXhFxbkQMjYjhFB+avT0ivpY5rKwkbSNpu45lYDzQtjOTRsRTwOOSdkubDgNWZAypWc0DRqYZwLakOJ9mZo4ph5lAx2xdE4EbK7afkmb8Ggu8mIb7zALGS9o+zQo2Pm1rSd3U3XbPS736u5Kio3VCaladl458nUBRmyJtn5Bm1BsBjATm9sxRlKuL+nsSbZwT6LYG9/g51Pe9m7QHSVcB44BBktYAP4qI6XmjyupA4GRgaRr3DHBeRNycMaachgCXSepDcWHi2ojwtORWbTBwQ/F/En2BKyPilrwhZXcGcEXqOKwGvp45nqYTEW9JmkxRwPsAl0bE8sxhNVS9mgtcAFwr6ZvAY8BXUvObKWb7WgW8Svodioj1kn5K0UEF+ElEtPJkVXXrLs5L3foraQVwtaSfAQtJk+mk58slraKYSGUCQEQsl3QtxUWet4DTI2JjDx9Lo/2A9s5J3RosaR49fA6p6MCamZmZmZnZB+UhgmZmZmZmZiVxB8vMzMzMzKwk7mCZmZmZmZmVxB0sMzMzMzOzkriDZWZmZmZmVhJ3sMxKIGmjpEWSlkm6TtKHmiCmcZIOeB/vO0LSfElL0/OhjYjPzMx6nqRX0vNwSV8ted/nVa3/p8z9m7UKd7DMyvFaRIyOiL2AN4Fvb8qbKr5xvRHGAZvVwUrxPAscGxGfpPhCvsvLD83MzDIbDmxWB2sTalanDlZEbPZFPrPewB0ss/LNBnaRdKyk+yQtlPRvSYMBJJ0v6XJJcyi++G+4pNmSFqTHAandOEl3SbpR0mpJF0g6SdLcdHfpE6ndTpKulzQvPQ6UNJyikzcl3Vk7uF67evFExMKIeCIdy3Kgv6StejSDZmbWaBcAB6caMUVSH0m/SPVhiaRvwTu1aLakmRRfSIukv6cRDsslTUrbLqCoF4skXZG2ddwtU9r3slS/TqzY952SZkh6QNIVSt8Sa9bKGnn13KztpKt7RwO3APcAYyMiJJ0KnAN8LzUdBRwUEa+l4YRHRMTrkkYCVwH7pHafBvag+Ob11cC0iNhP0lnAGcDZwEXAryPiHkkfBWZFxB6SLgZeiYhfptiurG6X9t0pnqpD+jKwICLeKDFNZmaW31Tg+xFxDEDqKL0YEfumi2pzJN2a2o4B9oqIR9L6NyJivaT+wDxJ10fEVEmTI2J0nZ/1JWA0RU0blN5zd3ptb2BP4AlgDnAgRf00a1nuYJmVo7+kRWl5NjAd2A24RtIQYEvgkYr2Mys6M/2A30saDWwEdq1oNy8ingSQ9DDQUeyWAp9Ny4cDoyou+n1Y0rZ1Yuyu3czqzpWkPYELgfHvdfBmZtbyxgOfknRCWh8AjKQY9j63onMFcKak49PysNTuuW72fRBwVURsBJ6WdBewL/BS2vcagFRHh+MOlrU4d7DMyvFa9VU7Sb8DfhURMyWNA86veHlDxfIU4GmKK3tbAK9XvFZ55+jtivW3eff83YLiTlnl+6gzyqK7dhuqtg0FbgBOiYiHq3dkZma9joAzImJWp41F/dpQtX44sH9EvCrpTmDrD/BzK+vcRvy/qfUC/gyWWeMMANam5Ynv0e7JiHgbOBnos5k/51aK4YIApDthAC8D221Cu04kDQT+CUyNiDmbGYuZmbWG6hoxCzhNUj8ASbtK2qbO+wYAz6fO1e7A2IrX/tfx/iqzgRPT57x2Ag4B5pZyFGZNyB0ss8Y5H7hO0nyKmfm68gdgoqTFwO5U3U3aBGcC+6QPJa/g3RkM/wEc3zHJRTftqk0GdgF+mN67SNJHNjMmMzNrbkuAjZIWS5oCTKOYxGKBpGXAn6h/N+kWoK+klRQTZdxb8dolwJKOSS4q3JB+3mLgduCciHiq1KMxayKKiNwxmJmZmZmZ9Qq+g2VmZmZmZlYSd7DMzMzMzMxK4g6WmZmZmZlZSdzBMjMzMzMzK4k7WGZmZmZmZiVxB8vMzMzMzKwk7mCZmZmZmZmV5P9IkrYVBmQePAAAAABJRU5ErkJggg==\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "# Show traces and histograms\n", + "import pints.plot\n", + "pints.plot.trace(full_chains)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": "R-hat:\n[1.3552733351602346, 1.3754582405932707]\n0.17671921652229416\n0.18796827770391555\n0.12155430637222131\n" + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAF1CAYAAADlbe0oAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdd3hUxRrA4d/sphFqIPQAoSO9BJAqTQFBQEQFBEGlF+kKSFG4SlFQRFBQEAtFaVKVXqQTeocQWqghlJCElN2d+8eGGCCBDWSzSfZ7nycPu+fMmfMl97rfzpwpSmuNEEII52VwdABCCCEcSxKBEEI4OUkEQgjh5CQRCCGEk5NEIIQQTk4SgRBCODkXRweQVN7e3trX19fRYYh0at++fTe11jkdHYcQKSnNJQJfX1/8/f0dHYZIp5RSFxwdgxApTbqGhBDCyUkiEEIIJyeJQAghnJwkAiGEcHKSCIQQwsmluVFDIml8h65K9Nz58c1SMBIhRGolLQIhhHBykgiEEMLJSSIQQggnJ4lACCGcnCQCIYRwcpIIhBDCyUkiEEIIJyeJQAghnJwkAiGEcHKSCIQQwslJIhBCCCcniUAIIZycXROBUqqJUuqUUipAKTU0gfOdlVLBSqmDsT9d7BmPEEKIx9lt9VGllBGYBrwMBAF7lVLLtdbHHyn6h9a6j73iEIlLbGVSWZVUCOdizxZBNSBAax2otY4GFgAt7Xg/IYQQz8CeiSA/cCne+6DYY496Qyl1WCm1SClVwI7xCCGESICjHxavAHy11uWBdcAvCRVSSnVTSvkrpfyDg4NTNEAhhEjv7JkILgPxv+H7xB6Lo7UO0VpHxb79CaiSUEVa65laaz+ttV/OnDntEqyzMGChsWEvXY0rqWc44OhwhBCpgD23qtwLFFdKFcaaANoC7eMXUErl1VpfjX3bAjhhx3gEmtEuv9DJZV3ckfExbfnB/BqgHBeWEMKh7NYi0FqbgD7AGqwf8H9qrY8ppcYopVrEFvtQKXVMKXUI+BDobK94BHQ3rqSTyzp+NL1KxcgZLDPXZKjrAt4w/Ovo0IQQDmTXzeu11quB1Y8cGxXv9TBgmD1jEFbe3KW/y2L+MVflC1N7NAb6x/SioLrBYNc/WRVVnUjcHR2mEMIBHP2wWKSQri4rcSOGCaa26Nj/2TUGxse0I6+6RWfjGgdHKIRwFEkETiA7oXQ0rme5pSbndN6Hzu3WL7DBXIkeLitwJ9pBEQohHEkSgRNobfwXTxXFdFPC8/nmmBuTTYXTyLA/hSMTQqQGkgicwOvGbRy0FOGM9knw/HZLWa7o7Lxp3JLCkQkhUgNJBOlcCXWJMoYL/GWunWgZCwYWm+tSx3CY3NxKweiEEKmBJIJ0rpVxOyZtYIW5xhPLLTLXxag0LY3bUygyIURqIYkgPdOa5oadbLOUI4SsTyx6QefhmKUQjYzynEAIZyOJID27cYKChmDWWPxsKr7OUoUq6jSE37RzYEKI1EQSQXp2yjqXb4O5sk3F15mrYFQazqy1Z1RCiFRGEkF6dvofDlmKcAMvm4of075c1dnjEogQwjlIIkivwoIhyN/m1oCVYoO5EgRsBJNMLhPCWUgiSK/OrAU0GyxJSQSwxVIBYsIhaK994hJCpDqSCNKrsxsgYy6O64JJumyXpTQoAwRutk9cQohURxJBemSxwNlNULRB3AJztrqHJ+SvAoGb7BScECK1kUSQHl09CPdvQbGGz3Z9kfpweR9E3k3euIQQqZIkgvTo7Ebrv0XqP9v1ReqBtsD5bckVkRAiFbNrIlBKNVFKnVJKBSilhj6h3BtKKa2Usm3mk3iysxshT3nI9Iz7O/tUBVdPCJRF6IRwBnZLBEopIzANaAqUBtoppUonUC4z0A/Yba9YnErUPbi0G4o2ePY6XNygQDW4IOsOCeEM7NkiqAYEaK0DtdbRwAIgoQXxxwITgEg7xuI8zm8Hi+n5EgFAodpw/RhEyGqkQqR39kwE+YFL8d4HxR6Lo5SqDBTQWq+yYxzOJXATuGSAgi8+Xz2+tQANF3cmS1hCiNTLYQ+LlVIGYDIwyIay3ZRS/kop/+DgYPsHl5ad3QiFaoLLc25En78KuHhYWxhCiHTNxZZCSqlyWusjSaz7MlAg3nuf2GMPZAbKApuVUgB5gOVKqRZaa//4FWmtZwIzAfz8/HQS43Aedy/DzdNQ+d3nqsZ3qLWBNt+1CJl2rOK1zbUAOD++2XOHKIRIfWxtEUxXSu1RSvVSSj15Yfv/7AWKK6UKK6XcgLbA8gcntdZ3tdbeWmtfrbUvsAt4LAmIJHgwCexZh40+YrcuRWl1gcxEJEt9QojUyaZEoLWuA7yD9Rv+PqXUPKXUy0+5xgT0AdYAJ4A/tdbHlFJjlFItnjNukZCADZApN+QukyzV7bGUwqg0lQ1nkqU+IUTqZFPXEIDW+oxSagTgD3wLVFLWPp3hWusliVyzGlj9yLFRiZStZ2ssIgEWs7VFUKIJWLvanttBSzFM2oCf4ZR1MTohRLpkU4tAKVVeKfU11m/2DYDXtNYvxL7+2o7xCVtdPQj3b0PRZ1xWIgEReHBU+1LVcCrZ6hRCpD62PiOYCuwHKmite2ut9wNora8AI+wVnEiCgI2AgqLJ83zgAX9LSSqqANyISdZ6hRCph62JoBkwT2t9H6xDP5VSngBa69/sFZxIgrMbIG8FyOidrNXutZTEQ8VQVp1L1nqFEKmHrYlgPZAh3nvP2GMiNbh/By7tefbVRp9gn6UkgHQPCZGO2ZoIPLTWYQ/exL72tE9IIsnObgBthuKNk73qm2TlrCUvfobTyV63ECJ1sDURhMcuBwGAUqoKcN8+IYkkO70WMmQHH/ss3rrPUoIqhlPWDW+EEOmOrcNH+wMLlVJXAIV1FvDbdotK2M5ihoB1UPxlMBjtcou9uiRvqS0QcgZylrTLPYQQjmNTItBa71VKlQIefAqc0lrLMJLU4PI+iAiB4q/Y7Rb+sc8JuLhLEoEQ6ZDNE8qAqoBv7DWVlVJorX+1S1TCdqf/AWWk/FwzodhnEddzOg83dRa8L+6CKp3scg8hhOPYuujcb0BR4CBgjj2sAUkEjnZiJfjWIvREJjveRLHPUoLGl3bZ8R5CCEextUXgB5TWWsvKn6lJ8Gm4eQqqdrHO+bajvZaSNL41F+5dh8y57XszIUSKsnXU0FGsD4hFanJyhfXfUvZfHvq/5wSyUY0Q6Y2tLQJv4LhSag8Q9eCg1lpWEXWkEyutG8hkzY+1185+jmpf685nF3dBmVZ2vZcQImXZmgg+tWcQ4hncuQRX9kPD0SlyOxMu1nkKF3ekyP2EECnH1v0ItgDnAdfY13uxLkInHOXYUuu/ZV5PuXsWqgnXjkBkaMrdUwhhd7aOGuoKdAOyYx09lB/4AUj+xW1Eoh5sIQmw3G02ForQauJx4HjKBFDwRdAWCNoDxRqlzD2FEHZn68Pi3kAtIBSsm9QAuZ52kVKqiVLqlFIqQCk1NIHzPZRSR5RSB5VS25RSpZMSvLMqpK5R3nCOleYaKXtjn6qgjNbnBEKIdMPWRBCltY5+8EYp5YJ1HkGilFJGYBrQFCgNtEvgg36e1rqc1roiMBGYbHPkTqy5wfpBvMr8Ysre2D0z5CkHF+Q5gRDpia2JYItSajiQIXav4oXAiqdcUw0I0FoHxiaRBUDL+AW01vE7mzPylOQiADSvG7ex21KKq+RI+dv71oYgf4iJTPl7CyHswtZEMBQIBo4A3bHuQ/y0ncnyA5fivQ+KPfYQpVRvpdRZrC2CDxOqSCnVTSnlr5TyDw4OtjHk9KmcOkcxwxWWmms7JoBCtcAcBZf9HXN/IUSys3XUkEVr/aPW+k2tdZvY18ny7V1rPU1rXRT4mESSi9Z6ptbaT2vtlzNnzuS4bZrV2vgvUdqV1ebqjgmgUA1Awfltjrm/ECLZ2Tpq6BwJdNtorYs84bLLQIF4731ijyVmAfC9LfE4KxdMvGbcyXpLJULJ6JggMnhB7rKSCIRIR5Ky1tADHsCbWIeSPsleoLhSqjDWBNAWaB+/gFKqeOwIJLDui3wGkaiXDIfwVqEsNddxbCC+tWHfz2CKAhd3x8YihHhutnYNhcT7uay1/gbrB/eTrjEBfYA1WJdE+1NrfUwpNUYp9WBpij5KqWNKqYPAQEDWOH6CNsatBOssbLZUcGwgvrXAFGndC0EIkebZ2jVUOd5bA9YWwlOv1VqvxvpgOf6xUfFe97MtTEF4CA0N+/nF3Ni63IMj+dYGFARusc42FkKkabZ+okyK99qEdbmJt5I9GpG4IwtxU2YWmes6OhLrc4J8FeHcFqg/zNHRCCGek61bVda3dyDiKQ7+zhGLL6d0QYeFEH+Ji49cCtDVuIoKQxcTgQfnx9t/KWwhhH3Y2jU08EnntdYyI9ierh6Ga0dYaE49j1C2W8rQy2U51Qwn2Gyp5OhwhBDPwdYJZX5AT6wTwvIDPYDKQObYH2FPB+eC0Y1l5lqOjiSOv6UkUdqVWoZjjg5FCPGcbH1G4ANU1lrfA1BKfQqs0lp3sFdgKSF+V0d8ju7miB+XGzHsdv+d7ZZK3MWe+xInTRRu7LWUoK7hMJ87OhghxHOxtUWQG4iO9z469piwswaGA3ipMBaZX3J0KI/ZbKlISUMQ+bjp6FCEEM/B1kTwK7BHKfVpbGtgN/CL3aIScdoYt3BNe7HVUt7RoTxmk6UiAPWMhxwciRDiedg6auhzpdTfwIMpre9prQ/YLyzHSqzLCFK22ygnd6hnOMRMc3MsNufslHNW5+OSJSf1DfbdL1kIYV9J+XTxBEK11lOAoNilI9KVbNyjmWEXdQ2HyI7jt2NsadyOi7Kw2NFLSiRKsclSkZqGo9blJoQQaZKtw0dHYx05VBL4GXAFfse6a1ma5040o1x+423jJlyUBYBI7cok05vMNjfFjNEBUWnaGLey31KMs/qx1btTjU2Wirzrsg7O/yvbVwqRRtnaIngdaAGEA2itr5BOho1mJYyFbp/xjssG5pob0ipqDG9HjWSrpTyfuM5jsuv3KCwpHlcZdZ5ShkssTg0ziZ9gh6UM4dodTjxtnyIhRGpl6/DRaK21VkppAKWUg9ZATl6umJjh9jUl1SW6Rg9kneW/RVZ3x5Sil2UZH7n+yRWdgwmmdikaWxvjVqK0KytSejvKJIrCjY2WSrx2chU0mwwGR7SehBDPw9YWwZ9KqRlANqVUV2A98KP9wkoZo1x+5UXDCT6K6fZQErBSTDe35HdTQ3q6rKCW4UiKxeWKiRbGHayzVCY0Fc0dSMzf5moQHgwXdzo6FCHEM3hqIlBKKeAPYBGwGOtzglFa66l2js2+AjbQ0WU9M03NWGZJbNtHxVhTRwItefjCZRYepMwD0ZcMh8ih7rEk1T4kfthmS0Vw8YDjyx0dihDiGTw1EcRuSblaa71Oaz1Eaz1Ya70uBWKzn8hQWP4hAZZ8TDK9+cSiUbgx3NSFQoYb9HRJmQ+61sZ/CdZZUuXcgYRE4GF9UHz8LzCbHB2OECKJbO0a2q+UqmrXSFLSv19BaBAfxXQjCrenFt9lKc1K84t8YPwbwkPsG1vELRoa9rPcXMvx+w4kRYV2EHYdAjc5OhIhRBLZ+klTHeiglDqPdeSQwtpYeOJXVqVUE2AKYAR+0lqPf+T8QKAL1j0OgoH3tdYXkvQbJNWtQNj1PVRoz/7dJWy+7GvTG7zqtpvvx/VL8MFxsk00O7YUd2VKM91CcYq/Ap45rAvkFX/Z0dEIIZLgiS0CpdSDxe8bA0WABsBrQPPYf590rRGYBjQFSgPtlFKlHyl2APCLTSiLgIlJ/QWSbN0oMLpBo9FJuuyszs8yS006GdfiZc/JZofmc8riwzFdyH73sAcXNyj3FpxcBfdvOzoaIUQSPK1r6C+A2G/pk7XWF+L/POXaakCA1jpQax0NLABaxi+gtd6ktY6IfbsL6yqn9hPkbx3vXqsfZM6T5MunmVriqaJ4x7jBDsEBNwMgaG9sa0DZ5x72VLE9mKPh4HxHRyKESIKnJYL4n0ZFklh3fuBSvPdBsccS8wHwd4JBKNVNKeWvlPIPDg5OYhjWtYN8h65k54y+BOsslP676BPXE0pMgPZhi7k877qswxU7PBQ9vACUgaXmxEYxpXJ5y0PBGrD7e7CYHR2NEMJGT0sEOpHXyUop1QHrEhZfJhiE1jO11n5aa7+cOXM+0z1qG45Sw3ic70yvW0e5PKNZ5qbkUndobkjmMfMWCxxaAEXqcwOv5K07JdXoDXcuwsmVjo5ECGGjpyWCCkqpUKXUPaB87OtQpdQ9pdTTOsovAwXivfeJPfYQpVQj4BOghdbaTgP1NYNcFnJZ52C+ucFz1bTVUp7Tlvx0clmTTLHFurAN7l6yjr5Jy0q+Cl6+sGMqaLt9dxBCJKMnJgKttVFrnUVrnVlr7RL7+sH7LE+pey9QXClVWCnlBrQFHhqIr5SqBMzAmgRuPM8v8iT1DAepZAhgqul1onF9ztoUv5sbUdEQSFkVmCzxAXBwHrhngVJpcxN4a/fbKnyH/8PwGw0haC8ffDLW0WEJIWxgt0XutdYmoA+wBjgB/Km1PqaUGqOUahFb7EsgE7BQKXVQKZX8M7a0ZoDLYi5acrIomRZwW2quQ4R2p4NxfbLUR2QoHPsLyrYGN8/kqdOB/jS/xFlLXj52WSATzIRIA+y624nWerXWuoTWuqjW+vPYY6O01stjXzfSWufWWleM/Wnx5Bqfwek1VDAEMtX8erJN0LqHJ8vMNWlp3EEW64Ksz+fYUjDdh4ppegvoOCZcmGh6mxKGy7DvZ0eHI4R4itS37VVy0hq2jOeiJWeyj8T53dyIDCqa143bnr+yg3PBuyT4PLrwXdq1xlKVreZysG403Drn6HCEEE+QvhPBmbVw5UCytgYeOKYLc8hShPbGDTzXgKrrx+HSbqjcEVQanDuQKMXHMd2sy1L/1RPMMY4OSAiRiPSbCLSGLRMgW0G7jcufa25ISUMQfurUs1ey72frTOcK7ZMvsFTiKjmg2STr8tQr+8soIiFSqfSbCM5ugMv7oM4guy3etsJcg1CdgQ4uz/jQODrcOnegdCvImCN5g0styr8FdT+CA7/D2hHW+RJCiFQlfSYCrWHLRMhawK7ftO/jwWJzXV417IZ715NewZGFEBUKfu8lf3CpSf3hULUL7PwOlnSFqDBHRySEiCcNrXOcBOf/tfa7v/qVdTE0O/rV/ArvuayxdvHUG2r7hRYLZ5ZNJIZCvPr9LSDpS16kGUpZ/7fIkg82jIXL/vDaFChSz9GRCSFIry2CrV9CpjxQqaPdb3VO52WTuQL4zwZTtO0XBqynuOEyP5peJU0uMJdUSkGdQfDeamuL7deW8NvrcG6rPDsQwsHSTYvgwSJyldQZlrpv5X8x7/DTSDutEvqIOeYm1A+bAEf+hEo2zgXYOZWrOjsrLTXsG1xqU6gm9N7D2E8H0jNgBd5nX+O0JT8LzS+x3FyT62RPvr0dhBA2SXctgl4uy7mtMzHP3DDF7rnFUh7ylId/J9k2k/b8Nji3ldmmJsSkn1xsO1cPZpmbUSvqW4bEdCOMDHziOo+d7n1Z5PYpbPsGrh2VloIQKSRdfQoVU0G8bNzHFFPr51phNOkUvPQx/PEOHF0MFd5OvKjWsP4zyJyXX4NfSbkQHeRJy31H4cZCcz0WmutRWF2luWEnjY3+sH609cfT29qCKFQTCr5IkW+DsCTw3UVaEEI8n3SVCLobV3JfuzHH5IAP2FLNIHc52PQ5vPBa4msGnVwJQXvgtSlELbTvg+y05JzOy1Rza6aaW3N+eCU4u8n60P/8djhhXYLqoLsnWy3l+NtcnbUWP+dsTQlhB+nmv6Tc3KKlcTvzzA25zdMWRrUDpaDpeJjTDLaMh5fHPF4mPARWDoRcZazrCi1M5qWs04ss+aDSO9YfgLuX4eJOVv/xGw2NB2hu3E2wzsr3phb8an75ia0OaS0I8XTp5hnBuy5rccHCLHNTxwXhWxsqvws7vrN+k43PYoYVH0LkHWg9E4zpJgfbX9b8UK4NQ03dqBY1jU7RH3PSUoBRrr+xym04xVWQoyMUIk1LH59G0eG8Y9zAGosfl3Rux8by8hi4sBPmvQXt5kPhuhAdAUu7W7uFGn8Beco6NsZU7knf8DUGtlgqsMVSnkbm/Yxz/ZG/3EbSP6Y36yzpZ9E+IVJS+mgRHJxHNhXOT6ZXHR0JZPCCzishcx745TX4rip8Wczaz934C+tWjiIZKNZbqtAsahxntA/TXafQ2LDX0UEJkSal/USgNeyZySFLEfbpEo6OxipzHuiyHppMsPZ3V2gLnVdLErCDG3jRIXoYh3URvnP9lhqGY44OSYg0x66JQCnVRCl1SikVoJR6bP0FpVRdpdR+pZRJKdXmmW4SuBlunuYX0yukqhm6GbzgxR7w7jJoPhl8azk6onQrDE86R3/MOZ2H6a5TKKieYd0nIZyY3RKBUsoITAOaAqWBdkqp0o8Uuwh0BuY98432zARPb+eboSsecg9PusQMBuAH129wQ/Y/EMJW9mwRVAMCtNaBWutoYAHQMn4BrfV5rfVh4NnWJr5zEU79DVU6JcOm9CKtu6hzMyimB6UNF6z7JQshbGLPUUP5gUvx3gcB1Z+lIqVUN6AbQMGCBf874f+zdfy+3/uw7tCzR2pHTxoBI5LfRktlfjY15gOXv9loqQjIPAIhniZNDB/VWs8EZgK45y2ufYeuwo0Ydrj/xH5LJbqNS51JQDjGeFM76hoOM8H1R4jqA+6ZHB2SEKmaPbuGLgMF4r33iT2WLJoY9uCtQvnN/HJyVSnSiSjc+CimG/kIgfWfOjocIVI9eyaCvUBxpVRhpZQb0BZYnlyVd3RZxzlLbrZZZHKWeNw+XZJfzK/A3p/g0h5HhyNEqma3RKC1NgF9gDXACeBPrfUxpdQYpVQLAKVUVaVUEPAmMEMpZdMg8FLqIlUNp5lrboROB1MhhH18ZXrLOo9jRT8wyygiIRJj12cEWuvVwOpHjo2K93ov1i6jJOlgXEekdmWRue7zBynSrXAywKtfwoL21v2Saw9wdEhCpEpp7uu0AQuvG7exwlyDO2R2dDgitSvVDEo1h80T4PZ5R0cjRKqUJkYNxedFGBlVVKp7SCzDRFOxphNgWnVYNQjeWWQdciyEiJPmWgQ51F32W4pxWBd1dCgircjqAw1GQMB6OLLI0dEIkeqkuUTgTgxzTE0cHYZIa6p1g/xV4J+hEHHL0dEIkaooncY2CK+Qz11HvPunbFMokqyUusgKt09YZalOq7F/J1hGKbVPay0bGwinkuZaBJe1tyQB8UxO6oJ8Z2pFK+MOOLHC0eEIkWqkuURwj0Q2hRfCBtPMLTlq8YUV/eGeLFctBKTBRCDE8zDhwoCYXhAdBst6geXZFr4VIj2RRCCczhntA40/t44i2jnV0eEI4XCSCIRz8vsASreyLkoXuMXR0QjhUJIIhHNSClp+BzmKw8LOEHLW0REJ4TCSCITzcs8M7eZbX89tA+E3HRuPEA4i4zCFU4q/JEhl9SHzIj7n7IQGDoxICMeRFoFwevt1CbrFDKSYuuLoUIRwCEkEQgBbLRXoGjPQ0WEI4RB2TQRKqSZKqVNKqQCl1NAEzrsrpf6IPb9bKeVrz3iEeJKtlgqODkEIh7BbIlBKGYFpQFOgNNBOKVX6kWIfALe11sWAr4EJ9opHCCFEwuzZIqgGBGitA7XW0cACoOUjZVoCv8S+XgQ0VEoWixdCiJRkz0SQH7gU731Q7LEEy8TucXwXyGHHmIQQQjwiTQwfVUp1A7rFvg27MKH5qRS4rTfg6IHlEkPK379QCt5LiFTBnongMlAg3nuf2GMJlQlSSrkAWYGQRyvSWs8EZtopzgQppfwdvS69xOD4+wvhDOzZNbQXKK6UKqyUcgPaAssfKbMc6BT7ug2wUae1nXKEECKNs1uLQGttUkr1AdYARmC21vqYUmoM4K+1Xg7MAn5TSgUAt7AmCyGEECnIrs8ItNargdWPHBsV73Uk8KY9Y3gOKdoVlQiJwfH3FyLdS3N7FgshhEhessSEEEI4OUkEQgjh5CQRCCGEk5NEIIQQTk4SgRBCODlJBEII4eQkEQghhJOTRCCEEE5OEoEQQjg5SQRCCOHkJBEIIYSTk0QghBBOThKBEEI4OUkEQgjh5CQRCCGEk5NEIIQQTk4SgRBCODlJBEII4eQkEQghhJOTRCCEEE5OEoEQQjg5SQRCCOHkJBEIIYSTk0QghBBOzsXRATyrHN7eukDBQo4OQ6QTR06cwXw/VDkyBm9vb+3r6+vIEEQ6tm/fvpta65wJnUuziaBAwUKs27rb0WGIZBJ69y57d+/k1MkTGAyKai/WpLJftRS7f/4ipVLsXonx9fXF39/f0WGIdEopdSGxc2k2EYj04cC+vUz55hvW/72M6Kioh85Vq/US8/9cQuYsWeweh9lktvs9hEit5BmBcIiA06do06o5jevV5N+Na3j97Xf5ccFK/j18gc0HAxk88gv27dpG1/c7YbFYnvt+ZrMZrXWi53Uy3EOItEpaBCJFhYWF8eUXY/jx+6l4ZPDkw49H065zdzJmyvxQuXe79cVgNDLx048ZO2o4o8aOQynbu/AtFgv/btnEP6uWs2XzZs4HnsFiNpPXpyDDR35Km7fbJ6k+IdIzSQQixWxcv5aBfXtyJegirdt1ou9Ho8nhneCzKwDeeb8n5wJOMW3KJM4GnufTMWMpUqz4E+9x9sxpFi6Yy/y5v3H18iU8PDJQ5cXa1GnwCi4uruzYsoHeXTuzc9deJn/zzX8XamkRCOelntRcTs0qVq6i5WFx2nD3zh0GD+zPsoVz8S1anM++nEalqjVsulZrzY/ffsmMbydgiomhas26vNGmDS/WrI2PT0EALlw4x7+bN7J40UIO79+LwWDgxdr1afV2R+q9/CoeGTLE1WexWBj2YRc2rV3F8cDLZMqUCYDceQpgCbvq0CaCn5+flofFwl6UUvu01n4JnpNEIOxFa83KZUv4eFA/bofc5L2eA+je72PcPTySXNfNG9dZOHc2q//6kwuBAQmWKfFCWbntjgMAACAASURBVJq3bsurrd4iV568ida1e/sWurZtzvzFK2j4ShNAEkF64jt0VYLHz49vlsKRpC5PSgTSNSTs4vTJE3w0eCA7tqznhXIV+e7nhZQuX+mZ6/POlZueA4bRo/9QLpwL4OjBfYQE38BsMZMvf0HKVfIjfwHb5pU8SBJ37tz+76CL6zPHJkRaJ4lAJKvAgDNMmDCeZX/+TsZMmRkyejztOnfHxSV5/q+mlMK3SHF8izz5WcGTRN6/D4CHx39dRigZQCeclyQC8dzu3L7N3yuXMXfu7+zZvgVXNzfeeb8nXfoOxiu7d4rHY7FYCA+7R+YsWRM8H3TxPAD5fXz+O2iKToHIhEidJBGIZ3L3zh1W/LWYRYsWsWf7ZkwmEwUKFaH3oBG0bteJnLnzpGg8Wmv27vyXn2ZO48iebYTfCyVXPh8+GfMl9Rs3f6jssUP7cHF1pVTpsv8dNErXkHBeqSYRKKXOA/cAM2BK7KGGcKxTJ48z6csv+XvZIqKiIvEpWJgOXXrz8qutKFuxikPG5h87tJ//jf6YY/t2kdUrB7VeaUGufAVYNX8Wk8d/Rr1Xmj0U185/N1GuYhU84j+0lgllwomlmkQQq77W+qajgxCPO3XyOJ+OGsmGv5fj4ZGBFm+25/W336VMhcqJfvjfvX2Ldav/Yt26tWTJ4E7VmnVp8857GAzJ0x8fHnaPbyd8xoJfZpLFKwc9ho+j0evtcHO3fsC7e3gw68vRXL92hTx58wMQfP0aJ44cZNioMQ9XZpDJZcJ5pbZEIFKZkJs3mfjFZ/wyayYZPDPSvf9Q2r/X/Yl9/xfOBTDl64lsXb2U6KhIcubNT1TkfdasXELOXLkf66p5Fvv37OCjvh8QfPUyzdq9T4c+Q/F8ZHayin0AHP+b/+Z1qwFo0uy1hyuUh8XCiaWmRKCBtUopDczQWs90dEDOzGKx8PucWYwZ9QnhYaG82eEDeg0a/sQEEHjmJN9MnsDW1UtwcXWjQYu3aNymI0VKleXGlUt0bVqNm8E3nisus9nMj1O/5Ievx5ErXwHG/7KcFypWTbDs2eOHyOKVnSxZveKOLV80lyLFS1LqhTIPF46JQghnlZoSQW2t9WWlVC5gnVLqpNZ6a/wCSqluQDcAnwIFHRGjUzhy+CD9+/TkyAF/qtaow7CxkyhW8oVEy588dpgpk8ezY91K3Nw9eK1DV1p37o2Xd664MoEnjwLgW/TZh33evHGd/j07c3jPNuo1b0OPT8bjmTFTgmVjYqLZt30jFarXjeuKOnH0EIf27eGzLyY+3p0l6w4JJ5ZqEoHW+nLsvzeUUkuBasDWR8rMBGaCdWZxigeZzoWFhfHVuLHMmDaFrF7Z+fybmTRv3TbBZwAWi4XtW9bz0w/fcWDHJjJkzESbDz6kRYeuZE2g1bBtzTKyeGW3eWmJR/27cQ3D+3fn/v0I+n42mZdfb//E8jvXryb09i3av9Mp7thvP36HZ8ZMvPPu+49fIF1DwomlikSglMoIGLTW92JfvwKMecplIplorVm2ZCEjhg7hxrUrvN72XQYOH0tWr+yPlQ29e4fli+bx+88zuHIhEC/vXHToO4xX3+5MpkTG7YfeucWujf/wRrtOSZ5YFhERztSJY5g7azqFS5Zh0LhpFCz25E1ktNYsnj2V/IWKUqNuAwAunjvL38sW0qVHH7JkTShOaREI55UqEgGQG1ga+83TBZintf7HsSE5hyOHDvDRoAHs272dUmUrMOmHX6lQpfpj5c6cPM6M779l8+olREfep2T5KgwaN52arzTH1dXtifdYu3guMdFRtHnnvQTPh9wMZtOaFdy4fg13d3derF2ffAUKcvTgPsaPGU5Q4Blefbsz7w0ajXv82cCJ2L5uBedOHWPspO/juoW+nfgZrq5u9BkwOOGLZNSQcGKpIhForQOBCo6Ow5lcvXKZ0SNHsGzhXLJm82LkuCm0btcJo9H4ULmjB/cx+cv/4b91PW4eGajX7A2avvkuRUuXt+k+ppgYlv02g0o161PihbIPnbtzO4Qvxo5i7ZK5WMz/7RA2hU/jXufxKcTo6fOoXKu+TfeLuh/BnMlj8S1RmuZvtANg3+7trF25lCHDR5E70YlukgiE80oViUCknKioKKZ/O5mvvxyP2WyiY9c+dOs7hCzZvB4qdyXoImNHD2X72hVkzpad9r0/olnb98ic1SuRmhN2YMcm7t66SecPuj90fNe2zQzp/R737t6m6VudeOWNDhQqVop7d26xf8dmwu/dJUu2HNRo9OpTWxzxzZv+JTeuXGL2n39jNBqJioxkzNAPyedTkF4fDkz0OiUtAuHEJBE4Ef89u+jd/QPOBZymYdMWDBrxOT4FfR8qYzKZ+O2n75g26QsA2vYYRKt3ezw2Rj/0dghnjh3CFBNDifKV8cqR8AYzm1YuInO27NSu9zJg7b+fM2MK33wxCp8ixRkz808KlygdVz5rdm/qN2/zTL/fUf+dLPttBq+80QG/GrUBmD75c84FnGbB0lVkzJgx0Wu1WWYWC+clicAJWCwWvvv6K8aNHUWuPPmY/usSatd/+bFyF8+dZWCv9zh99ADV6zeh29D/kTPvfwuzmU0mdm5czZ+//siFI/5xewBnyJyNKX+sIY/Pw8tAh4XeYdfGf3ir4we4urlhMpkY/lE//ln4K7VeeY1+Y77BwzPxD+ekCL0dwuRhvcntU4jP/jcRAP+d25jzwxTavPMeDRq98pQaZBCacF6SCNK5+/fv0/X9TqxduZTGzVszasK3Ca7KuXLJAsYO64/RxZUhE3+gduOWccNGLRYLW/9eyi/ffUnI5fN45fGhfse+FK5QDVN0NL8Me5/dm9bQsmO3h+rcv30zpphoXm31JhER4fTt2pG9W9fxxvt96Pjh8GRbasIUE8OEwV25ezuE35auI2OmzIQE3+CjPp0pWLgoE7+cZEMt0jUknJckgnQsLCyMN1s1Z/+eHQz4ZCydu/d7bE5AdFQUI4YN5J+Fv1K68osMGj+NnHnyx50POH6ISaOHcPnUYfIULUW7UVN5odbLGOI9VPbM4sWlwNOP3T/o3BkAtMVCmyZ1uHLhLD2Gj+PVtgmPHnoWWmumjR3Ckb07+PybmZQuX4noqCgGdn+He3fvsmj532TKnPnpFQnhxCQRpFPh4eG0admMQ/t2M37qbJq2fLzf/ca1q/R6vy2nj+znjff70KHPUIyx4/xjoqOY9/1XLPl5Gpm8vHnjo4lUaNTysW/xFrOZyLBQsnrleKz+Bw+WO7ZqRLYcOfnshz+o8GKdZPsdtdbM/upTNvy1gO79h/LaG+3QWjNm6Icc2LuLH3+ZR+ky5WyrTGYWCycmiSAdMpvNdO7QjoP+u5jw3c80fq31Y2WOHz5Ar/feIuJeKEMnz6Jmo//2c71yIZDPBnThasBxKjdpQ9Mew8iQKUuC97oZdA6LxUy+QoUfO1e9fmMuBZ6mSKmy1GzUjCwJJItnpbVm9qRPWfbbDJq3/4BeA4cDMH3S5yxfNI8hw0fRsvWbNtdneGTYrBDORBJBOjRm5DC2rP+b4WMnJZgE/t20loHdOpDFKzsTfl1B4ZL/LcC2a+PfTBreF6OLK++M+YEXajZ84r0unzoCQLHSj08DyZWvAL1GTnzO3+ZxMTHRTB8zhA3L/qBZu/f537jJKKWYO/t7ZkyZwOtvd2Tw0BFJqtMR+ygIkVpIIkhnVixbwvdTv6Ztp2607dzt8fOL5zNyUE98i5dm9PS5cQvDaa1ZNGsqv337BflLlqftqG/xyp2f+2GhHNv6DxeO7SNP4ZJUb9kBl3jj+s8f2YtHpiwUKFrymeL995+/+HfNclp37kWpCk/fi+h2SDATBnXl+P5d9BgwjJ4DhqGU4q8/fmPC6I9o0Lg5036YmeQPdplHIJyZJIJ05HLQJfr37k7ZClUYMmrcY+cX/j6bscP6Ub5abYZPmRO3cqfZZOLzEYPwX/0H5es35/Uh49FmM+tmT2b7kl8wRUbg6pmZA2uWsGPlQj6cvhB3z0xorTm7fweFK1RP8gggU0wMUz8dyKYVC3FxcWXXhtX0HDGBpm91SvQa/3/XM2Vkf+6HhzF+6mxebWXt+lm2cC6jh/SmZt2GzPl9fpLXMxLC2cmSi+mE1pq+vXoQEx3N+KmzcHV7eDbu4vlzGDusH351GzFq2u9xSSA6KpLhfTrjv/oPXmrfkzeHT+bCkb181akxW+Z9T94KdWj06e+0mraZyu8O525QAOcP7wXg9tVL3Ll+mTp16yUp1qj7EYwb8D6bViyke/+hbDl0jkLFSrF49lSioyIfK3/lQiDjB3VhTO8OZMvuzfyVW+KSwOL5cxg1qCfVa9dj/qKlD28/mQQGB7UIlFLdlFL+Sin/4OBgh8QghHx1SieWLVnItk1rGTJ6PAULF33o3D/LFzPm4w+pXKs+wybPwtXNHYDIiHCG9erI2f07aNZ7JNVea8eamRPYtnAWWfIVpv6wn8hZsnJcPbnLVAMg4t5dAAIP7gKgQnXbRwKZYmKYMKQb+/7dwMhxU3izg3VJ6JGfT6LL282YOnogzdp9QAZPTy4EnGL72hXs3vQ3Lm7u9Bkyik7d+uIe+2E/d/b3TBj9EbXqvcy8PxeTIcPTF6RLjKOeEcRfWt3Pz09mtQmHkESQDoSFhTHi48G8UK4i7d/r8dC5vTv/ZXj/brxQqTrDvp4dlwTuR4TzUde3uXhsP60/mkCJqi/xXb8OBJ/aT9EGb1Kh7QBc3B7+dm2Otu7i9aCOs/t3kDlHLnwK27bZjNaaqZ8OxH/r+oeSAEC1mnVp/V5vls6ZzpbVS+KOZ83uTafuH9KxSx+8c+WOq2f65C+Y8c14GjRuzi9zF+Du7p7Ev5oQ4gFJBOnAd998xY3rV5k047eHVg+9dD6Qfl3ak7dAIUZ8OyduCeeI8DA+6vI2QScO8tawyeQqXIKpPVsTeTeE6t3+R6GaryZ4n4iQawBk8c6NxWzm7P4dVK/b0OZv03/98j2bViyk16BPHkoCD3w6Zjz9+g9m785taIuFfD4FKV2+0kO/k8lk4osRA1k092davvkO38/8KVmeCcioIeHMJBGkcVcuBzF9ymSatGjz0D4CEeFh9HrvbZRSjPzudzJlyRZ3/OOuba1JYMTXZPLy5oe+b2F086D+sJ/IXqQMoVfOcfv8CbxLVCSjd764Ou9cPAVALt/iBJ06TETobarUaWRTnMf37+aXb/5HzZeb073fx4mW88ruzSvNWiV4LiI8jCG9OvHvxrUMGDKMoSM/kw9wIZKBJII0bsTwYVi0hX5DP407prVm6OC+XAo8zejv58ctBhcZEc7Q7u24dPwAb33yNQaDkdlDOpExZ37qDvqO+7dvsGpEB8KDjsfV9cJrXSj3Ri8AQs4eIXMeXzwyZibAfxtKKSrVfOmpMUbdj2DKqP7kzOvDV1NmPNOH99XLl+jXpR1nThzlyynT6PT+40NjhRDPRhJBGnZwvz8rlyzgg94DyV/gv5U/l/35O5tXLqJdz8FUqmH9oI6KvM/Qnh24cHQfbw2bTHRkBEu/Gk72ImWo3mMcu+Z+R8iBf3DNnAOfpr3JWLAsl/+Zzqm18yn3Ri+0xUJIwGHK1rGuWhp4cCd5i5W2aX+CZb//yNWL5/hxwUoyZU54hvKTHDu0n77vv0Xk/fv8/udfNHylSZLreBppWAhnJokgjdJaM3TIILxyePNB70Fxxy+eO8vnIwZRrmot3uo2ALDOxB3R9z3OHdxF6yETCA+9zcqpn5G7zIuUbtWd9V90JfrOdXLXaU+el97B6GZ9lpClRA3CLhwh5n444TevEB1+F9/yVYm6H86l4wcfW200IRHhYSydM51qL71C9VpPbz08avVfCxk1uCfeOXOzZOUaSr1Q5ukXPQOLRQbsCOcliSCNWrJwAfv37GDU+Clx37JNJhOD+nyAi6sbAz6fitFoxGw2M3pAd07t3kyL/mMIv3uLf2aMJ1+ll/Cp0pDNE7rj4pmFEu9/Q6ZCZR+5i/XDURkM3DhhnTtQuEJ1Ag/swmyKoVKNek+Nc+f6VYTfu0vvfonsFZwIi8XC1IljmDVtElWq1+L3BYvI4e2dpDqSQp41CGcmE8rSoLB79xg17CNKl6vE623/m4k7e/rXnDq8j54jJuCdJx9aa8YO/ZCjW/+maY9hRITe4Z8Z4/Gp2ogs+Yuw56dRZMxfilI9ZiSQBCDmXggGNw9c3DNw/dguMuUugFfu/JzatQl3z4yUTmCT+0ft2bwW7zz5qej3os2/3/37EQzu+S6zpk2izTvvsWz1WrsmAStpEQjnJS2CNGjiF2O4GXydr3+aFze08vSJo/zw9TjqNGlJ3aat0Frz86TP2L9mMfU79iE68j4b5nxDgeqNCbtvJmjlz+So/Co+zT7k/tXT3D25HaNHJrKVrouKXS4i6uYl3HP4YDbFcOOEP35N3kBrzandmyhe9SWb9hIOOH4Qv2o1bP7GfSskmD6d3uTY4f2MGfcl3Xs/voeCPWjJA8KJSSJIY44dPcyP30+ldbtOlK9UFYCYmBiG9O1CpqzZ6D7Mutfw4tnf8devP/Biy44YjC5xSeBOcDD3AveTt8F7ZPKtwLHpvTCFBMbV79O0N7lqWD/wI64GkL9iLULOHMIcHUmxKrW5eSmQeyE3eOmlBk+NNToqkuCrlylavJRNv9uVoIt0f6cl169c5pf5i2nS7LVn+As9G3lGkL7l5A74z4bc5aBAVUeHk+pI11AaYjab6d+nJ1myZqP/0M/ijs+aNolzp47Ra+REsnjlYN3Sefw65XPK129OxuzebJjzDT7VXiHk0jnunTtIgRYDuH3lMmdm98cSGUrGGl3wevM7XPOW5cqW+QBE37mGKfw2OYqU5drRnSijC4UrVuf8EX8AyvrVeGq8ITesE9Dy5Pd5Sknr8ND332zKrZCbLFz+d4omAbA+kxDpU0vDNna694GVA2D2K7DpC2kCPkISQRoy56cfOLRvD4NGfkFWr+wAnDx2mBlTJlC36eu82KApe7euY9pnQyjuV4dchUuw4eevye/XkJvnTnH/xjl8Xu3Lla2LiDy5Fo/STfFq9RUZSjbCmNEbl1wlsUTcRpvNhF08CoB38YpcO7ID72IV8MiYmQtH95ExWw7yFSry1HhvxSaCnLnyPLFcyM1gurzdnHuhd1my4h+q16j1nH+ppEuu/ZNF6uLNXca4zuGQLgrdtkC5t2DLBDg039GhpSrSNZRGXL1ymf99OpIadRrw2hvtAIiKjGRQ7/fI6pWDbsM+5/SR/Ywf1JU8RUvhW6Ea62ZNIm/FugSfPY4p/A556nbg8tqZYHQlS6OhuPlUfOge1r54DQrCLxzB4J4RV89M3Ll4isZdhwBw5cxRfEqVt6nf/kGLIFeefImWibx/n34fvM2Na1dYunodFSpVeca/0PORUUPp0wjX3/AgmiEx3Qn89jKK5ix020+RpUNouEBxG+uIu/Pjmz2lpvRNvgalAVpr+vXphSkmhhFffB33ofX1uFFcOnuavp99Tfi9UEb37kAmL2/KvtSUdbMmkadsTW4GnsAUEUqOSk24unEOxix5yfbaF48lAQBLZCjKLSPKYOTe+cNkKliGa0d3AlDyxfoAhASdp3SpF2yKO+T6FQBy5cmb6O/1v+H9Obx/L9/P+hW/araPLEp+0lWQ3uQnmFbGHcwyv0qgtn4Z0RgYHvMBmbnPEJc/HRxh6mGXRKCUck3g2FPH/ymljEqpA0qplfaIK61auWwJm9etptfgTyjga+2S2bl1I/Nmf0/z9h9QvGxFPuneDovZgl+ztqz96StylfIj5MIpzDGRuOSrQPDupbgVqkaWJqPRkWFEntmM6c7lh+5jvncDQ6acxNwLIermRXwr1+T60V14Zs9DzoLFALCYTTZ/e7557QoZPDOSOUvWBM8vWfALyxfNY9DQETRv+fpz/IWEeNxrRuuXmPnm+g8dP60LsMBcnzeMW60PkUXyJgKlVH2lVBBwVSm1VinlG+/0Whuq6AecSM6Y0ro7t28zdFB/SpWtQMcufWKPhTBsQHcKFClO+15D+KT3u9y+HkSN1p1YP3syOYqV51ZQIBazCaOXL9HnduBRphnuxetxe/kw7qwYStj2H7izYjimkHNx9zLfuUSW/EUIPbMHgNwvVOXGib2UrFoz7sO/YNkqrF32JxFh954a+7WgC+T2KZRg4gg8c5LxI4dQs27DJO8vbA/SNZT+tDDuZL+lGJd07sfO/WR+FVfMvOtiy8dS+pfcLYKJQGOttTfWzTbWKaUetPef+F+aUsoHaAb8lMwxpWlDPx7CrZBgPvtyGi4uLmitGdKvB6G3Quj/+XeMGzmIC0f8qdn6PTb/Po1sBUtw91oQ2mJBZcxFzJUjZKjclpjbwdxbPwFi7uNSogVulbuD0ZXQHXMAa7eQJTyEDHmKcffMHlwz5wBlIDo8lCIV/xsh1KTrR4Tfvkm3FrVZOX8WZrM50diDzgdQrNjjexVERUbycZ/38cyYkRmz5zy0zLQQyaGYCqK04QLLzAkPPLig87DW4kcH43oy8PiueM4muROBm9b6GIDWehHQCvhFKdWKp3fCfgN8BMg4vli7tm9jyfxf6Ni1Dy+UrQBYd+XavekfOg0YwY71KzmyaRVVm7djx9JfyZi7IPdCbqAtZsjghelmAJ5V2hN5eivmK3swFqiNW/V+uOSvhiFrAQxZC6EjQgCIuXEagIz5SxAa4I9PpTqEnD0MQKGy/z3ALVC6Eu9/9RvZ8xVk5rhPGD2oBwmJCA/j2qXzlHyh3GPnpk/+nFPHjzD1h1nkzv3kEUUpReYRpC/NDLsxa8Uqc+LPnWaZmuKlwmhu3JWCkaVOyZ0IYpRScf9lxyaFhsCnQKLbWCmlmgM3tNb7nlR5/P1dQ27eTKaQU6fIyEj69upKvgKF6DFgGABHDvgz+X8jqFavMRk8M7F41lTK1G3MwY0r8ciag8iwUCzmGHDLgvnWRTwrvknE4b/QkbdwLdcB12JNUIZ4A8W0hthhk9FB+1EuHljMJixR4eSrUIe7QQG4ZsiEV56H5wEUrlCdLpPn8VL7nhzeuIKj/jsfi//EgT1orSlXye+h4/t2b2fOD1N4o31nXmnq3CM1hP3UMB7nqC7MTRJ+PgWwV5fkrCUvbxk3p1xgqVRyJ4KhwEMdclrrIOAlYPwTrqsFtFBKnQcWAA2UUr8/WkhrPVNr7ae19rP/2jOO9e3kiVwIDGD0+G/x9MxI6J3bDOjRkey5ctPo9XZM/9/HFCrnR+CR/Rhd3IiJMWGOikC5ZcEcegWPMs2IOLQE5ZIBtyo9MHo/PrtX3w9BuWdDWyxEX9yHq09FQs/sQbm4kbvsi0TevUkGr1yJ9p/Xe6cXHhkzs2nFwsfO7d++CRdXNypW/e8bWejdOwz7sAs+BQvz5aSvk++PlQwctXm9SH7uRFNJBbDb8rTRbYo/zfWoajgNwadTJLbUKlkTgdZ6PXBUKTX3keN3tdafP+G6YVprH621L9AW2Ki17pCcsaUlAadPMWXSBJq0aEONug3QWjO4fw9Cblyj88DRfD2iH9nzFeDWzZvE3I9Au3oSE3YHlSE75nvX8Cj5MpFHV6Ay5cOtSncMno8nTR0TgQ6/gUehisRcP4GOvEu+qi9z9+R2shStgot7BtwyZiXybghmU0yCcbq6e5A5Ry7Cw0IfOm42m9mxbiWVa9XH0zOj9X5aM27kYIKvX+XHOb+RKVOm5P/DPQctM03TjYrqLO4qht2Wpy9tssRcB5M2wIHfUiCy1CvZh49qrc1AIaXU01ckE4/RWjOgXx88Mnjy8acTAPjj15/YtWE1bXsM5udvxwMK7Z6ZsOuXcM2am6jbVzBkzoP57hXcizcg8sQ/GLyK4laxM8rVM8H7mG+eBDSu+SsQFbAF5ZoBD28fou9cp1jsnIH8lV4iOvwu//7xY6LxRoTeIVPmh5vf/lvXE3LjKm+1/S+XL184l1VL/2DwsJFU9qv2fH8kO5BRQ+nHi4bjWLRirw2JIJhsbLJUgsN/gNmUAtGlTvaaUBYIbFdKjVRKDXzwY8uFWuvNWuvmdoor1Vu66A92b9tM3yGjyJEzF8ePHOTLMcOoVLMe+/bt4ealc2QtXIaQgMNkyFeC+9cDccnui/n2BdxLNCDq1DoM2UvgWu4dlDHhXKy1xnx1H8rDC0OmXESd30X28g0IDzoJQK4XrB/U+Sq9RIFqL7Phl285vn3dY/WE3Q4h/E7IQ8tNaK1ZMmcaOfPmp0Fj6/+M5wJO8cXIwfi9WJv+g4cm958sWZjNMkYhvahuOMFxXYhQMtpUfrG5DoRdh3Ob7RtYKmavRHAWWBlbf+Z4P+IJ7t65w7AhAyhb0Y83O7xP2L1Q+nfvSJZs2SlSqiwnd27khVqNuHZ4OzmKVyQi6AQuuUpiunkW9xINiTq9EUO2wriWbYcyPjanL47l9ln03Qt4VmhJ1OmNYI4mZ/VWhF86jkvGbGTKXSCurN/7o8leuDQLxvbjxoWAh+oJPGh9SFymyn/DSw/u2sqJA3vo2nsQLi4u3L8fwaAe7+Lh4cFPc35LtUNFpWsonTBFU9lwxobnA//ZaKkEHlnh0B92DCx1s8taQ1rrzwCUUp5a6wh73CM9mjThc+7cCmHG3GUYDAY+HtiLG1cu8d7AUcz+6lOKVq7FiR0b8CpchpAzB8lYoCzhl47iVqQOUWe3oTxzxbYEEk8C2mLGFPA3yiMb7kVqc3vpIFzzlsMzT1Eib5wnQ+6iD3WTuHp48mLPcawa3JzAg7vIVahY3LnDG1eSOUcuipUuD4ApJoZZE0eRO3/B/7N31uFNXW0A/52mqQu0xYp7cXeX4S5j2IcNd4Y7QwbDN2wwbOgKw92Lu0OB4lAKBVoqUE3O98ctDIYVSJqkvb/nyZPk5p5z3tzc3Pee8xoNKMfd1gAAIABJREFUm7UGYOLIAdy64cuqdVvwjEcWUlOh0ajZVhIFgVewEzGc1X/USfE9otFCnoZw0RuiwsHWvOxXCYGxUkyUEkJcBa7FvS8ghJhjjLESC75XL/PnvFk0/OF/eOXJz0bv5RzasZGGbbqxesFM3NJm4qHfFRzcUxPy8CZ2KTPz0t8X6zR5iXl8DaysscnfCmFt98lxYu/uQ758glOp9kT67UdGhpCpZnsAokMDSZE+w3tt7FzcQQjCg56+2RYU8IAbJw7wXb2maKyV+4mNy+Zx/9Z1ho6ZhK2dHf+sWsL61X/Rp/9gKletZsCjZQxUG0Gi4NF5AC7JzF/WLv8PEPMKfDcbQSjzx1i3QTOA6sBzACnlBaC8kcayeKSU9OnRDSdnF3oPHs3De3eYMKI/eYuW4syZE0S99gyKjCBWB0JrR3R4KFb2ydFLLfLVM7S5v0fYJfvkOLonF9Hd80GTpgjWHtmJuLAebbpCOGdSgtWkXofQvD9JfH7rIkhJ2pz532w7uPoPhMaKui1+BODhHT9WzplC6aq1qVS9DlcunOWXEf0pXb4KA4eNMuDRMg7q0lAiIeA8IdKB+zLll7XLUBKSZYSLq40jl5ljtPmwlPLBfzZ9PBdBEmfjujWcO3WMXoNH45rMjQG9O2Gl0ZCrUHHuXjiJV8lKBN25gkeOgkQF+WOVLBP6iCDs89VH//gcmvSl0bhl/eQYusfnifFdi3DNiGuV3rw8vhCpiyF7w95v9rGytkEXE/Ve21v716K1dyJLISUmIOCWL2e2r6FGk9a4p0pDTEw0Uwd3x87BkbETZ/As8Am9O/yAR8rUZm0XUEmEPDrPZX1mvniGJwQU+AFu+0DoI6OIZs4YSxE8EEKUBqQQQiuE6I+aTO6DvHr1ihFDBpIrX0EaNvsfq5fO58qZ4zRq1511S+aQtXBprh7Zi0eOwgReOYGrVxliHl3APk9dIq4fABtnrDN9vGyk1MUQ47eVGN+1WLlmJHmd0URc2kD0g9OkrfYjdiky/Gf/d/V10J2rPDy1l5L1WmBr70hsTDTrpwzB3tmVlt0HArB46hhu+V5k7ORZOLu40vvHHwgNecEK73V4pEhh8GNmDNSAskRAbDQEXv3yZaHX5G8GSMVWkMQwVmGaLsBMIC3gj5J5tJuRxrJo/pg9kycB/kz8fSEB/g+YNmEkhctU4tCBPWht7XkR+hIrrQ3hwc+xdvYg/PF9rBw9sMtRmYjLm7HOVAlhbftev1Ifi/7JRWLvHUBGBGGXq4aSd8h3OxEX1mGbvRIpSzV5s3906FNiQp/hmu7fmYUuJprTS8Zh6+pGheZKTqG9S2bwyO8KQ6YvwsklGfs3r2HLyoW0/rE7FavVZnCP9lw+f4bFK9aQJ2/+9+QyV9Q4gkRA4FXQRcfNCL4C96yQrhhcWA1leiuzhCSCsWYEOaWULaWUqaSUKeOihOPvz5VECHjkz4wpk6hcvQ5FSpRh9LD+WAlB4TKVuHfpNPkr1+H5zQukLVyByKf3cC9YDd2LBzgU+h6piwEkwj75m/6kPhZ9yH1ibu0k6tgUYq6tA40tLtWG4Vj4B16eWMSrM6uwyVSK3C2GvHPx8981H6HRkrbwv7OLC6un8eLeNRr3HYudkzOXDmzj0N8LKFq7GaWq1ML3/Cl+H/0T+YqVps/Qsfw2aTQ7Nv/DsNHjqVW3fkIeym8mCf3nEy8BX2kofpuCLeCpLzw6ayChLANjzQh+BwrHY1uS5ucxo4mNjaH/iAkc3r+bkwd20rLHIP5eOJu0OfPje/IIzp5ZeOx7DgfPHAQ/uI2wc8U2c2mkLhrskhHj+w+x/qdAF6lkEpU6EFZYueXAqVADrD3zE3P/FMEbB6APf0rqCq1IU6ktIi7ZnJSSgH2LCb64lzwNu+CcWlkqurFrJTf3elOmSXtylanK7fMn+GfSADLkKcKQnyfz8M5NxvVqQ4o0aZm9cCVrVyxi0ZzpNG3VgZ59+5vysH4VavbRREDARbB14V7k+/UH4k3exrBjCJxbAWlNUzbVFBhUEQghSgGlgRT/iSR2AVSL4Vvcu3uHjd7Ladqqg5JhtE1T0mTIjNbGlrDnTyhaqyn7l83Cq057rm1ZRMYmw7i/cTo2mYojNNYIjTWuFXsRdecYUY/90LplQJO5BNYe2dCmyYOwtiP63glCtg5D9/wOmmTpyNFhJk4Z/00LHRMexMPtcwi+tA/3wrXIXVfxALrts4HzK6eQtkglqnccyP0rZ1kxsjNuaTMyYe4yXjwLZFSXZlgJwYLl6zlx2IeJIwdQqVptZv4+yyKXWdTI4kTAkyuQKg+EfMP5Z+cKuerB5bVQfTxo7Q0nnxlj6BmBDeAU1+/bkcShQJMPtkiijBoxHI3Gmvbd+rF76wbu37pO3/GzWDh9LJkLlODK6eM4pkhL5ItnWNk6kixXWe6tHY+VrcubPrSpc6NNnZvX4S9Sryf2qR+vzq8l6vYRZFQYGpc0ZGwwALeC1RBWii6OfHafoPO7CTy+Dn1sNHkbdSNX3Q4AXNu2lIveM0mdtxQ/jv2dOxdOsHxkF1zcUzFpgTfRkZEM79iUV+FhLPx7Kw/u3WFI7x8pVKwUS5avwtraWJNM46LXq4rAopESAn0hX2P4ikSimQZvffO6tFU2Vtp402vUWH6bMMGAQpovBv3XSil9AB8hxBIp5T01svjD3PK7wbYN3nTo3o+UqdMwe8Yk0mfNgdbGhtBnT6javi/rfh1M3kbduLF/PS5Zi6DR2qJNW4CIy5uwSV8EjWsaZPQrdGFPiA26S2ygn5JFNPqlElyWvjDpyzXAJVtxYsKfE3xpP2F3LxB2+yzRwQEgBMlylaNk6z64pMlEbFQEZ5ZO4N7RraQv/h0dxszgwt5NbJw+ghTps/DrorVERUYwstP3hAQ/Z/7KjbwKD6dvxxZkze6F97pN2Ntb7t2TVJeGLJtQf4gKgZS5v7mrY/rc3NWnoqX1XgMIZhkY6/bNUwixHWV2kEEIUQDoLKVUPYeAP+b8ho2tLa06dOfM8SPcvXGVnmOmsWXjWpzcUhAbHQ1AmoLlubxhHsnzKQbcrHW7cn3RT4Rsfz9Ay8o5NW55y+OSrRhOmQsQEXCLUL8TPNwxl6hnSkiHxs4Rp0wFyVP7f6QtVAEHd6WG0PPblzn15yhCA+5SpW1vyn7fkV0LJnN03RKyFi7N2N8W8zTgIWO6tSA6KoqFq7cQHR1F97ZN8EyfgXVbduDi+vECIJaAGlBm4QTGeaenygMEf1NXEitW6iozVLsKAq9Bys9nMbV0jKUIXkcWbwIlslgIoUYWA8+fPWP18r+oVb8p7ilSMmvKWOwdHClVpRZ/TBxBgSp1eXzrGlp7J1zTZcPazpnoYCXAxcEzB3l7LyX8wWViQp6isXPCJlkq7FNlRh8bTajfKYIu7ePehsnooyMQ1lqcMxXCq2pTUuYqimv67FhZ/WuqiXjxlCsb5nPbZx32yVPSduIikqdJz8J+LXh47SKlGv6PAcPHc+7YAaYM7IKDkwtL/9lJSHAQ3ds2IVUaTzZu202KFF8YxWmGWFmpuYYsmidXlOeUuYCj39zdWl0FfrJeg+3pRVDr12/uz9wx2oKulPLBf4yGamQxsGr5UiIjI2jTuTd6vZ7d2zdRrEI1/O/eJjriJdkKl+HsrnU4enhiZWWFR7F6PPZZhnPmQrjmLI3G1gGn9HmIdn5CROAdgi7uJfzeJaKe3QdA6+JBptK18CxQlpS5i2Nt++5yjV6v47nfee4c2sT94zuQej2lG7ahYuseXNy7iRWjuqHRWDNoygJKVa3Nmj9nsnL2r2Txysfcpd7cuHqJnzq3Jm2GjGzcvsdsag5/K6aaEQghOgGdADJkeD/Pk0o8CfQFZ094y536WwjChe364jS4sAqqjADbxJ082ViK4J3IYqA3amQxAKtWLKNAkeJkzeHF1YvnCA0Oomj5qty/pdQCSJ0tF5p9WnQxyvJQiabt2e13gvubpgHT3utPY++MY7rceFVpTKq8JXBwT0Oo/y3CAx9yc98aYiNfEhsVSczLUF4+DyD4ri8xr8KwtnOgaI0mlGnagcjwUJYN/ZEHvufJXrQcgyfMQKOxZky3lpw7up8KtRvz6/Q57N66gdEDupMjVz7WbtxqMVHD8cM0ikBKOR+YD1C0aFF1feprCbwSNxswHItja9Ag6iicWw4luxq0b3MjISOLuxtpLIvh/r27+F27woCRvwBw9bISAONVoChHd28BwDl5CtJ55efq4V28eOBHsvTZqT1uJcF3fXnmdx5dbAxaOwcc3FLhkjYrWntnnl4/zZMrJ7gzdyOhj26/N661rT3W9o44uKUmf4WaZC1cCq+SlXkR+Ig9i6dz6cBWHJO502fcb1Ss04QjuzYxb8JQoiJeMXzCDJq0bMfC2VP5/defKV6mAqu81+Hs4vLeOJaMaiKwYHSxSs3hLBUN2u0FmQ3Sl4Tjc6F4J7BKvB7wxqpH8AxoaYy+LZn9e3cBULaykpL5/p1baG1sSen5byEYvV5H4eqNObR2Kft/+ZH83/cmpVdRnFJlwMHDk8iQp4Q+usPT62e5unkhwXeuIqUeazsHPLIXpFi1enhmy417ukw4u6VAa+fwzvq3LjaGm2eO4D2hL9eO7cPGzoHvO/WlYZuuhL4IYnyvNpw6uJtseQow5fc/SZchMyN+6sLmtauo3bAZf/y5CBsbtQqpihkRfAd0UQbxGHqPUt3Bu7WSnjpPA8P3byYYRREIITIDPYFMb48hpaxnjPEshRPHjuCRMhWZsihFM0JDXuDk4oqVlRVpMykFX/yvXyJr4dK0Gv07a2f+zJkl4z7Yl5W1FrcseajQogvZipYlfa6CaKyVgjR6vR69LhZ9bCzhQYG8CAzgye3r3L18mhsnfIgIe4FjMneade5L3RY/YqWxZs2fM9m0fAFarZafho+nZYduPAt8TJtG1bhy8SyDho+m38ChFhksFh8S6/dKEjxVllVJkdPwfXvVBrescGgK5K6faHORGGtpaAOwENgMqJE6cfhevUYOr7xvLjpvX3zyFS+D1s6eU1v/JkuhUmTMW4R+8zfgf/0ST+7eIOplGMJKg7N7CtzSZCBlxmzExkRz5/wJrh7ezd4lMwkKeMDL4GfExtkX/otjMjdyFC9P7XqNKFK2MhEvw9my4k82r1zIq/BQKtZpwrCR40mZOg37d25h1IDuxMTEsGTlWovLHfSlqIrAgnmtCDxyGL5vKw2U7w8busKNHZCzpuHHMAOMpQgipZS/GalviyXw8SNy5Mrz5n2y5G6EvQgmJiYaB0cnmrbvwco5k4mNjqRiy26kzZmfdF7KA5RlnSd3bnD73DF2zJ/EvUun0cXGYG1jS+osOSlcvDTJPFJia2ePtdYGjUaDo7ML7qnSkDZTNtKkzwTALd+LLJg4nH2b1xAdGUHJKrXoN2AYXnnyEx4Wys+De7F2xWJy5SvIwiXLyZbDCHda5oaqByyXp9fBNb3xPHvyfQ8+k+DARMhRI1HOCoylCGYKIUahGInfVDqRUiatlH7/ISoqCjt7hzfvc+UrRGxsDNcvnCFv0VI069wPBycXlswYx7Vj+7B3ToabZwastTa8Cg0m+PFDYqOVw5kyU3bqt+5EkbKV8SpYDK324+v2Op2O274XWTVnMod2bsL/7k1sbO0oV7MB3Xv0I1tOxdvi0L6djB3ShycB/nTr1Y8hI3/G1vb9FNeJEaFqAsvl6TXjLAvxb+qJJprqTNH+QfdhI9mqL8ndibWNMp6pMJYiyAe0Birz79KQjHufZLG1tSUqKvLN+zIVqmBrZ8/u9SvJW7QUQgjqtepI5Xrfc3zfNm5cOscT//vExsSQJlVOUlf8jmx5CpK7UHE8Unu+6UdKycuwUEKCnhH6IpgXQU95FvCQgAf3uOfni9+V80S8DEcIQZ4iJWnfuSfV6zbCxVUpbfng7m2mjhvGvp1byJrDiy27fShWolSCHx8VlS9Gr4NnfpDJuPGq63Tl6KDZzkDr1eyOTnxZSY2lCJoCWaSUH16sTqIkd/fg2dMnb947OjnTol1nFs+dQcZsXjRqp3jYOrm4UrVBc6o2aP7BfqIiXnHKZxfnjx/C7/I57t28RsTL8Pf2s7WzJ0O2nNRt9AOFi5emVPlKJHfzePP586eBLJw9jdV/zcfGxpahI8fStVffJDMLUEkEvLgPsZFGmxG8Ro8VE2JbsMxmIm01O4Av9yB6O7HdfzH1DMNYiuAykAwINFL/FomXlxdnzpx+Z1vPgaPwu32bJdPHcv3iWdr2G/FmLf9tYqKjOH/8IAe2/MPJAzuJiozAxtaObHkK0qBpS9KkTY9HylS4JkuOm3sKUnumw80jxQeNoP4P7rFswSzWrlxMbEwMDZq1ZvSYn0mdxvO9fVVUzJVMg7dS2eosi2yg0dogzq75+IXWEBzS52e3rjB9rf+BoEHg9g0FcMwMYymCZMA1IcQp3rURJGn30SLFirNp/VoeP3pIas90AFhbW/PbvKUsnjudP36bzPF928hfvCy5ChbDOZkbYSHB3Pa9xKXTR4l4GY6za3LqN21JlRp1KVy8NLZ2dvEaOyoyEp+9O9i0ZjmH9+/GysqKOo1+YPCQoWTJlt2YX9siEImsZvHH7j5NfedpaLILfwBuyoS5iRkR047dtgNhS19ovT7RGI6NpQjeT4/5GYQQdsBBwBZFrrVSyi/ux5ypWq0mo4YOZNsGb9p3+7duj7W1NR17DqBek5asW72ULRvW4L1gBnq9HiEEnhmzUrNeYypVq03p8lXQxjOg60nAI04dO8jh/bs5tG8nYaEhpEztSc++A2jXsQueadMZ66taHNbaxBs1mpjJbuVPoExG6JuqHMblMe5Miv2BcbcXw9HfoUyvBBnX2BgrstjnK5pFAZWllOFx+YkOCyG2SymPG1g8k5E9pxfFy1Rg5aJ5NG/XBfu3PIgAUqXxpGvfIXTtO4TIiAgiI19hb+8Y77v+oOdPOXnkICeOHOD44QP4378LQHI3d2rXrU+j75tTrkIlNBr1ovdf1HoElkk24Y+fPm2CjrlcV5Vx+Z/DntFKOctMZRJ0fGNgrMjikig1inOhVC3TAC+llB9NUCOV9I+vLZ7auEei+3cOHT6SBjWrsOC3yfQa9PEJj529PXbxKPRy/84tNq9bzaG9O7l66RwATs4uFCtVji7delC6bHly582vXvw/g1qz2BKRZBWPWKcvm8DjCqg/GwKvwqrm0GYjeBZKYBkMi7GWhmYBPwBrgKLA/4DPhv0JITTAGSAbMFtKecJI8pmM0mXLU7dJc5bMm0GNek3eCTD7Ei6cPcmC3ydzcM8OrKysKFCkOINHjKFCpSoUKFTEYktGmgq1MI3lkZognEUEftIES5x2LtB6AyyuBX81gCaLIFuVhJfDQBizHsFNIYRGSqkDFgshzgFDPtNGBxQUQiQD1gsh8kopL7/+/O3c7enSW27u9slTpnNo704mjR7Iwr+/zNMhPCyUcUP7sm2DN8mSu9F/yAjatO9IqtRpjCRt0iCppJhITEbkbFZKwaZbCWQofo9k6aHtZmVWsLwxFOsAZfoo2y0MYymCV0IIG+C8EOJXIACIdwkoKeULIcR+oAaKK+rr7W9ytxcsXMRib+Hc3N3p0ac/40YN5d6dm2TMnC1e7e7e9qNnu+95cPc2Pw0eTvfeP+HklDBGssSOlSZpKILERHbxEAA/vQmdHpJngh/3wu6RcGYxnFqolMt0zwrWdhAZAi+fwctATtmGEIWWO/rUHNAXZL2uLEGYRzp3Y9Xnax3Xdw/gJZAeaPypBkKIFHEzAYQQ9sB3wDUjyWdy6jVUDsfxQwfitX/Q86d0admA0JAXrN+6h0HDRqlKwJBY7G1F0iWbeMQL6cgzU19MbRyg9hTodR4qDQWnlEqt4/vHIcQfbJ0gQyl264pwWp8DDxHKCO1yDtr2oblmL+Zw8hl8RhC3zj9BStkSiATGxLNpGmBpXHsrwFtKucXQ8pkLHh5Kda/wsJB47T/yp648fxrIpp37KFSkmDFFS5JYJbI4gv+SmucUtbrBC5w4p8/GSz7viGDuZLPy56ZMi9lkDEyWHioM/OjHQ0/+uyyXU9xnpPUyftEupIiVH1kGS/QfuC9PqCU7gysCKaVOCJFRCGHzJSkmpJQXAcs2vX8B584qEcavaxN8ihu+lzm4dyfDRo1TlYCRSKzGYluiGWO9hMaaQ2iFUjb8qXRlQkwL1uvLmVi6byOb8GeXrqipxfgqrssMtIoZQh+5jt7W65ASBsR2xlRKzVg2gtvAESHEJpSlIQCklO8X3U2CSCmZOvlXHBydKFX+83n4fPZsB6B1ux+NLVoSxkzuKg2IHVHM106jrNVlluqq8Y+uHO4ijD7W/zDdZi5pYp4zR2ehVbdePsddhCVYRLExkFgxPbYJAL2t1+ErM7JIZ5p6B8ZSBLfiHlaAkZKEWy6L5s/hqM8eBo1RlMHnCHwcEJdDyD0BpEua6PSJr37SRO0CylpdZmBsJ9bqKigbJRyKzsdU7VwGar0JwYkVuqqmFfRriCtGc9MUrqOf4VPJ5T7E9NjG5BL3GGK9krP67JyX8XMeMSTGiiyOr10gybFi6SKG9O9D+ao1+KFNp3i10WptiI5WE7kaE6tE5j5a0+oEDTRHmRbT5F8lEIceK/rHdMGVl4y0/oszeiNU9jI2T30BuGFKjyGDIegf05nttkOYpJ1P7egJxBrPs/+DGMVrKM4DaLIQYpsQYt/rhzHGshSioqLo06snfXt0pnT5Kkyduyze0b4eKVMS8eol4eHvp5pWUXmPiGDGaRdxQZ+FOboP53nUoaF/TBdCcWSGdjbERH5wP7Ml8Bqh0p4A3EwtiUEIxYlRMW3JafWQtpqdCT6+sdxHV6C4fmZG8Rq6C5wy0lhmz/Gjh6lavhQrF8+jVYfu/L7YO975gwA8UqYGlCUiFZXPcmQmyQlncEzHT95ZBuHCgJhOeFk9gGOzElBAA/D0mnl5DBmAPfoi7NEVoq/1WlLwIkHHNtb8w11KuVAI0TsuAZ1PXErqJMU13yuMHTOa3Vs3kNozHTMXrqZStS93B7N3cAQgMsrC7tpUEp6wx3B8Hhv1pfGVGT+7+wF9IXboilHj0FQo0BxcEzaB21cT6MsNfV6TDf+ldoD4Mja2NXtt+tPNeiNjYtsYZYwPYawZQUzcc4AQorYQohAkkjncZ9Dr9ezesY36tapTvnhBDu/fTdd+Q9mw//RXKQGAmDj7gLVGzR9kLBKNieDQVNDHMC3OGyU+jIttBVIPeywk6/vLZ/DqmWlyDBmZezI13roKtNDsxZNnCTausRTBOCGEK/AT0B/4E+hrpLHMgtu3bjJp/BiK5MtJy6b1uXXDl54DR7Lj2GW69h2CQ9xd/dfwOEAJpU/jaSF3axZIosg19CoIzi6D/D/wQKaKd7OHMgWU6g6X1kDARSMKaCAC4wzFiVARAMyKbQhAD+v1CTamQW8x44rLdEHJHpoWWCilrGTIMcyJ4KAgtm5az7K/lnLu1DGEEJQoW5FeA0dRtVZ9tFqtQca5evEcnuky4OxiHnlJEiOJIp7s9CKIjVAu6sfvfFnb0r2UPDn7xkLLNcaRz1DEuY4mDo+h93mEB2t0FWiq8YGwJ+Acf6X+tRh6RrAUJe30JaAmMNXA/ZucqKgoNq5bQ5OGdcmTNS39enYhOOgZvQePZucJX+av3ETN+k0MpgRiY2M5dfQgpcpYfvELc8biI4tjo+DkfMhaGVLl/vL29smgbB/w26XkyDFnAn3B1pUnJDe1JEZjga421ujgxNwEGc/Qi865pZT5AIQQC4GTBu7fZFy+dIEVSxfxj/dqXgQHkTK1Jy07dKNG3cbkzl/IaEsLp48fJjjoObXq1DdK/yqWy9sGy7pWR/nd5gltgtri87WGzOKd4OgsOPAL/G+jgaQ0AoG+kNILQhLBct5HuCdTs11fnDqnFkHZfkr9AyNiaEXw2kiMlDLW0tddpZTs272TaVN+5dSxQ9jY2lK5Wh3qf9+KkuUSpuSj97I/cU2WnKrVaxl9rCSNZZ+qtNDs474+BQf1+b6+ExtHKNMbdo+A+ycgQwnDCWgopIQnVyBfE/AztTDGZUFsbepEnYALq6BEZ6OOZWhFUEAIERr3WgD2ce8FSjVKi1jkllKyc9sWxo4egd+1K6RM7Um/YeNo2Kw1rsnfd356EfycsyeOcuXiOfwf3CMqMgJnF1dKlK1I+So1cHZxfa9NaMgLHty9TY5ceT9ajP7mdV/2bt9Ez74DsI9H2UqVr0djwdlHs4hHlNJc5deYZshvXe0t1gGOzASfidA64YyV8SbkAUSFKDn/EzkXZDZIW1RZ8ivWEayM5dtjYEUgpbT4wrhnTp1g+JBBnDlxhIxZsjFu+h/UrNfkvYv1bb9r7N2xmV07tuJ3+Rx6vR4rjYYUqdNiZ+9A8PNANngvx8HJmZ4DRlCmYlXCQkI4edSHrZvWccv3ElJKXJK7sWn/adzcU7wny6zJP+Pg6ES3Xv0S6usnXSx49vqDZj8xUsOa/6SS+CpsHKF0D6Uwu/8ZpTi7OfE4rk5V6nzAU5OKkiCU6AzrOsLtfZDNeDmhVMf0OJ4/e8awoYNZt2opbh4pGDZ+Oo2at3lj9JVScvXiOfZs38TObZt4eEeZl2bPW5DvO/ahYOmKZMudHxtbJWJYr9dz/eIZVs2dwqRR7+Yoz5G3EM27DcDGxpYl08dy8ewpKn737tLPof272LdzC0NHjlWTzSUAlppryJpYGmkOsVdfmKck++p+3rY3OJGOw7aOnJw3gE4xP5lXGcsncYogZW7Ax6SiJAi5G8DOYXBivqoIjImUkrV/r2TYwH6EhYbQtktvOvcehKOTM3q9nrMnj7Jry3p2bdvEsyePsNJoyFukFHWat6dEpRq4p/pwrWDiD/j2AAAgAElEQVQrKytyFSzGmHmr8bt8jge3/bCzd8CrYDHc41JG+J5Xgq3Dw0LfaRsWGsLYwb3JnC0HXXsl6vALs0FrbbxptzGpZHUeDxGKtyFmA3GE48Di2Br01f6DV+x9g/VrEJ5chuSZlapfSQFrGyjSBg5OgRf3IZlxarUnaUXg//ABvXt24+CeHeQvXIxRk2aR3Ss3z58GsmLRPLxXLCbw0QNsbO0oXKYSrXoOpmj5qrgki3+QtBCCHPkKkyNf4fc+27JyIfYOju/MBqSU/DJyAIGPH7F1z0FsbW0N8l1VPo2FTghoqvHhqXTFR1/AoP0u1lWno/VWulpvAroatO9v4vFlSG261BImofD/FEVw9i+oPNwoQyRJRSClZP3avxnQpwcxMTEMGPkLLdp35WngY8YN7cv6v5cREx1FgRLlaNl9ICWr1HqT7+c1L54/5fmTAKy1WjJk8/pi91G/y+c4tGMDHbr3w8n5Xxv6hr+XseWfVfQfMoIixczQayOxYoFhBO6EUMnqPIt0NdBhWPNcKE4s131HR80WeH5LKcZuaqJfQtBtyN/M1JIkGK+X7BZqC5LXZwFlduUjFmuDL9clOUUQ8uIFPbt3ZcemteQvXIxfZv6Je4qUzJr8M38tmI3U66lcvxkN/teFdJn/LRAhpeTujasc2rERn91beXr/1pvPCn7XkGHjpmJr7xAvGWKio/htVD+Se6SkQ/ef3my/dO4044f3o0TZivw0aJjhvrTKZzHVjEAI0QnoBJAhw5dN++tpjqIVuvfqDRiKhbE1aafZgebwdKhvBtlJn1wFZNKbEQArdFVYpJlCFatz7NQbvlxtklIEhw8eoHun9jx9EkCPASNp360vB3ZvZXzjATwPDKBSnSa06D6QVGn//UM+8b/P4Z2b2LHBmyd3b2BlpSFTgRIUqtaQFOmz4n/jEj4r5zI68hW/zF4aLzn+mjmBe36+zFqy5s1s4HGAP307tsAjZWqWLFuVIDEKKv+iMZEmkFLOB+YDFC1a9IvmJY00h7ioz2y05GtPScZqXUXaXFgNFQeDq4lTOgScV55T5zetHCbAR1+AAOnGD5p9qiL4WmJiYpg0bjS/TfuVjFmysXTdbtJlzESPTq05unsLmXPmYeCU+eQqWIyoyAhOHdzN+WMHOXnEhyd3bwCQPldB6vYcTd6KNXF0/ddGkKtMVUKfB3L10E6klJ9dIjq6ewsbl/1BrR/aUb5KDUAxFvdo04SXL8PZutEHdw8Pox0LlUTCk6vks7rL6Jj/GXWY+bF1aGOzX4k4rjnRqGN9lkfnwDGF6RWSCdChwVtXgZ6aDUbJSproFcEj/4e0admMC2dO0qh5GwaN+ZULp0/QoEoJwl4E07rXUOq37sylU0cY1qsD147vIyYyAq2tHelzF6ZmjcbkKl0VN8+PT9vT5sjL2R1rCQp8/FEvIoD7N68xc0RvcuQrzNjxUwCIjoqib6eW3Pa7xsp/NpM7zzdEhqp8NVaWFlB2YRUxUsNmXSmjDuNPCsj3PZxZAuX7g6MJb1L8z4JnYcu17H8j3rEV6anZQDPrA4BhaxUkakVwyGc/P7ZpQVRkJL/OXsJ3tRswb/ovzP/tV9Jlyc6oOSsJuH+Hro0r8fT+bRxck1OoagNylf2OzPmLY20TP48dF3clO2DQ048rgvDQECb0bY+dgyNzFq1Ga2ODTqdjeN/OnDh8gFnzF1OxsgUWEU8kWNSlRa+Di9746PPznPej1g1O2b5KmoPjc6DKSOOP9yGiwuHZdciddHNu+ZOCQ/p8NNUcUM4BK8MtHydKRSClZM5v0xk7cgiZsmZn+vwVuHukpEPLhpw9sp8q9ZtRt8WPzBg3hLsXT5EyU3aaDJlC3vI1sdZ+ON2DXq9HCPHBpZ/kadID8PjhPbLnLfTBtlMHdyXQ/wELVm8mZeo0SCmZMPwndmz+h1HjJvF981aGPQgqX4RFTQhuH4Dwx/yjSxjvmUxT/ZitLUa5g3Mou9uLUBQPugQNNAu4oBTPSfu+G3ZSYpWuMvM0M+DmXshRzWD9JjpFEBUVRfcundi0diVVa9Vn7NS5BD4J4Ps6FQn0f0C3Eb8SGfGKn1rVwsbOgfp9x1GkRhOsPmKcvX/lLNuWzcf/nA9SryNzuQZ0GPnrO/u4p82IlZWGe37XKFfj/T5WzpnMmcP7GD5hBkVKKOmkf5s0hjXLF9Kz7wC691ZTSJgai/IevbAK7FzZG5lwF8U5sQ2obXuS1prdzNY1SLBx3/DonPLsmbQVwV59YZ5JFzzOLjWoIrDMcMqPEBYaSqN6tdi0diVd+w1l6rxlXLtykZb1qvAyNIShMxaze/tmFk0ZTY5iFei9aAfFajf7oBKICA9lwai+zO/djEDf02St2Jh0Raty5+B6/K9femdfra0dKTNn59y5M+/1c3zfdrznT6dqw+Y0bdUegCXzZrJw9lQat2jL8DHjjXMwVL4IvaVogshQ8N0CeRsTjWFqXsSHKzIT+3UF6GC9DXtMUDv70VlwTQ9O7+fkSkrEYM1aXXm4sUMpWmMgzEIRCCHSCyH2CyGuCiGuCCF6f2kfL4KDqV+rGudOHmX8jPl07TuEA7u20qlFfVzdPPhp0lxmTRjK7fPHqdd7DC3GzMEp+YcNXw+vXWB6hzrcP76DXHXaU2faNgq3HkTuuh2UsQIfvdfG2S0lr8JC3tn24PYNpg/rSY68hfjl198QQrDReznTxg+nep1GzJozL3GUSFRJOK5uUKqQFWie4EPPim2AmwinhWZfgo/Nw1NJflnoNd66iqCPhfPLDdanWSgCIBb4SUqZGygJdBdCxLvMUlhoKI3q1uS67yWmzV9B3cbN2bl5HX07tyJzjtx0HDyWif07E/XqJR2mLqd43RYfvQBfP3GABf1aIYSg8tCF5GvSA2tbJQW0LlYpIm/1ASNNRNgLrN/KUPoqPIzxvdtiY2vHrEWrsLWz4+DeHYwe2INS5SqzcOkyNVbAjLAYG8G5FeCeHdIZ3pf8c5yROTmmy00n6y3YEp1wA4c8VPLsZCidcGOaMbelJ2Qsq6Sc0OsN0qdZKAIpZYCU8mzc6zDAF6Xm8WeJjo6m+feNuHblAlPnLaPid7XYs30jg3q2xyt/UVr0GMSEPh2wdXSi029/kyHPx+8qbpz0YfnIrrikyUSVkX/hnvVdV86XgUoR+dfG4TfbQ4Lwv3GZkqXLAYpxeMaI3jx+eI/pfywjdZq0XD5/hv5d25Azd35W/L0Wm4/UIFAxDRahB57dhAfHoVArk7lQ/q5rQCrxQqmnm1DcO6Y8ZzSuq6xFUbQdBN+FOwcM0p1ZKIK3EUJkAgoBJz63r5SSnt26cPKID2OmzKHid7U4ccSHgd3bkyNvIVr2GMSEvh1w8UhFpxmrcffM+NG+Au/5sfLn3rimzUrFwfOxc3k/sVzwXV+srLV4pM/8zvbT29Yg9XrKVVdc29Yvmc3xvdv4adg4ipYsS4D/A3q2/x43jxR4b9iMk7PzlxwSlQTAIgrTnF8BQgMFfjCZCEf1eTirz0YX682gi/l8A0Nw7wjYukCqpJda4qPkqgv2bnB6sUG6MytFIIRwAv4B+kgpQz/weSchxGkhxOnnz56xbPGfrP97GZ17D6Ju4+bcuXmdPh1b4JkhM52HTmDCTz/i6Jqc9lP+wtk95UfH1ev1rJgwCI3WhrK9p6O1/3CK22c3L5AsQ853XEwjwkI4smYhWYuUIUM2Ly6cOMyy336hbPV6tPqxO69ehtOz3fdERUbivW4zKVOm+ubjpGJ4zF4N6GIVb6FsVcE5tQkFEfwe25B04hlcWJ0wQ947ChlKGtRv3uKxtoVCLeH6NggN+ObuzEYRCCG0KEpghZRy3Yf2kVLOl1IWlVIWdXB0ZOjAvpQuX4Wu/YYSHhZKt7bNsLbWMmjqAn4Z2A29Tk+biYtw8fj0H+eyzzae37pEgWZ9cHD/8L5RYcEE3bpM/lLl39m+e9E0IsJD6DVkLM+fBDBlYGfSZsrK5BnzABjerws3r1/lz79WkcMr15cfGJUEweydhvx2QlgAFGlraknYry/IJX0mODRVUVDG5OUzJZAsg7os9B5F2ytG47N/fXNXZqEIhGK5XQj4SimnxafNvbt3cHZxZfzMBQghGNSvOwEP7zJo6p8s+mMWT+/f4ocRM/FIl/mzffls/BvHFGnJWPrjATL3jm1HSj15K9R8s+3updOc3LySOs07kC5zNib170hUZAS/LViJo5MzC2dPZc+2jYz4+RcqVzWcz6+K4TH7CmVnloCzJ2Q3h/NImRUQfAcurTHuUPeOKM8ZVUPxe7hlUWaIZxZ/8zKdWSgCoAzQGqgshDgf96j1qQZRkZH8PGUO7h4p2L5xLYd2bKBFt4HodDrObPemXLNOZC38+ZMnKuIlgb6nSV/sO8RHikPrY2Pw27UStyx5SZ3FS2n3Kpx1kweRLFVaWvUczKIpo7l24TRjp84law4vzp06xqzJY6lRrwnd1CpjFoAZzwle3Ae/3VC4NWjMIwZ0l76oUjf44GTjzgr8doOtq/nVTjYXinZQZorXtn5+309gFmeVlPIwX7hMmzFLNspVrk5w0DPGDetHzvxFaNi2G10bVyZ56nRUat0jXv08vHYRqYslhdfHT7TrO5bz8tkjGvUd81peNv02muDHD5mwcB3H925j66pF/K9jD6rXbcTL8DCG9O6IZ7qMzJ77hxorYAHEmnFE2ewpw+iigXI70/Jo57f94Q2HgAqD4e+WyqygoBHiGqRUFEHWSqBJuOA5iyJHdaV85Yl5kOfrI77NQhF8DY6OiufNvOkTeRUeSo9RUzhzaA+Bd/1oOmQq2rgi8p/j5YvnSn8eH04W9/T6WS6vm0O6Yt+Ro7hSAOT4hmVc2LORFt0GYGtvz+yfB5CvWGl6D/kZgKnjhvHY/wGbdu7H2cXlg/2qmBdmqwdiImiu2ccufVEeYWbpyb1qK7MCn4mQr4nhL9YBFyD8sXKxU3mH15XLADpoyjPixXLqDPmdyzLLV+WAMpeloa8iwP8B3ssXUq1xKzJmz8Wmdd44u6cib8VPriq9g4NLcgAiXjx977PAa2c4NL03jinS0nb4JIQQ+J0+xPa5E/AqVZnvGrVkQu92uLq58/uC5Wi1Wg7t38XaFYvp2rMvxUuq65oq38iltbiJcJbEfiCJlakRAioNV/zZz68wfP9+uwAB2b4zfN+JCG9dRcKlHe2sd3x1HxatCJYtmA1A0x97ARD6/AnJU6dF8wXrqOm88qO1d+LS2tlEvFAKPkS/DOXyurkcnNIdB7eUdJm+HDtHZwJu+bL6556kzJSdoeNn8EufdoSFBDN7sTdu7ikICw1hzIAeZM2Ri0HDRxv8+6oYj1idGU4JpIQT8/DVZ+CE9DK1NB8mR3UlytnnV4gxcA6iGzuVtBJJPL/Q5wjDAW9dRepaHSMNz7+qD4tdGpJSsmndKkpWrkmKNErFopioSKReT/ATf6yttQQ/fkjg/VtEhoWQJnseshZ63wXNztGZJgN+wfuX/mzuWx375CmJCA4EKUlfvBqtBo3F0dWNZw/vsnRwe2wdnRk7+y/mTRiC35XzTJ+/Aq88Sum833/9mWdPn7Ds73+ws4vf0pSKmWCOZhy/3fDkMgt1nTFPAVFmBVVGwtK6cPIPKPPFacI+TNAd8D9tuvoHFsbC2Jq01uymg/U24Mur1lmsInj16iWhwUGUr9nwzbZ637fijwlDmdqy4gfblG3agWo/Dngv22ie8jXonjEbVw7t5Om9m6TImJWcJSrhmT0PAM8e3mVR/1ZIqWfC/L9Zv3QuR/dsZcDIX6hcoy6gFJ7/+68F/NilO4WKJHweGJVvwywvs4engUs6NgaWMbUknyZzecWt9eBUKNQaHN6Pyv9iLnoDQqmOpvJZ/EnBJn1pmmv2waugL/4NhJRmOCWOB6nSeMrAxwEsP3gVl2T/fulH925z+tBerLVaUqT2JH3WnDg6uzBz0s+c3LKKer3HULxui3iP8/j2NZYMaoder+OXhf9wfO82Vs2dwv869aT/iAkAxERH06JuRYKfP+PY2cuqgdgCyV+4IAE3LptUHxQtWlSePn1aeXPvGCyuATUmkWlD+k83NAOyi4fssBnEX7pqtBvn/W2dSQm/FQLXdGS61tUwAiYBsouH7LYdCOUHQuVh730uhDgjpSz6obYWayPQxeqwtbN/RwkAeGbMQr1WHanVrC3FKlQjdbqMOLsmZ9j4aWTMW5T9y2cTHRkRrzFunPRhQZ8fsNJomLx0I+eP+bBq7hSq1G9Gv2Hj3uw3e+o4rl+9xJSZs1UlYKFozMnFV0rYP14p1F7YuMXpDYWfTMdKXRX+p9kFjy99vsGneHBSCVYzQaptS8ZPpmOLrgQcnwsvv8xWYLGKwFqrJSoyglcvw+O1vxCCrv1HEPY8kC2/j+FTMyG9Tse+Zb+zbHgn3DwzMmPldk757Gbx1DGUrV6PKTP/wCou+Oz4of0snjuDxi3aUqN2XYN8N5WEx6ySzt3aB3cPQfkBYONgamnizZTY73mBE2zt/23pkU/MBRtnyF3PcMIlEabHNoGYl3Bkxhe1s1hFYGev1AhYPHUMMdFR8WqTu3AJmnXuy9md/7Dl9zHoYt8Py/a/cZkFfZuzb+lv5K9clxnLNrNr3QqWTB9LuRr1+W3e0jd1BB49vM+Q3j+SOVsOpkz7sgOvYl7ozCWQQK+HvT+DawazyCv0JYTgxMTY5kqq7NMLv66TZzfhygYo/iPYqll6v5RbMq1iVzm5QKnjEE8s1ljs6OhE3ZYd2bxiAYd3biJtxixobW2xtbMneYpUlK/ZkIIly78X1dui20Cio6JYv2QO9y6foVyzjrh5ZiDo0X0u7N3EjZM+OCX3oN8vsylXvT7zJw5ju/dSqtRvxuQZ87C2Vg5Z6ItgurdpQnRUFEtXeuPo6GiKw6BiIMxmZej8cgg4Dw3nKxkmLYw1ugpM9roFu0dC1srgnvXLOjgyQ/neJbsZR8CkQKWhcGU97BkNjf+MVxOLNRbnyV9Yrt52kCMH9rBv52Ye3LtDTHQ0IWFhPHn0kLAXQRSvUI3+k+Zi5/D+Rfr4/h3MGjeY0KeP32xzSu5BvebtqNeqE3q9nimDunD2yH7ade1DnyE/v1EqwUHP6NyiPrf8rrF63RbKVaiUYN9bxTgULlKIB9cvmVQdOKTJKh92iuSmTMv30SMxU1+mz3J3aCGYUxKSZ4b2O0BrH7+GARdhQSUlq2atycC7EbQq8ePuxNqwb5ySB6r9LshQAvi0sdhiZwSvKVOxKmUqVn1nW3RUFKuW/MH0CSMY2bkZI2cvx8kl2Tv7lKxUgyJlK/Pg1g0CHz0gVbqMpM+cHWutltvXLjOxXweePvZn5KTfaNKi3Zt2D+7epke7pjx6cJ9lf69XlUBiwQyuuWl4jguCkTHtMAuBvhYXT2gwD1a3gE29oNH8z0+5dLGwqYdSbKXikISRMzFTtq9S1nRLH+h04LOzS4u1EXwKG1tb2nTuxZR5f3Hz6kWGtG3A8yfvF2/Qam3I4pWXkpVrkjlHboQQrF34O/1b1CQ6OorFa7a/owROHTtEy3qVCHr2FO8N29TU0okIc7jsJhdhzNPV5ZrMYGpRvh2vWooL4yVv2DFE8YT6FPvGKrmFak02TBxCUsfGEerOgMCrSt2Iz5AoFcFrqtasz9xl6wgMeMhPLWpw49LZj+576dQR+jWvzl8zx1O8UnXW7z5GwaIlASWKecm8mXRqXpfk7h7s8jlGqbLlEuprqCQA5lCPIAJbZsY2NrUYhqNcf2Wt/8Rc2NANoj7g4SclHJqm2AaKtIXc9RNczERLjuqQ/wdFEdz/dOXfRK0IAEqUqcCy9Xuw1towpF1Dlv8+kZAgJadQWEgwPlvXMbR9Q4Z1aEzYi2CmzFvG3IUrSe6mZHoMCQ6ib8cWTBs/nErV67D34HEyZ/lCA5iK2WMOXkMPZApiLH+19l+EgOoTlKWeC6tgXlmlmtarIKWQyoNTsKIp7B0DeRtD7WlmZLVPJNScBK7pYE3bT+5mscZi9xQpZYu2XfDKm5+CRUrgkiz5J/cPev6UEYP7cWjHBgBs7eyJigss80idlg5de9OoeRvs7f/12z52cB8jfuqqtB0zni49+qi1BRIp5mAstk2TXaZpY/luyB9Mg3z3CGztB0+vvbtd66jkEyre8YM1iVVj8beTW9xlnc0o7H9+nviMxaEhL5g1ZSwAWhsbqlSvS8deA8nulfuD+7u5p2D2gmVcu3KRk0d8ePzIn1RpPMlXqCgFi5Z8EyAGimvo1PHDWb/6LzJny8EK73UUKKRWSErMmHNhmkRBpjLQ7bgSNfzwFESGQKrckLmCahMwMldlJnrG9ARGf3Qfi1UEefLmY/3WPVy6cJ4tm9axesUydm1dT8v2Xek1aDS2H8n+6ZUn/5tsof9FSsn2jWv5dcwgQoKD6NGnPwOGjsTePp7ubyoWi6oHEgAhFFfGOHfGt1Hv/I3Lbv0HJwJvsFhFAODk7EypsuUoVbYcPw0azojhw1j252yOHdrPtPnLyZQle7z7unD2JNPGDePcqePkyV+YNRu2kq9AISNKr2JOmFOGCUvnUxf1r6mepWJ8LFoRvI2buzuz586jUcMGdOvYltb1qzDjz1UUKfHpFL5XLpzlz1lT2LtjMx4pUzFl5hxatmn/Jo2EioqK4VDv/M2TROc1VKVaDXbsP0IyN3c6Nq/LknkziYmOfmefVy/D2b5xLe2a1KB5nQocP3yAQcNHc/LCNf7XvqOqBJIgqo1AJSmTaGYEb5M5S1Z2HzhK104dmDZ+OIvnTqdIybLY2trh/+AuVy6eIyY6mrQZMjFmwq+0atNBTR+dxDGHOAIVFVNhse6jQoinwL0EGMoDeJYA45gjSem7Z5RSJnhxXCFEJ6BT3NucwPUEHN7cfl9Vnk/zrfJ89By3WEWQUAghTn/M9zaxk5S/e1LA3H5fVZ5PY0x5Ep2NQEVFRUXly1AVgYqKikoSR1UEn2e+qQUwIUn5uycFzO33VeX5NEaTR7URqKioqCRx1BmBioqKShJHVQQqKioq/0EksTTDqiL4D0KInEKIUkIIrRBCDTFWUTESQog8QogKQgh3U8sCIIQoK4RoDSCllElJGSTKyOKvRQjRCJgA+Mc9TgshlkgpQ00rWcIhhMgGJAMuSSmjTC2PiuEwp99WCFETmATcBrRCiA5SyscmksUKcAD+UN4KRynlvDhlYCWl1JtIrrpAFinlTGOPpc4I4hBCaIFmQAcpZRVgI5AeGCSESBL5J4QQdYB1wGRgiRAih4lFUjEQ5vTbCiEqAjOBH6WUDYBoIK+p5JFS6qWU4cBSYCFQWgjR9/VnppBJCFENGAtcTYjxVEXwLi7A69zV64EtgBZokdiniUKI0igXiTZSykpAMDDYtFKpGAIz/G2fAJ2llCeFEKmBEkAPIcQfQogmJvyvxaLc/C0FigshpgkhfhEKCXatjPu9lgGdpJS7hRCuQoiMQgiHz7X9WlRFEIeUMgaYBjQSQpSLuxM4DJwHyppUuIRjkpTyXNzrUYCbEMLWlAKpGAyz+W2llL5Syv1xbzsAc+JmBseAJig5dUzBRuCxlHIvcBroArhIhYScGTwHYoA0cfaTDcBclJmcURSlqgje5RCwC2gthCgvpdRJKVcCnkAB04pmdE6gLB0QZyS3BTKizJIwF4Oeyldhtr+tlHK8lHJc3OslcTKlN5E4EUBOIURHFCUwEcgghOickEJIKa8DtYHpwAVgJVAH2AE0Bj5doP0rUI3FbyGljBRCrAAkMEQI4QVEAamAAJMKZ2SklDrgtVFcAC+AICnlUyFES6CsEKKflDLCZEKqfBXm+tsKIYR8K6JVCNEY5b/2KCHleI2U8pEQ4gEwAugupdwshKgE3DSBLBfi7DqVpZQL4jYvEkJ8D2QAggw5nhpZ/AGEEDZAGaAzEAnMfGtanWQQQixBUYDVgLZSykumlUjFUJjTbxu3RNUK6Ac0k1JeNqEs6YGUUsozce9N5jX0X+IU5VCglpTyiUH7VhXBx4mbRif0+qDJiVuD1AK+cc9VpJR+ppVKxRCY428b57H3HXArblnE5Px3tmJK4n6zdkB/oKmU8orBxzCT76pihggh2gKnjHHiqZgW9be1HOIUQQUUQ/Y1o4yhKgKVj2FOd0UqhkX9bVXeRlUEKioqKkkc1X1URUVFJYmjKgIVFRWVJI6qCFRUVFSSOKoiSGCEEDohxHkhxGUhxBpj5g/5ApkqxuU3+dJ27kKI/UKIcCHELGPIpmI5JLJz+zshxBkhxKW458rGkM9cUBVBwhMhpSwopcyLknWxS3waCSGMGQVeEfiiP0ucPJEoUZj9jSCTiuWRmM7tZ0BdKWU+oA1KErhEi5piwrQcAvLH5R0fDtigJJxqKaV8IoQYDWQFsgD3hRBDUE5Ix7j2PaSUR+PS+o5BSR2QD/AGLgG9AXuggZTylhAiBTAPJUQdoA9K3YUugE4I0QroCVz7735SyiP/lUdK2Rw4HJfnXkXlbRLDuf2aK4C9EMLW1HUcjIaUUn0k4AMIj3u2Rsl22BUlidRrV94fgalxr0cDZwD7uPcOgF3c6+zA6bjXFVH+KGlQEor5A2PiPusNzIh7vRIoG/c6A+D71jj935LxU/u9keet/dsCs0x9bNWHaR+J8dyO+6wJsMfUx9eYD3VGkPDYCyHOx70+hFIIIyfwtxAiDcqd05239t8k/00GpgVmCSEKAjrg7eIip6SUAQBCiFsoWVRBuXuqFPe6KpD7rSy2LkIIpw/I+Kn93pZHReVtEt25LYTIg1JJrdrnvrwloyqChCdCSlnw7Q1CiN+BaVLKTXFT4dFvffzyrdd9UYp6FECx70S+9dnbU1b9W+/1/Ps7WwElpZRvt+MD6c0/td/L/+6sohJHojq3hRfJfcYAAAD3SURBVBDpUApU/U9Keeu/HSUmVGOxeeCKMuUFxTD1qf0CpJIErzWg+cJxdqGskwIQd/cFEAY4x2M/FZUvxSLPbSFEMmArMFj+v707NkEYjKIofO4STmAh1rYO4QQ6gDiCZAqXsHQGS0EtrC3cQwsDFqKQzvjOVyfwisDJD4/kft93nKV3DMFvaIBtkgPPbYVPNsA8yQkY0f3tfAVMkpyTXHhtdeyAWbv6N/1y3ZskV55/dlskuSUZd5xJ/62hn8/2EhgC6/beY5JBx5l6w28NSVJxnggkqThDIEnFGQJJKs4QSFJxhkCSijMEklScIZCk4gyBJBX3AIFQ0HQb5wBlAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "# Discard warm up\n", + "chains = full_chains[:, 200:]\n", + "\n", + "# Check convergence using rhat criterion\n", + "print('R-hat:')\n", + "print(pints.rhat_all_params(chains))\n", + "\n", + "# Check Kullback-Leibler divergence of chains\n", + "print(log_pdf.kl_divergence(chains[0]))\n", + "print(log_pdf.kl_divergence(chains[1]))\n", + "print(log_pdf.kl_divergence(chains[2]))\n", + "\n", + "# Look at distribution in chain 0\n", + "pints.plot.pairwise(chains[0], kde=True)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The chains don't seem to have converged! This is because the narrow peak is very difficult to explore, for a fixed step size epsilon and a random momentum for every iteration. If the momentum were to persistant to some degree instead, we might hope to explore the high posterior regions for effectively." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "So let's turn on the persistance of the momentum (alpha = 0.95)." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": "Running...\nUsing Neal Langevin MCMC\nGenerating 3 chains.\nRunning in sequential mode.\nIter. Eval. Accept. Accept. Accept. Time m:s\n0 3 0 0 0 0:00.0\n1 6 0.333 0.333 0.333 0:00.0\n2 9 0.5 0.5 0.5 0:00.0\n3 12 0.6 0.6 0.6 0:00.0\n100 303 0.98 0.98 0.971 0:00.1\n200 603 0.985 0.985 0.985 0:00.2\n300 903 0.983 0.983 0.98 0:00.2\n400 1203 0.985 0.988 0.983 0:00.3\n500 1503 0.986 0.986 0.984 0:00.4\n600 1803 0.986711 0.986711 0.983 0:00.4\n700 2103 0.985755 0.988604 0.984 0:00.5\n800 2403 0.986 0.989 0.985 0:00.6\n900 2703 0.987 0.988 0.984 0:00.6\n1000 3003 0.988024 0.989022 0.986 0:00.7\n1100 3303 0.987 0.988 0.986 0:00.8\n1200 3603 0.988 0.988 0.987 0:00.8\n1300 3903 0.988 0.988 0.987 0:00.9\n1400 4203 0.989 0.988 0.987 0:01.0\n1500 4503 0.989 0.988016 0.987 0:01.0\n1600 4803 0.988764 0.988764 0.988 0:01.1\n1700 5103 0.988 0.989 0.986 0:01.2\n1800 5403 0.988 0.989 0.987 0:01.2\n1900 5703 0.988 0.989 0.986 0:01.3\n2000 6003 0.988012 0.99 0.987013 0:01.4\n2100 6303 0.988 0.989058 0.988 0:01.4\n2200 6603 0.988 0.989 0.988 0:01.5\n2300 6903 0.988 0.988 0.988 0:01.6\n2400 7203 0.988 0.988 0.988 0:01.7\n2500 7503 0.988 0.988 0.987 0:01.7\n2600 7803 0.988 0.988 0.987 0:01.8\n2700 8103 0.988 0.988527 0.987 0:01.9\n2800 8403 0.988 0.989 0.986 0:01.9\n2900 8703 0.988 0.989 0.987 0:02.0\n3000 9003 0.988 0.989 0.987 0:02.1\n3100 9303 0.987 0.988 0.987 0:02.1\n3200 9603 0.988 0.988 0.987 0:02.2\n3300 9903 0.987 0.988 0.986 0:02.3\n3400 10203 0.987 0.989 0.986 0:02.3\n3500 10503 0.987 0.988 0.987 0:02.4\n3600 10803 0.988 0.988 0.987 0:02.5\n3700 11103 0.987 0.988 0.987 0:02.5\n3800 11403 0.987112 0.988 0.986849 0:02.6\n3900 11703 0.987 0.988 0.986 0:02.7\n4000 12003 0.987 0.988 0.987 0:02.7\n4100 12303 0.987567 0.988 0.986 0:02.8\n4200 12603 0.988 0.988 0.986435 0:02.9\n4300 12903 0.987 0.988145 0.987 0:02.9\n4400 13203 0.987 0.988 0.986597 0:03.0\n4500 13503 0.987339 0.988 0.986 0:03.1\n4600 13803 0.988 0.988 0.986 0:03.1\n4700 14103 0.987 0.988 0.986 0:03.2\n4800 14403 0.988 0.988 0.986464 0:03.3\n4900 14703 0.987 0.988 0.986 0:03.4\n5000 15000 0.987 0.988 0.986 0:03.4\nHalting: Maximum number of iterations (5000) reached.\nDone!\n" + } + ], + "source": [ + "# Choose starting points for 3 mcmc chains\n", + "xs = [\n", + " [2, 1],\n", + " [3, 3],\n", + " [5, 4],\n", + "]\n", + "\n", + "# Set a standard deviation, to give the method a sense of scale\n", + "#sigma = [1, 1]\n", + "\n", + "# Create mcmc routine\n", + "mcmc = pints.MCMCController(log_pdf, 3, xs, method=pints.NealLangevinMCMC)\n", + "\n", + "# Add stopping criterion\n", + "mcmc.set_max_iterations(5000)\n", + "\n", + "# Set up modest logging\n", + "mcmc.set_log_to_screen(True)\n", + "mcmc.set_log_interval(100)\n", + "\n", + "# # Update step sizes used by individual samplers\n", + "for sampler in mcmc.samplers():\n", + " sampler.set_leapfrog_step_size(0.5)\n", + " sampler.set_alpha(0.95)\n", + " sampler.set_delta(mean=0.05)\n", + "\n", + "# Run!\n", + "print('Running...')\n", + "full_chains = mcmc.run()\n", + "print('Done!')" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAEYCAYAAABBWFftAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOy9eZRdZZ3v/Xn23meqOjWlqjJX5nkCQiLEqEQUtVHBRhRt1LZBaYn6vs29rlftpX1tVni77esFpQVfo/QFZOhuEZSbBoVAEhlCyEASMo+VqspU8zl1xj097x97n6mqklSSqlQSns9aZ9Wps6fn7Nrn1PPdv9/v+xNSShQKhUKhUCgUCoVCcf5owz0AhUKhUCgUCoVCobhcUAJLoVAoFAqFQqFQKAYJJbAUCoVCoVAoFAqFYpBQAkuhUCgUCoVCoVAoBgklsBQKhUKhUCgUCoVikDCGewDnQ11dnZw0adJwD0OhUCgUF4jNmze3Synrh3scvTnf/0cSSUe6g7AeJhqMDt7AFAqFQjFknOp/0iUtsCZNmsSmTZuGexgKhUKhuEAIIY4M9xj6YzD+Hz21+ylqI7V8fNLHB2lUCoVCoRhKTvU/SaUIKhQKhUJxERDUg5iOOdzDUCgUCsV5ogSWQqFQKBQXAYZmYLv2cA9DoVAoFOeJElgKhUKhUFwE6ELHkc5wD0OhUCgU58klXYOlUFxsPLz14dMuX37l8gs0EsWFwLIsWlpayGQywz2Uy45wOMz48eMJBALDPZQLhi50XOkO9zAUCoVCcZ4ogaVQKBTnSEtLCxUVFUyaNAkhxHAP57JBSklHRwctLS1Mnjx5uIdzwdA0TUWwFAqF4jJApQgqFArFOZLJZKitrVXiapARQlBbW/ueiwyqCJZCoVBcHiiBpVAoFOeBEldDw3vxvGpCw3FVBEuhUCgudZTAUigUCoXiIkBFsBQKheLyQNVgKRQKxSDxwMv7BnV/99ww44zr3HfffTz11FPouo6mafzyl7/kmmuuGdRxFLNs2TJ+8pOfsGjRonPex549e/ibv/kbtmzZwn333cd3vvOdQRzhpYtyEVQoFIrLAyWwFAqF4hJl/fr1rFq1ii1bthAKhWhvb8c0L/5GtSNGjODBBx/k97///XAP5aJCCSyFQqG4PFApggqFQnGJcvz4cerq6giFQgDU1dUxduxYAO69914WL17MvHnzuOuuu5BSAl4E6p577mHRokXMnj2bjRs3cssttzB9+nR+8IMfANDY2MisWbO4/fbbmT17NrfeeiupVKrP8V966SWWLFnCwoUL+dznPkcikQDge9/7HnPmzGHBggX9RqdGjhzJ4sWL31MW7ANBuQgqFArF5YESWAqFQnGJ8rGPfYzm5mZmzJjB8uXLWbduXX7Zt771LTZu3MiOHTtIp9OsWrUqvywYDLJp0ya+8Y1vcPPNN/PQQw+xY8cOHn30UTo6OgDYu3cvy5cvZ/fu3VRWVvLww6U93trb21mxYgWrV69my5YtLFq0iPvvv5+Ojg6ee+45du7cyfbt2/OiTXFmdKEjpcyLYYVCoVBcmiiBpVAoFJco0WiUzZs3s3LlSurr67ntttt49NFHAVizZg3XXHMN8+fP59VXX2Xnzp357W666SYA5s+fz9y5cxkzZgyhUIgpU6bQ3NwMQENDA0uXLgXgS1/6Eq+//nrJsd966y127drF0qVLufLKK3nsscc4cuQIVVVVhMNh7rzzTp599lnKysouwJm4PNCE9y9ZRbEUCoXi0kbVYCkUlxgPb334tMuXX7n8Ao1EcTGg6zrLli1j2bJlzJ8/n8cee4wvfOELLF++nE2bNtHQ0MCPfvSjkp5SuZRCTdPyz3O/27YN9LVJ7/27lJIbbriBp59+us+Y3n77bV555RWeeeYZfv7zn/Pqq68O2vu9nNGFDqCcBBUKheISR0WwFAqF4hJl79697N+/P//71q1bmThxYl5M1dXVkUgkeOaZZ856301NTaxfvx6Ap556ig984AMly6+99lreeOMNDhw4AEAymWTfvn0kEglisRg33ngjDzzwANu2bTvXt3dRIITQhRDvCCFWnXnt8yMnsFQES6FQKC5tVARLoVAoBomB2KoPJolEgm9/+9t0d3djGAbTpk1j5cqVVFdX8/Wvf5158+YxevRoFi9efNb7njlzJg899BB33HEHc+bM4e677y5ZXl9fz6OPPsoXv/hFstksACtWrKCiooKbb76ZTCaDlJL777+/z75PnDjBokWLiMfjaJrGT3/6U3bt2kVlZeW5nYih5f8GdgNDPjhN81MEVbNhhUKhuKQZMoElhAgDfwZC/nGekVL+DyHEZODfgVpgM/BlKaUphAgBjwNXAx3AbVLKxqEan0LRmwGn3q35p1OvVFM1iCMaGs70PkGlGV4qXH311bz55pv9LluxYgUrVqzo8/ratWvzz3Ophb2XNTY2YhgGTzzxxGm3v/7669m4cWOfdd5+++3Tjnv06NG0tLScdp2LASHEeOCTwH3Afxvq46kIlkKhUFweDGWKYBa4Xkp5BXAl8AkhxLXAj4EHpJTTgC7gTn/9O4Eu//UH/PUUCoVCoRgufgr8P0C/RVFCiLuEEJuEEJva2trO+2BKYCkUgOuCnR3uUdDSlWLnsdhwD0NxiTJkAkt6JPxfA/5DAtcDuYKAx4DP+M9v9n/HX/4R0buqWqFQKBRDzqRJk9ixY8dwD2NYEUJ8CmiVUm4+1TpSypVSykVSykX19fXnfcy8wCpKEbRdm4e3Psy2tku7lk2hGDAHXobX7ocj/UfnLxS/3dTCSztPYjvKdEZx9gxpDZYQQsdLA5wGPAQcBLqllLa/Sgswzn8+DmgGkFLaQogYXhphe6993gXcBTBhwoShHL7iMuaBl/f1eW1LvIMlU2vPb8eHXzv1sskfPL99KxSKC8lS4CYhxI1AGKgUQjwhpfzSUB1Q1/pGsFK21+B5w/ENXFF/xVAdeuBkYnBkvfd9Fiwf7tEoLkeObvF+HloH498HusHu43GOdqX56JxRF3w4rx9oZ9nMkRf8uIpLmyEVWFJKB7hSCFENPAfMGoR9rgRWAixatEh1Y1Scvibqw9+/cONQKBSXDEKIWVLKPadaLqX8PvB9f91lwHeGUlxB/ymCGTuTG8+gHy9rO2Rtl8pwYOAbNW2AY+9A5VgYs2DQx6R4jyMlCA1yrQq6DkPddP644wQA182sJ6BfGAPssqBOynRo6xn+dEXFpccFuUqllN3AGmAJUC2EyAm78cBR//lRoAHAX16FZ3ahUCgUCsVg89JwD6A3+T5YbiElKW2nh+x4q7Yd55HXDuO6ZyHerKT3M6NqUxRDQFejJ67GXe39bmdKFpv2hUvXs/3PRXvCvGDHVAwOGTvDb/f9luOJ48M2hqF0EawHLClltxAiAtyAZ1yxBrgVz0nwr4E/+Js87/++3l/+qhyKW3aK9yzF7nlb4kq7KxSXO0KIB0+1CKge6H6klGuBtYMwpNOSSxG081n0hQjWUJQkN3V66YfxjEV1WXBgG2X90upsfNDHo1Cw7d+9n/Uz4ehmyPaULM7aLuWhfrYbZKSUmLaLrgkyloNpuwQN1Tr2UqEj00Fbqo3nDjw3bK7IAxJYQoj5Usp3z3LfY4DH/DosDfhPKeUqIcQu4N+FECuAd4BH/PUfAX4jhDgAdAJfOMvjKRQKxfByunTVc2EAKa733XcfTz31FLquo2kav/zlL7nmmmsGdxxFLFu2jJ/85CcsWrTonPfx5JNP8uMf/xgpJRUVFfziF7/giiuGpL7ob4D/judq25svDsUBzwdN9O2DNZQRrBzZs4kKmL7AMpNDMxjFe5fi/m9V4yEQgUy8JD32QkWwTN/YoioSoDNp0pUyGVUZviDHVpw/aavwvSmlHJIbVGdioBGsh/0+VY8CT0opz5gbIKXcDlzVz+uHgPf183oG+NwAx6NQKBTvedavX8+qVavYsmULoVCI9vZ2TPPiT2eZPHky69ato6amhhdffJG77rqLDRs2DMWhNgI7pJR97MiEED8aigOeD4afPd+fyYUr3SGbKGSss7CFt7zx0HFw0MeheI+T6vR+zrkJNB1CUTATOO6FF1iW4x2zMmLQmTR5akMTf/fR6cMyUVecPbnvTaw0tm0SCHhhzzePvkk0GGVB/dDXjw4o3iml/CBwO16N1GYhxFNCiBuGdGQKxXuUB17e1+9DoejN8ePHqaurIxTy/nnU1dUxduxYAO69914WL17MvHnzuOuuu/J3gZctW8Y999zDokWLmD17Nhs3buSWW25h+vTp/OAHPwC8RsOzZs3i9ttvZ/bs2dx6662kUqk+x3/ppZdYsmQJCxcu5HOf+xyJhBfd+N73vsecOXNYsGAB3/nOd/ps9/73v5+amhoArr322qFsOnwrsLW/BVLKyUN10HOlPxfBXATLlS6Waw3JcTPWACetjg12kYC/CHoVKS4jcvVWhh8pCpSBlcrXQoEXWVp/sIPX97f3s4PBw/KFXEWoYACTMi+9/nRnVV95GZG0kl46c8smUs3rAS+StbVtK68fff2CjGHACaVSyv3AD4DvAtcBDwoh9gghbhmqwSkUw8bh1/o+1vzT4KeAKRTnwcc+9jGam5uZMWMGy5cvZ926dfll3/rWt9i4cSM7duwgnU6zatWq/LJgMMimTZv4xje+wc0338xDDz3Ejh07ePTRR+no8OoT9+7dy/Lly9m9ezeVlZU8/PDDJcdub29nxYoVrF69mi1btrBo0SLuv/9+Ojo6eO6559i5cyfbt2/Pi7ZT8cgjj/AXf/EXg3hWCkgpO4GsEOLJITnAIJM3uZAFwZMpKvIf7HRBzb8bn7GcgbkU5qJXI3xtmu4e1PEoLgyudEuusYsGxxfvhl9kpQfBMbGK+lCZtstbhzrY2Ng5pEPJHbMyUhBY7YlL64ZCS1eKn72ynxOxzJlXvsxI2al8naiZ8Bwoh+oG1akYaA3WArxc9k8CLwOfllJuEUKMxTOleHbohqh4L1BsQNEfw1WkWMzD3duHewgD4kznUnH5EI1G2bx5M6+99hpr1qzhtttu45//+Z/56le/ypo1a/iXf/kXUqkUnZ2dzJ07l09/+tMA3HTTTQDMnz+fuXPnMmbMGACmTJlCc3Mz1dXVNDQ0sHTpUgC+9KUv8eCDD5ZEo9566y127dqVX8c0TZYsWUJVVRXhcJg777yTT33qU3zqU5865fjXrFnDI488wuuvD90dRSmlI4SYKIQISikv6vzJvMmFWzC5KBZVaTtNVahq0I4nBCChK2Xy09X7uWHOKOaNO83+c3UNFWOg8zCku6DiwvclUpwfj+98nLqyOj415dSfzWEhJ7B0T2DZIkB7Z5ygUxD/iWzhs2E57pBZtudqsCrChWlyS1eaibUD6P2W6vRcNkcMb5D8YJtXJ9nclWJ01XurfixlpcD/Hs36N5KyzoUVyAOtwfpX4NfA30sp89/2UspjQojT355UKBQKxZCh6zrLli1j2bJlzJ8/n8cee4wvfOELLF++nE2bNtHQ0MCPfvQjMpnCXcxcSqGmafnnud9t2/un1LvWoPfvUkpuuOEGnn766T5jevvtt3nllVd45pln+PnPf86rr77aZ53t27fzta99jRdffJHa2vNs8H1mDgFvCCGeB/LuDFLK+4f6wGdDcR+sjJ2hPd2eF1WxbIyOdAe14VoC+ln0rToFrivztS3H/TvcW5q6PIFlZUAzQO81RchFsKrGe+osNbRpWmeL5VgYmnFZ1sm0J7Ks29vGJxeMIRzQz3k/UkpSdoqmeNMgjm6QyKWcGp6j5eEuixPHOgmcLDgJvnGgcM11pyzqK4bGUjBXg1UVCTB9VJT9JxNk7QGmCG74pfdzmPtwOn67B+0y/DyciZSVolzoJAHTF1amU7i/Zp3YQSDWDNNu6Ps9N0gMVPp/EngqJ66EEJoQogxASvmbIRmZQvFeIpd+uOafuLZpZclDoTgVe/fuZf/+/fnft27dysSJE/Niqq6ujkQiwTPPPHPW+25qamL9ei93/amnnuIDH/hAyfJrr72WN954gwMHDgCQTCbZt28fiUSCWCzGjTfeyAMPPMC2bdv63fctt9zCb37zG2bMmHHWYzsHDgKr8P7nVRQ9LiqKUwT/69B/8fzB50mYCUaXjQZgXcs6frvvt4NyLLMo7epkvFcK0esPwNZ+sipzEaxwFYSrIdk2KGMZDGLZGL9691fs795/5pUvQd5p6qapM8Uv1h48r6bTxXfxL3TK1CmxTe/aykewPIGVdnV0adJ6ika/XamhC0jnUgSDhsanFoylKhIYmMFG52EAHOni5loaDBO2LxIHLAyHgmNbYe2PL3i9ZspOUePHkEzf8KL4ek93HoC2PZ6ZyhAxUNm2GvgokLtayvCaNL5/KAalUCgUlyQX+I5lIpHg29/+Nt3d3RiGwbRp01i5ciXV1dV8/etfZ968eYwePZrFixef9b5nzpzJQw89xB133MGcOXO4++67S5bX19fz6KOP8sUvfpFs1vvnuWLFCioqKrj55pvJZDJIKbn//r5BonvvvZeOjg6WL/dSfw3DYNOmTedwBgaGlPIfAYQQZVLKvm4dFwlCCDShYbs2J1MnAZBIqsOFll3d2cGpeyq2Zs/N14PF6VbxY303ygmsQATClYWeWBcBHRmvdnD1kdXMqLkgov3cSXVCpMbP0fTY1/RnDnXu5eNXfK3fCFx5qDARfKe5m4UTas7p0Idjh/PPW1OtjIuOO6f9DCrb/x1iR6HBN5j2UwS1QAghXbLZUiE1Z2wlu4/H6UiYMEQZqjkxlUtBDAW0gbUz8Pt4rYzvpHrXb/jiVXefYYPB5d2WGJGgzrSRUZKml41wVi6hg4nrwt4XveepDqgcO+iHiKUs/rjzOJ+YO4aqMi+y77gOaTtNtTBoAUy/jrX45kIm00VlMFryGRxsBiqwwlLK/DeplDKRi2ApFJcT6w96/6THx/sWkzdURy70cBSK03L11Vfz5pt9HMgBT+ysWLGiz+tr167NP8+lFvZe1tjYiGEYPPHEE6fd/vrrr2fjxo191nn77bdPO+5f//rX/PrXvz7tOoOJEGIJXq/FKDBBCHEF8LdSyuEv7uyFLvQ+BgQRo/S7x3Ks804T7O9uvCOl5xSYQ0rY/zKMmgtV4wopgkbEc3hr3X1eYxhMLKdwdzpnZ7+rYxf1kXrqy+qHcWS9WP+wV58z4+MwbmH+5dXvrATXoWvapxkRHd1ns+JJ8p7jPecssNY0rykc88hqloxdwtbWrXx2+mfzNYBnwwuHXmBS1STm1M45p/EgpSeuAJrf9tK1NL8fnPCu8VQ6RfF0dWp9Oce70xyPpfN/6w3HNzCqbBSTqiad2zh6kRNTIb+5cFAfgMDyU/JM6ZnGdCVPDspYzobVu71jfuv6aTS2e5/XRHaYBFam6GaQNTT9/A62JzjWnWH70W4+ON37nOfqVmsQCCHI+L8XpwhmzASERgzJmHIMVGAlhRALpZRbAIQQVwND3/1QoRggpzSgOI3hw/j45kE5dnP3qT8KpxJlvW3Xr23qOONxcttsifddd8nUIa9hUSguZX4KfBx4HkBKuU0I8aHhHVL/6JpeYnIBnsCaUzuHXR27AC/9pUo/s9nFnhNxQobO5Lq+hfm5FMGl0+rydS1Zyy1YZQMc3Vx4fPj73iQpEM5PgAHoPAQjppTs+2jiKNWhasoDAzAEGCSKz5npmoT0EGub1wJnNkl64dALNMYb+ercr1IWOLd7x1knyyPvPsJHJnyEmSNm9r+SlJ64AuhqLBFYuSa7rQf+xIgr/7rPpinToTYaxHIkI8qD5zTG3qmFAsG65nVYrsWTu5/kK3O/MvCdmSnsnhM0xhtpjDeeu8Cye6Wn6oWaqqw/RU2m0mAUMnrDAZ2yoMGRjhRvH+7k6klVbD7p/T8fLEOstOmga6IgsAyNnox9+o1Mr1YsFq2DGJBqx5VuvoH4hWTnsXj+eTw9TKmg2ULtHM7Q+gsV3zCKH3kDuo5QIaKEhU7avzFULLDS2TgMcfR2oALr74DfCiGOAQIYDdw2ZKNSKAaB5u40vPNSv8vGX+Cx5Mg5/PUWSa2aV8dykzvtgo9JoejNpEmT2LFjx3APY1CRUjb3Sr26KJvahPQQPVZPyWvRQJRlDcuYWDmRFw+/OGA3rBff9eyJ77mhb8pcbkLSMCLCHR+YzIZDHZ7rWHGtRHGEynXBTHiRK4AJ13rLc4LBx3Zt/nDgD4wqG8VnZ3x2QOMcDIrrK5JWMl/PdiZc6dIYbwTgePI4U6unntPxuzJdAGxr23ZqgWUVZae27S1ZFDDCWHaG1u6DzOpn05TpEAnoBHVJMnuGif4pSFqev8vCUQvpMXtoTbVSH6rnWOIYCStxdo2sdz9Ppn0fVFefn0lALrJRNsJLnSyKopmujg7obunkPBLQMXRvnG8e7GDm2MI2g9WMO2XaRAJ6fl8hQ6fdPoNI8Jtvx0fNgqPrINlBxs6cs2g/W4oF9Jo9rQBMqS/nWPcw2bSbRSnEQ1SDlTPqyX2fSSl5YedvQDrUVM0hIgxSfgQr62S9cdgZ0lay8F02RAy00fBGYBZwN/ANYLaUcnBu/ysUOfrrPZV7KBQKxbnTLIR4PyCFEAEhxHeAiye/LUfLZkLZZInDm5SFGqyw7lktZ3rf9e+HMzUYzRW+B3WNqkiAaMggazvI4l5bsaIG0GbCS/mJ+KlpZXX+66UlbblJfK6G7EJRLLBSVqpEhJ7OFKLHLIjZgZzXU2EO5A59r3OF5R1PSoktPdF00umbEXEyeZKeVIwap5PykFFiVX42dGa83lENFQ1EjAgpK1Uy7h3tZ3FTpfMwaWl7Vv0Au1fBobVnP6icwCr3rye3cN8jIz3hpknvb7toknftVUUCjKos2I7vbDuUfz5YveLSlkMkWBBuIUM7vcmFY8HBVwCIC5F/P5lsz6m3GWSKjWvAi7rVV4S8z/V5GKOcM8VpgY4JB1bDiVNfY2v2tvLQmgMlfc/ORC51Nuk3gY5n45h+o/YqYRARRv6ayDgZtI6DiBPvkrGShX5rQ8TZ3HZYDEzyt1kohEBK+fiQjErxnuV06XaXPEVCsb8aL4VCMWR8A/gZMA44imfSdNHVX3F4Le32SaiZlH9pe0uM1yNdfHjWSEL+hCDjnFkIdJ7BYS03WQz5lt+hgIaUYGbTlEw7jJB31zfb402mqxq813XDs9O2SkXDYDdDHijFAuv5g88zs6YQRVrbvJaubBe3TL+lz3bxbCGVKmWfu/9JTtCdNnqSu6M/4Rpo2uA5NU6/ATM6EukLi5SVLNkkaSX53f7fkWzew0jdZH1tA/Xciu24GGfZAyonsEaER3AieQLLtUjbaSJGhLSd5rWjrzG/fj7gGQUApXVZUsKhNTBqPghB2rUhk4BoPZx411tn8nVnZxyQj2DVAftAlgqscmDeyedprFnC+yZ/Jl9nc+2UWhxXsvlIF28d20jEv2gTVmJgEaNsAqwUMb2GzUc6+eD0+pKeWmnToaxYYAW0vFAp/htLKRHShT//xHtBD9CF40Xkku1k0h0QvTC94noLQNN2CQd0pPRqys7H3v+cKBZYdgaaN2K7LlszY7lqQg26VnoetzZ5NVv7TyaYM7ZyQIfIWN57TvuGHsmUF7lbGB4JQDRQRoufEZC200QycaQwyLg2BIc2hXmgjYZ/A0wFtlJIq5CAElgKxSDyvJ8qWExL/D+GYSQKxWXFTCnl7cUvCCGWAm8M03j6Rw/ygchU/uz/m5VSkjIdtjZ38+FZI/MRrOwA0m1OxE4vwnKTsZxzYMjwJl9WuqdUYJXXeSYEPSc8O+1IkblCoLyPwDofkXK2FE92bddGE1reIGRvVyEFb3enF6y0XIuAVmoOEjMLKY7nJA6PboFYM+ZIL71bO1VikOsUzlXNZE9gJVph1x/IXnU7SEm5FiBpp0vqdmLZGG42SafZxM6wQZkxnqyZojNlMrLi7JrHpuwUutAJ62HKDE+EJK0kc2vnsrNjJwCNsUYmVU3i8V2PE9ACfGnOlwo7SLR6444dBSNEOmt7gkjKwt/CSuUnrgkzQcJKMLq8r2lHntw5KastnCefjFuYok7qWk9AKwhkXRNcOaGazUe6kK5BbmqasBKMZOTpT4SZgjf/FYBt477GtuYY7QmTipDBx+eORtMEKdOhKlK4VvoTKrZr88SuJ7iyahpXAjvNToyqBroyXYSCFWSBTLrz9GMZBKSUmI6b/0x/Yt5o/rjjBNNHRQn7n+uM5Vx4gWVn/CiRhIx3I+NYd4bX9rVRHjKYPaYgooqjst3pgddr5SLx6VwkK+W1jpge8KL+lWUjSXa2Ydkm8WycynA12WyPF30ND17T9v4YaARrETBHDkuMUaHA6xE1zFzW0TWF4vLmX4GFA3hteNGDzIuMomHah9netp0xZRNJtBYmaGHDTxEcQAQrZRYmqv1FO7K2iyYEAT1XY+I7t3X3smcfOdebUHc3er+XCKxISdrb9rbtbDo5dHb7xbSn2/n9gd/zqSmfYnT5aEzHJBqI0mP2IOl/qtKeamdMdAzg1V4JBAkrgRCCMqOMHe07+ND4s/Q+2fcnAMxaL7LXr6FBNuFN6KP+xL+iSHBIiemnkVVoQZKuSXNPMxMrJwKe6LP9VEJD0zB0ScKN0Z2yzlpgpe00YSOMEKLEmTKgB/j8zM/zn3v/M98GIG2nSff2Mov7KaOaDnbWm6TaWXBtLFyC6N714Aus1U2rOZY4xtfmf42gfgpjjnwEqzZ/PvLjdUsFgaaVRsbKAjpSunRn41w1dgF7u/aSsgYg8A8WGp9bGW/9o13eON4/rY7KsNFviiB4RjA5odKd7SZlp3jz2JvMlQ7rUi2gZdEiQSZVTuDQ0c2kM0MrsBxX8uArXu+3zy4cnx/rN66bSkAXNHV67y8X6bmgWGmvzsm1IdXOyXiG9kSWQFmq5PsJSr+vEmcyEyki974ylouUkqTfm69cePKmpmIssmMHJ3tOEjfjjA9WkbIyHLLi7Mm0MkNOHzITkoEKrB14xhbHh2QUCoVCcRnw8GlcK8+FgThi3XfffTz11FPouo6mafzyl0gilk4AACAASURBVL/kmmuuGdRxFLNs2TJ+8pOfsGjRonPexx/+8Ad++MMfomkahmHw05/+tE8j48HAt2d/P1AvhPhvRYsqgQt8O3cA6EFwTKpCVXxw3AfoTFkENW9ybdouQUMjqAcHVCtUnC6UtfsKrNz+chGgoKEhpI04tgXCRVGeSLWXCtjp17kUC6xged7kQkrJ60dfLzlGfw5qGcvBcSXlofMwRgCae5oxHZNn9z/L8iuXYzomQT3I3VfezctHXmZ/V9+Gw88deC7/mfq3Hf/G+IrxhPUwET2Srx2LZWNUhQZ4Z7tIDGRz56E/cZfrKZZoBaGBUSSMAhGyvkHGzOh4TsT2E8uWRtVyfaAq9ABZTZJ1e+jJWPRkLH792mFuWTiOibVnTnfK2Jm8sCoWWEEtSFc8RCIjefPYm4wqK6S0laTEJYvMmaQk5drgZMGxyEiHoNDBSgJeGt+xhPe+42acukhd/4OyUp5gy9VgTS4I3IyrE9AFltO/YDZ0DaFnydoWo6Oj2de9L/93PC1a4drLpBNA4XpPZG2Q3uej2K0xJ6oytkOVv34+vdS1OWr7xxUGrnQZUzWZQ0C6lwnMYFPsEHgsls6PNScOc+NOD0cvrJzrqGNh9bRxqN07R0En2cfZsFhg5fp3DYRcDZbjelG8ZLoDXWiEfJObmsoGWrrT/OOrjzN3YhVzhYEuArR0p/mXDa/w0KglRIJDI7AGutc6YJcQ4k9CiOdzjyEZkUJxlqw/1EFzd7rPQ6G43Fm/fj2rVq1iy5YtbN++ndWrV9PQ0DDcwzojH/nIR9i2bRtbt27l3/7t3/ja1742VIcK4vW+MoCKokccuHWoDnrO+AKLo5th7T+T7T6RX5RLoQnr4T4ugh3pDl5terXUqtwpTFj669+TtR2CRmEKEDJ0IlYM25UwssjHLlgOoUqvP5YR7BvB8iMG7en2PsfoTwg+985RVv750FkVsvdH8UQ6bsYxXTOf/te7b1h/mI7Joe5DdKQ7CBthPtzwYWCAaYK5XmFFToCmL4p6W+x7Oy2KYgTLvBqlRXd4YivZTna715y2vnwUBtBTJLBO9MRobI0hpPc3MnCJuYdZ3fQCh9u9Cf7v3zl2RlMTKBVYxRGloB5k1fbjvHvUG+dzB57LL4ubhRq1vKW6n+51Qri+wDLzxgL99TtKmKdpSG2lvetID8Cy73n1afjpsW4wn7rqv9hn80Agi+VIKgIVlBllJKwBNL8uui7T6RRTR0b58hIvYpjI2Oxr9SKKxUYaEV+oFAuB/LmRDu35qLI3xorwCIJ6gPQgNQY/FcWpdc1+tKo8WBCQuXEPS7NhO+31zDPCtHYVzD4MN0usl8BK++e1Lho8ywhWUUqp6ZJMdxLVw0Xuj973le2m2N/aQ1hKpOUts4Q2pGmTAxVYPwI+A/y/wP8qeigUCoVimDh+/Dh1dXWEQl7VTF1dHWPHjgXg3nvvZfHixcybN4+77ror7yK1bNky7rnnHhYtWsTs2bPZuHEjt9xyC9OnT+cHP/gB4DUanjVrFrfffjuzZ8/m1ltvJZXqm3rz0ksvsWTJEhYuXMjnPvc5EglvcvO9732POXPmsGDBAr7zne/02S4ajeb/ASaTyUGxVe4PKeU6KeU/Atf6P/+nlPIfpZT3Syn7hjiGGz3guZH5Tlvy6Jb8otyEJGSE+qQIrj++nj2de+hIFyIM2aKUoP7czxJZh2ioNAXKcDNkLQfGXlVYMVAGIb8HUVltqYGBEc474bUkihwHfYqNJ3LkasO2t5zfxDNniw7wxK4niGVjedGQq1UDGF/hpU1NqZ6CoXnRheJxnUydxJEOtREvRe2MAqt1D/z5f3rRnHRhDFk/mtGvwCp2GPTT52R0JDtrxmJJF9OvGwuFa6jQgvQUvbfmrhhCOkgBWRyQLo5I0NTTzJ9bPOMkV0oOd5w5cpNxMvk00+JaNMv2ox1aRZ9tntz9ZEE852r//KhMOhBGAJx4lyO51gJ+ymhxRclpRY+V8gQWlFxbliNxoeQmQHF9Vg5dtzBtl7JAGeWB8v5TBG3Ti8DmxlS0TiadIRrS80IkbTnsOeG9F6H38G7buziuQ3WZd766i8xj3jzmNXkPIDhq596jd4xwIEIkUD7kEazuVOFabulKo2uCaLggsEIB7/wNi8DK9kAoCkY4f97GVIUZUyZLBJbjSk72eN8LDSPK6EiaAx5v1nbzf5u0aXOgYyduqNy7GQT8aY93/jXpEjJ0ZgYqKSufQHvZNK5oqB6y/z0wwBRBKeU6IcREYLqUcrUQoowzpFcIIRrwTDBG4V1xK6WUPxNCjAD+A8+RsBH4vJSyS3jv8mfAjUAK+GqusbHi0mYw0qZO2UgYaNZUtErx3uRjH/sY9957LzNmzOCjH/0ot912G9dddx0A3/rWt/iHf/gHAL785S+zatUqPv3pTwMQDAbZtGkTP/vZz7j55pvZvHkzI0aMYOrUqdxzzz0A7N27l0ceeYSlS5dyxx138PDDD5eIpfb2dlasWMHq1aspLy/nxz/+Mffffz/f/OY3ee6559izZw9CCLq7+59IP/fcc3z/+9+ntbWV//qv/xrK0wQwVgjxIl40a4IQ4grgb6WUF5eToGZ49QplI4BS2+XchCOsh+lMd9KV6aIm7N2dTZpJf/3C5K9421wheDE9mdIanoqwgeFmaexIUekGKG9YDM0bIRgtNAyVvYRaIOKN17FK7M4LY+hbrK4JgSvledeEdGe7mVo9lYPdXu+hpJVkbNS7uVAcwbpp6k0A7O3cy6HuQ3Rnu/sYXRRHds4osE76NtPJVkgVCdquQ1A58swCK1CO5Vj86t1fQfw4R1KtjDeiAAQjtVRoAeJFAittp9CkTUATONIF6RLUNbpTFhuOvstVFbMRQvDHHSdYvmxqvxNGx3V4/uDzxLIxJlRM8I5VFMEy/Tv608s+zLzaODs63i3ZvjXVSl2gAjq9c527DlLhKA2ZKE1WDxsyJ1gQqiPgi5fiKOtpBZaZ9MxSepG7Zk9c8U06tv+JMYld3nns1XMrFLC9eikjQjQQpSvb1WdfHHyVVMtG3AWfJ1o/0ztmuJKD8WaaUruZFpxTSAG0HBzHZVJdGS82vkDSStLU08SNk28ECql2RxNH87uvMSJ5gXVldALN4VrqInVEgpWkszFc6fLWsbeYWzd34OmnAySWttCEoDyk05OxqS4LlLjz5SKA/UWxhxQr49UeAgTCmLZLXTTIpNpyOoIujUWRwPUHO/IOgpPrynmnqZvWeJYJtad3gzRtz9hjfE2E7pRFV+tusDL0VDXAkm+BlMT++CbTZA3dmmRi+RwCzm6qy2Yw2VnGNxZcOWRvHwYYwRJCfB14Bvil/9I44Pdn2MwG/ruUcg5wLfBNIcQc4HvAK1LK6cAr/u8AfwFM9x93Ab84i/ehUCgU7zmi0SibN29m5cqV1NfXc9ttt/Hoo48CsGbNGq655hrmz5/Pq6++ys6dO/Pb3XSTN+mcP38+c+fOZcyYMYRCIaZMmUJzczMADQ0NLF26FIAvfelLvP56aX3NW2+9xa5du1i6dClXXnkljz32GEeOHKGqqopwOMydd97Js88+S1lZ//8k//Iv/5I9e/bw+9//nh/+8IeDfWp681Pg40AHgJRyG3CWbgYXgFwEy7FIZG1i8YJoyUWhwkaYhJXg6T1P5yexLv6Et8jBL2u7+TqM3pMrKSWJjE1F0Z1uQ9cwXG9/XaYBk5fB0v8LNA0m+fVx1RNLx5urJbLS/UYOzF4NYi3HxfWjCPkUwePbvAazZ4HlC7racC0TKifkX89FrnJRmmIRkZvYxrKxfOpiT8Zi/cEOPjTmE2fuMdZ52DOqyC230t4j6tUbZWLN/nvuG7XDKXrNtXm33RcwRohGK07WT68LlY2gUgsSz3bnI0BxM4WOy6gqT4SMCVYzq/oK6oPTAbCl9zczbZcT8f7Hfjx5nONJr4Q+pHvR7hKR6febGpU5zvadsXy6YXXIc2LrMXtg1x9KUvQs6WAFyxk79/P512LCyacIFgus3A0AOg7C/pcL+5HSq08L97Xkzl3vlp7gJXcbMbJeOiJwJH6EJ3c/ScpKEQja2I7kSLtFRbCiX6FPvIWXUk08+ca9/s6TEBnBC8lGjli7CBoauiYIGhppyyFju1RFAvk01CPxIwjhLc8Jv6M9nsBaOGohNVpB0M+e9FFum3UbQT1IWbiadKqd7lgTW9u2svrI6r5jO09iaYvKiEGZnxbYkSj9zOXe1wUXWD2+ZUOkBgJlXuqx388vJM2S3lwbGwuf/6hfm/m7LS088PK+06YS92S8z9VoP5Wzq8frvfehSR8n6ej8YWcHtghy44gGPjniRhrCC8Cx6bE0RkRqiYZPYbwySAy0yvSbwPuADQBSyv1CiNP6YEopj+ObYkgpe4QQu/GE2c3AMn+1x4C1wHf91x/3nQrfEkJUCyHG+PtRvMe5VGuqhnrc4+N+v+/D/dQcTP7gOe/3TFHHgZgvKC4Muq6zbNkyli1bxvz583nsscf4whe+wPLly9m0aRMNDQ386Ec/IpMpTL5yKYWapuWf5363be8OfO874b1/l1Jyww038PTTT/cZ09tvv80rr7zCM888w89//nNeffXVPuvk+NCHPsShQ4dob2+nru4UhfCDgJSyudd7GIacmTOgBcC1wDF592iMrkgs5xeQnyDlJsgArclWGiob8hOV4tTBtOlQHQmQNp2SFEHLcVm7tw3blSUCC+Ca8RHaOqHbNhgrdN44kuLKhiAVI2dD1XgvXbCYXGqXnSFlp6iL1JGxMywctZA/t/y5T61YcaF9xnK9lK89L3hpRO//9oBPU87priZcw6LRi3h2/7OcSJ7IR6FyAqu8KDKSex434zTHmznQ2kOd/ABXVdSx6p0kf/dR71zEsjFWH1nN0nFLS2u5jr3j3ZHPRaOyPb4leRRoIyu98/z2oVauHRFj3riiSEVxBMsxCyJAD1KhBelwMmhCoIWrqdMj7LDSxLIxqsPV9GQTlGkCYQTBSjO9bBRjnLEknS5ihuAzV9cyIlzHb9YfIZa2GFPV939BcVQuJzRLPgvSAGkyo301PZhsq5lGecjgr2b/Ff97x/9m88nNLI6nS+7Ip1wbtHLKqxr4y+hUnkscJGWEPJMLM0kmUVQ/aCW887X9P2m1U7yYOsRnZn2BqlydYKgCV7rYrp0XxbkI7MnsQVyh00UqL1R3tu8klo3R3NOMrtnoIsCfdrRy3YIItmvz9vG3EdJl8ZhrPAv5RBvH/AiT07YH3UpDpAYpQZMOuvCOFQnopE2HtOmgaaWRyFg2hhAW/9X0GGWV1yHxzD+uGX0NW0/s8tIbJy6lrL7Qf628fCSHWrfT9NaDMHpavymzp+LgG88SPPkODZ/5kWcCcgq60ybVZQGm1EU5Gc+wdFrf79CQoXmpvxeCZIdXZ5iL7o6ej0y04biSICYYZYTIej33HDffJiJHWbD0O6mtJ8vYau+a7kyaPPZmI1983wRGV4VJZG1saSICXtQynvbSAUdVjGVLUxeH2pJEtACRgE6Z7tCT9b4fu7JQWzu04goGXoOVlVLmvyGEEAacwge1H4QQk4Cr8ATaqCLRdAIvhRA88dVctFmL/1rvfd0lhNgkhNjU1tY20CEoFArFZcfevXvZv79QSrR161YmTpyYF1N1dXUkEgmeeeaZs953U1MT69evB+Cpp57q4/J37bXX8sYbb3DggNe7LZlMsm/fPhKJBLFYjBtvvJEHHniAbdu29dn3gQMH8qJgy5YtZLNZamtrz3qMZ0GzEOL9gBRCBIQQ3wF2D+UBzwndAMfCtTxhorsmFWEDTYi8SCqe9OciVrm0tOKJdNK0qS7zJhHFKYI7j8XZcdSbiPQWWFOqNKQW4GTC5umNTWxq7OKlnd5dYUIVfSd6vSJYNeEavjL3KzRUeEYrVlHkxnJc/rSjMOnOWE6hpic7AGMCH1e6NMYbgUKEJdf7qiLo1RDVhGowNIOFIwsu/Lnz9sbRN9hycjttPSbIQF5oCCHQhc7uzt3s69rH7o5el0dOJNk5gRX3ojVGGKZcR9q1SWctXBxe399rbuJY3qQTYPQCurJdjC4fzVVjFtPjmhyyYriV40APUKeFQTo0xht5bOdjxLJxxomQZ4CiaQSAiUd+x7yONxlbHSEYsKj0XR97TmEOkBO61zVcx/Sa6X2WCwLofrSxDAPbkcypnQMUrqlGszTVNyVt0AJEjAhlvnhNaTrtqXZir/0vzM2Peb29AuWewEp6dVxvZI6TzMa9FLse/3qon8W65nU8vqvQWjVXQxgOGMicE6Vjloj2XR27SIujhIwQFWEj34h70/ENbNzwM2h6C45tIe6aeefA9Pb/BECGq3GlRJMOaJZ/LJ3DvtNd2vUEwqTKSYBXi+aIlNfc+ORmMnaGsG+mUKeHvc+GEAS1IG09WdbsbWVWvZeCtj5+knjaYu+JOC/tLHwGTkfrnjdp6UoXzlE/SCnpTllM6XqD+ZlNfP1DU3jf5BF91gsFdDIXIoIlJby9Ejb9GyTbvBswwSjZ6HgSwTqSkz4GgTJCeNda1nbzqcKzx1Rw97KphAOlsqQzWbg5cajN+57Yc8Krd4ynLbb3PMfrJ14kEDCJp73XI6GqfJpkVo8SCuiUu0nMbJqulElrCuqiJd3+hoSBRrDWCSH+HogIIW4AlgP/ZyAbCiGiwO+Av5NSxnt1wJZCiLPqrSWlXAmsBFi0aJHqy6VQKC4aLnRkL5FI8O1vf5vu7m4Mw2DatGmsXLmS6upqvv71rzNv3jxGjx7N4sWLz3rfM2fO5KGHHuKOO+5gzpw53H333SXL6+vrefTRR/niF79INutNelasWEFFRQU333wzmUwGKSX3339/n33/7ne/4/HHHycQCBCJRPiP//iPIS02Br6BV+M7DjgKvISXmXFxoQXAtTFNv++Ra2H4KT65VJmyoihSxvHOcW4SnPbTs2zHJWt5xd9ClBpeFJ/linBpLZLmpDG1ENtbCoX5TZ0pejJWn3WBfARLWmlSdirfvDaXflZcg3WgNeFNGIGALrxoVj81WmdiXfM6r3GwnaXKT+sbWz6W1lQrI41ySLRRFq3nrgV3lWxnaAYhPUTWyebFqiEKkyzbcTE0A8ePqvSpperd3NlMei5pgTIcI4QpHWzL8nrxmBaOKwu1MI4JkRFwzd04QuPYuxuYWTOTiiLr8vpx7wM9RI0eAtfNGyhYjsNkNI4Ey8FKEnIlIyvDTHMrOBARJK0kQcNzQ8ulTG1r7sZyXBZN8ibbOVEys2Zmvz1/XFdHl9771dH4RMPnORlzadGP8eHx17GmZR1xNwt64drzBJZGWaCMssVfg12Pk7Dg1WPrwHW4oWwC2FlqqyZytOcoMtuDAC8d0rE8O/tc6mAwmm8G7bgOuqbnI1hBXUcKHROHnnQnvzlcMLDOpT1OrKmgJ2MjHX9Km/scHHwVo246SdeChmvgyBukXIuoFsAKRpAIhHRw/Ql/JKhxMu4dd0Sl5HAGlo5bSmO8kYAWwNVMHCnRhFZiGDLeiFJtRJlQvwAhBM9vO0Y8bTHnfbMJBso53NWBu2ctsYpF7LTi3DBn1IC/72QmhnCyEB1dEOk+8YyNabt0xl/j/4t18OlRM4mG+rrIRgI6GfMCRLD8HlRk4pDu9tIDhSDjwLujb2FM/Sg4vougfwPpz/va2H/SE02T66KEhQ3pUrOWeKZwkyZnlKn55645fhwhPCOUgGHS09MDQhAOVpC1vKiWqwUIRiopz8aZ1fQke1wXpy5Q0uNsqBiowPoecCfwLvC3wAvAr8+0kRAigCeunpRSPuu/fDKX+ieEGAO0+q8fBYqvjPH+awrFe5p8GqBC0Yurr76aN998s99lK1asYMWKFX1eX7t2bf55LrWw97LGxkYMw+CJJ5447fbXX389Gzdu7LPO22+/fdpxf/e73+W73/3uadcZTKSU7cDtF+yA54oeACmxM94kQ5dZJJTUUMyonoHpmKw/th7TMTFdE8ev4ckJrZSfDlQeNAgaGl0piwde3sfUkVGm1hfS5qK9e1FZaaTRt2buWHeGmaP7EVj+BNMye7BdOy/+8mleRTVYTpGN+MiKMN1p85wE1p6uPd4EumUThhgBV/81i0YvYmr1VGq2POkJoQ9/v+92J+LYdhBEFtvNCayCyYflSAzNyIuRPhPgbE/f3+0sBCIk8FJ6WtsdEOBi057IFmy+HdO3qw7SHGsEoDpcTXkwmt/dZ2d8FtLdBIQOsiDmHCvLBC3IkUAIhE7QNtGFYFp1BQEnna8Tqggb+QjWq3u8aVVOYCWyaTYc6mbZyBRzxvatd0Ia+QgWwMkOk0PH2xm/9bfMW/JxNhhldAo8W/mp18OB1aT9a67MKCMQKCMSGUHC7sg7/XlCyqQ2XEtTvIlMposIYEkXXNu7GWAmQWg0xlyOx9KMqYqQcTKUa+V5EaxpLi4awoBEtn9HPkd4f5tnN7dhl2UYHfTOgykdjGycTPV40FwYexXJWBf7zW7CThpX6GjSzQussG8IoQmBFGmEEFQEK1gydon3eZM9OK7ElS5ZO5uv2xOOyV/VXw3jvCh/zpAmYbqc1CbhCi96F7a8qJjtynyD734prnXrbCJ44h0YORvmfqZktbaeLKabZKvbRkjT2NWxi4bKvgKrLKjTeor6vEGl2DExG4eol6CW++4KB3QwIkR69nLt8R1sN2+BoHeToTykw9anoOcEN87/FroGa/e2EU9b7D4eZ/rIaP5zm/vZmuwkoGtoQhAM2CTMJJFAAEMP5KP288dVodujqWg6Qo+/nSMCjKs+cyuH82VAKYJSSldK+Ssp5eeklLf6z08bPfJdAR8Bdkspi29hPg/8tf/8r4E/FL3+FeFxLRBT9VcKhUKhOF+EEJOFEPcLIZ69qHs5+pEf6aehGa6JKyGoi/wd/YAe4KqRV+UbDhf3g8oJrLYeb4JeFtIJGTrNXV4q4cHWRInQKet1F9cxE0xrKKQYfcXvDdSVOoUQ8iNYKX/im4tgGZqBLvRSo4Oifj2T6spJZh2y2TPUqO57yTOWKCKiR6Cr0Wtq6zfwDepBRpWPKkSZ+rHzfvHdE2xr8o7nuJJZ5R8rEVGmH8HKUTLFcR3o3csp2e5NhAMRYnjNkysI+du6pel6juWJZwr1Y3Nr51IRrMCuGEuHXgdSeGmAwFcnfMw7rJS8T19KpR706t+ERtC/NjQhCEuR/5tXhA3ivVIEE1kvwnEs3oMuArxxoLRXWS7F0nEFQWEza7SXYtl1aBNXHXuajO1Asp2acA2dZgzGXZ03pEgZQQQiH8WpClXR5hb+3hk/UlUrAtC6m6Sf6mbicLI7wcmeHjCTyECEZ985SmN7Kh+NbemOs7VtE460cKXFFRNqGVMbIltkpFL8t7t67GwADBH0Uvz86GNWOpDtIetbdhOKssnu5uVUE2vatiClpNxqw/EFbS5KO3VkOT1mD9FAFE1o+RsGMfs4rgsCQSybZHNjD8e60767YSEamhNPiYxNR7owkXdkhmj2BFbrGTpEtGzKP7U6/cqZWN82CCfjGSwnRsCvY5JO/zVekYCev+kypBS5apLuyl8reQfUgA6BCIYf2Z3QXbgRVx408umQM+uCTBtZQWU4wO7jPfxxxwn2nUzkmxNva47xwrvH6Uwn8jb+RsAmZSbz12PWdhlZGeKjc0ZBWS1hp/D5HTtuAg0jTu9QOBgMKIIlhDhMPzVXUsopp9lsKfBl4F0hxFb/tb8H/hn4TyHEncARIGdB8wKeRfsBPJv2vxnI2BQKxYVHmWBc3kyaNIkdO3YM9zAGk9/j3fD7P8AFttM6C/xJeE4D6a7F7NFRmrvSWL1qKHLpbjn3vvJAeX6y/cJ2795kVSRAyNDyExMouPctnVbXJ0rzROsGukQQqX8AITRqoyHKQ/qpG3/qQRAaqUypwAJP9BTXYOUaos4fV8XkHQ/S3GnRNf3zjD7d+TjqR+99geJKl7STphaNT0SnQXlRQb9bdH7sTL7fFBTEUkCEcWUP1cGR2LpncR8KaGQtF8txMURhSlRiSJDt6bfJrbeDCmLZdhxXUkkQRBIXu6QBrDcB9ybpcTNOSA8RNsJIJHvNOuKWTVNniglVATSgDI05tXMo02s4cPgQYcPwxKzQCNsFsRuhIKqjIYMTsUxJ/6Bf/fkQ42oiJLQ0ugiW9EcCuHXGraTtNJsOZQhpDjUhb4yTutb75w26LY3qQJT9VhIZKEP4IjQVCBExIvmUw6pgFXuLXCy73Sy6a1PVcRiS7SRObGVE2SgStk1bMslbjcf55EiNTjuM45f4W46kpSvOb9/ZR0t2I2NDV+AiCQQMTNwSgTUuOo6WnhbGV4zn45NuYO/Bg2jCj7L6f7usdMHKkNXrwfUiOG3hcsh2k3CtvCCRiRZgbr7+J6hrdKY7820QgpovsKwTOFIikbTEWkmk69i67xBjZQIi1fmx6ZoGOHSlTNxAPZUhg6pIgLgOE9tfQrwbhjE/6P96AuSBl/PPE10nKC83QPYVSIfak9SUpxC5UsZT2OGXBXWylmdpXtJXbDBo2eRFqyZ9EA6uKbwuJYQ9Q5VcnVXY0CAQyffmCjqFv2d5cTQ9mwAjRE15kKO+UVh32szfOALYe6KHo5luIn4vv06rkeP2SSZrBVGXb1JdXp8XvVvHfJ6vzDuddBk8BnqmFwGL/ccHgQeBvrkjRUgpX5dSCinlAinllf7jBSllh5TyI1LK6VLKj0opO/31pZTym1LKqVLK+VLKTafbv0KhUFwMnCGYrzhHBvm8ZqSUD0op1/jNh9dJKdcN5gEGBV9gOVJi6mXMGh1lycQKgoZW0tcKCgIrF8GqjdTmJ9tlIQMhvELuXH+fHPG0N/FfNLGmz+GTVhIjECTtFgwNykMGSfMUAksIkC7poxvBdYgECnfrg3qwOC2coAAAIABJREFUJEUwkbWprdD4wOQQGWGzyd3JuuNvFfbV++9d/Ltfq3MieQIpJVcF66jSQ4UaHoBMkQlDr3qp3AQvIMJsONRJW7yw79pyb/Js9YpglQqseOH9QmktTKiSmGshpCCKYMH4KhBuvh4KKIlgxc143owjrIcJM4opkaU8985RXtjV7h3DSrFs3Ic42FJD2I5hBIO+yYVOWVFaZcS2SPd4UbxIUCdlOvxi7cGS9360K03SzBB2bESvcxzUg1SFqrAc16t/AUZVFtWluZI39x6jJ+ZiSoe0bkDlOKiZSKp2SonhSmWosqRH1T6zi6B0ifrCN+FaZMMV2K5nLNGRSiCzPZh6GabMmbW4tMTi2DKDK8EVGe8aEjqmdMj4AuvqUVfno2/1kXp0TeeGOaPQcwI5n6bovSfLvy6DehCqJ3mROD2AbXgi3E2f8N+7F/2YMSpK3Iznj5Fz7tQ1QViryp8bQwQYt/dxL3JT1BIgdxPjaHcaQ4tgj70ajCAaNrbT7UWRnVN8phw7f4PF0QLYln8dmSlIFMxTpJTEUibNGe8mxIxgDd3p9t57A8i78LV09dOE+XzZ/zI0bYAjb/Rd5puf5NL1QvkIlic9BC5R/7uqRPj5n7fiFGYpveboVzQU3DktmaE2Uo0mNGLWSTTpggz4x3QLhhkj5+TdCTNGVZ/I/VAx0BTBjqLHUSnlT4FPDvHYFJcp6w929Pu4VK3YFe9dwuEwHR0dSmQNMlJKOjo6CIfDZ155YPxMCPE/hBBLhBALc4/B2vmgkUsRlBJTjxIyNISdJqBrhGMHS/op5SNYftSgLlKH5VpknSyO6zJ3rDcR6V1n1dqTIaALNK00eiVtC1wHzQiQdZNM8Wu1oiGD1ngvg4depFwLrFSfCFaxyUVPxuZQ6g1+u/c/6BLed/2xRFEVQO/0puKUPN+0IG9qkDOnsNLeZLp1N2z4ZWH9Xr2sUr5ADPj9imIpb8I3d2wlV/tC0/ZrsPKHdD3DisPtSRzfnYwy3+myYkxh5+FKYnaSMhEm5JgEDY1IkNKon2Px9Mm3+GPjH0lZqf+fvTcPluQszz1/X+6119nX3rulVi9aWhISEhJiE2CB2YyNjQcDA3gZr2PHHd8bE+M7EXfmToxjwnEjbuAxvsbAGNt4xVwWg1glAUJCa0uipVbvy9mX2ivXb/74MrOqztJ9BJJatuuJOHHqZGVlffllVp33+Z73fd60Vk0Iwe7MnZTNaQCOzzeUG93ZHxA9+TfMVto4QZXy4KgiXkJD60p/dGqzNE/fB25tnb11gpPN71K58G32VB5haHHj2kgvlNhCHXf3cJ6rxvLMXP+bVO0J9MjF8OKeXCIC04Hrf4Gm6fQYrhStYnr/AqBbtLw6mcBHCEFd+rQNkxAdTQYEsk2rvkpNWLQjNb9hJFluNtPeXghX3UNCwyeiEdTRhMarxl+Vvk1C8g5OFrluakhx/vheasuQmaDBTNhEFzoFs6D6usUEuT54GCl06q15/NBn22CWX71rD+NlAz/yyZtxA+iYPOlCkBEjPDdX4/hcHSeSNL1QGXYYSXqoTE1l5qsupshgOzmw8ugyoE2gCNbalFNQ9/LKKcJIcmLwtTTNwV579dP3pw+bXogXhMQCDkO6Q8OtbtjHbaSgxrbS3LpN/OXghz5B90LGymn1+/B7O9vKqh6sR8ESasDXTpeYzkV86Pad/PruOfjBJzoLGPHcdLucVls+bT8kaxm88wZlMO5GNcqOWqywDQ0hQ1oydg/0o46CpRvYN/4CR8ffDUK81IZKKbaaItj9j0hDKVpbNcjoo48+XmJsRE7Pn1jaYM8OXr3nJbXF/jeB6elpzp8/T79lxIsPx3GYnp5+sQ53GJWy/no6KYIy/ntDCCG2AZ9BtRKRwCeklP/lxRrQhogVgDCStMwSmlgAt0YuqFO6+BU43oT9am3TNmxOrp5ktqFW36fz0zw69yg/uPgDWt5EukpbjIOUctZktekzV3WxN0gT8hux35Th8I4jg9wwOpmOpe4GPHFuleu2lde9jps+RPOB/4wIvLT+AVRaVTfBqrsB9XCOWjtimbhGbPl5GD2odgg9MLp607SrXYNTJLLpN7E0E1tGKkj2mkrFevrzvWPqCjJXai3OLKgURj0mZqbIkLF07j44zlxc/L+2BssPfU4vNfn8Yxd4c3GGAwB2UdVeFSZU01wAM0vFreBoebTAw9Ms5sJjVNpxA7MohChgRbZYWT1JwSow5Aylc7uukWqsbPgLzwNHGLJDdKfA23ffjh6YUItVCitHpqWrWqfWCgXfwwhbBHoGlyWern6dfdm7aHjHGXWXMMgwuPhD4L2shR9EFEUnkB/K2RzZMcTTz9o4QRU7EkRADRhHOSyuuqvsKe1JX5MzcynJUJNtUhQ6WmuZrDB4tD3PgAwJMcig0YhaVKoN/lL/Pqc9Vfc3X3NZ9ZZpR+p6+dTxQgeEwAOafoOcM4IQIrXmT66ZEIKhvIOU4Ps+FtCSAd+onwN/HMtQhHCp3fm/qJweHY7Xz3L86J/yxh1vZE9pDz+YeRTokLduBcsWw1ysP6vmCfW860c4sZoaRDJtpg1giSy2qSE0Ay3yaaMRyphgZcoqHe7M96BdQcoQuXSSMJIEmk2gOczVXHZPjcLwVXDxcVg+SVTeRbXtE0gPW5fckZkkp5kQuNS8Ws/nEFTtk21qVFov3FRmM/zD8X8gKzTenmxoLKp+dmbXe8dpug03wDY1DF2D+LrlHIerrACI4ExvE3vO/xDGD/cQrMV6/J1h6WwbiOc9qjOc2ctSsIKhaWiEuPHUt/2wx/JdDO3m9TePkLc3MOt5ibBVkvT/dD0OgNN0aqf6+DeAP7r3uQ23/86brnqZR9JHH68cmKbJrl27rvQw+rg83gvs7u7nuAUEwO9KKR8VQhSAR4QQ90opn3lphghSM5BSEkloG2U0bRHcGhnZJogkLJ9K900czEBZGX/+4SZhKWKhuUwkx9PUwCQ9aKRgU2ur1fONCFazclY9sHK0wkaqcG0fzHJmqcm5leaGBGsxdFkK22SE6LEAt3SLapzqE4QRLS9UaUCRy/lAub5dbDUJZIQhtF5HwdWz8NhnO3/HClYzaJLRLJUvlB3qECzRCdzUG3ZW1h/+p/9KwZ2D7R/j7ddcz/1nQqS3LZ2DxCDAD6NUqQClYCU9eMLaHFhmmuZHpgz77obsABGSqlelJPLktJCqENTDi1yszwI7IfSV2ULcQ6zm1SA2D6y3g/WZkco8XDmvGbC3rINhq95imeEOwcqUyVQN3CggrM4wfOyrHFoQPD75c1y1Y56nj8Kc9yP0yMcPIzQEvhRq7tas4HthhKXFBGvnayA/RtbWCTULPfI4dW6JuXqbRnxPVNwKXugxmZ9Mj1G2yyqg1k1+ef/7adfnsFor4DWUTTrwrepxQqFTkDorNGi4AX5WzakmNOarLpO2jxspBcOXNdxQvacvlCV93lTft4lzZvc9lwTPp+cr7C9ZzCY1YULDC72UjCXqaiTB0bKpevr1M19neWyZ46vKhGJ7cbvaX+gQ+miawBSd2r6BSL130w9xppQO4a2plbS0LIYmMA3VBLktDKKoy6L+wiNpreGzs1VWmj6HpoqEmklifSDdBmJwD1x8nMqDf8EnzfdRzJgEso2lQVYzyQoDKudSRbsbs41Zjtb/lkzlLXRaz/74cEOXpfYSS90puqGvaq6M9e58NTfoKOljB6FyTqWann6gk37b8wK1aNStvi/W4z5tloGuCfU9SUA5k2epBoYuKEuT67JXEYQRQSQ7ClaMvaOFn/DMXxi2miL4uq6fN0kpPyqlfPalHlwfffTRRx99vAh4CthAftkcUsoZKeWj8eMaqjHx1EswtuT9+PQPLnB+pUUkEwULcGs4UZsoksiugKabDAzKV+GHYItBWkHAvPccuqaUkO2DWW7dPcSrdw9RyqgA1DbX1yC0m7EKa2Z4cuFJwjgV7YbtsRmEsf41kYz4m1P/ndN+lWxtHk51Upi6a7AaboiUEkvXIPSpRh6maePJiGrawLcr3ejZf+59I78J1Yu0Vk6pQBI66XqPfEqRq9IUHP6ZeP+Ool9w59LHBycHGbWvwRBWWueSFL/7gUzNDEARrCQ9K+stqYAwUQaiEKZvhMHd1N0mYRSiaXkGCONjatS9hkodDj1qkadS02JkdBWELjbWp14mLo9eEIGMcITfCVq7U/AyA+lctI9/lZyt4wQVdgxlKdo5DkwWuWrCQY88/EiiWbuQYUDYrq19S/wwwhQxMdj+ahi5irxtEGgWhnTJBC4y0tNr1Q6V6pczuyz/rTwfvfaj/OrbP41+1ZvJGRlMTwX7d2WVEh1pOgE6o8Iip3lUfB9PmOiaYMjcgyZ0QumTcQI0oSO0KFWqPAGNrvTKolVcN4bpWNnQZEDJGWAmbEB+NN0/SQ1LXhtKCHWzh9yfWD2BH/kcGDqQKljWie/A2QfRhXIqTDDhqOt9cv/HYFAZJySW5G+4Rr2vKTJKXXMGyWnG+hTBpGdXFKUpfK4fEQqLkUF1j99Xn4SiSkuttHxsv0J55gF2LHwJS4eMMNRY/RbN5vK663t08Si2qXFsZX3T9wQvJM19rhF/pta2WTBs1ftKM2D8cLp5peExEDc9J1OG697XSbM9fi/rYOWUe2XW4oYdecrFzj1bdAyEEIR4SCkpOVkODh1kPDfKa+U0RX04baq80ULSy4mtpgj+z5d6fo0Nex//xnA5R7k++uijjyuMMnBMCPEwkEa1Usqf3sqLhRA7gRuAH6zZ/jHgYwDbt2//iQYohEA3LLwgQhManpVDMx2lYPltWkAUhuixAuHoDg034NrRq/HEDp6v1wmjkHPVC5xvV7nYKnM9I2iaSNOBB3IWyw1vw8DDdWsqRTFWBB5feJwbx25E1wSjRbvHZj1Bzaup/TWdjN9WK9I7XwNCYAiDmlfDCz3qXkhEoBQsTwWRI6UxLi6eZdl3GTScTrAmpbJ4TidGUwTrkU9Trx5j7Kq4/Du7JsV57xshF6flxWRNep3VfC0KyJg6lTiITZwVEwXLCyNMo0Ng/MinHYUIGWK5y5A/CNtuhdCF0WuotHw++cApWmGFZb3BgHQoiWZ6TLft4oURdugrBaerqfGtk7cCKItv4O3XTfDtZxeotQOaB36e4rHP0fRCbLOtzCeS1LuuFEasHE78d0sG5HSTW3cPIvZn+eJsm1LGpOVV0KXH/mgQmb8N3K9z7uIM9rDJY2dXufvAGIauKXc5ESplK1baMqZOJl9Gr/mMN45h6lmW2zWeXHhSXXdYl4qmYfDw6RWumShQKIzD0vMAHBg7wuNnF1jVLIRwGEbDFj5LoYsnCtimxrh5DavBeQaLIbVQw3dLGJpaUMiZORoIqn6d7TGhOjJ6hKHMENsL8efuzPfJtVbYEZwkCmuU7d2cGt4NQuede9/JaHaU2cYsJ1dPsqO4g8XWIlEEka73EIVK3HJgPNfxtzRmj6rfMsAQNpP2YSJC8rQQhsXjF1sc2SXRNJEqWHnbIGPpTOUGuWHHm5iuLvDfF46xSkulCCZukDHRcruUr7YfEjom3o47Oe6OsOLs4FY9i334vYTf/hQ5f5nJ6hOco4rBJFlhkN1+G6w+Rau53uiibJexdUHQtnh+5XncyOXg0MH0+efn63zl6AwfuG07PjWGuxpgA1ysX2QsO4Ye3xvL7ZjEhT5SWp2aJsNRCwmv/rXUtj4II1aaHvvG8j3HTI1ilk/2bhdCqXsP/Snanb/HM83Pc77ZJBfeQVYfoJhJjIDU/BXtDAeGj4CUPPTgD2ljpDWXL5eZxWbYaopg4iKY9A15O/AQcBkz/z766KOPPvq44viDH/eFQog88PfAb0spe/JZpJSfAD4BcNNNN/3ETie2bRNEEZHUQDOVgnX+h5SrbZZR7oK63wQrR7UpefJ8haLeYpstKLRnyKyeY8VRq+7taH0RfapgGRqnK6eZKkxhxqpI26uCZnJg6ADPLD2DoJNGlreN3r5OMdIaK83ESPaPx5coDScrJxHeFIF0FcFqeaDpjOQUwVpJzC2SY1XO96b7mWplXkpJXfrsduPzynT6dbHndVCcVORM09MaLLcyn+7iCBddE7zryBR/+8PzqWtZQrCCMOJHS0vM19uMFh380KcehBTcOaIwhOywqjE5+C4AZharLPmnkFIy13AJKZHRGnzw4Af5wwf/hKb0eGLuGaLWOQbiFMF373t3j7X5bKXNWNFh72gBIQRfePwirdwkxYPvov3NzzBsttCJOspZ4tKnGSAlmVjBakUB5EqIdgWay7iBCzLCWjhKqT3Pdu0gFwrDsAT3HT3BUk5dq90jOfaPF1X9mYjUceNgWQjBW1/3WnjwRyw1XL69nONC9QIXG6fTOe02NfHDiE/cdxIviHji3Coffc3t6toN7YHVc2TOfYNVK4ct8pSEhyV9HpJzeHKS6wbuwGtl0IWBJ2sM5iykO0i5oO65nJmjoelEUZAqVrqms7u0GyoXlIX5yW8D8CrNYl6Wsa1ySkhLdglDM5guTPNr1/8ax1dU6BpFkkg34zq5qEdl7CYZQgg0ITD9CpowGLcPqH3E95jRcsrAZbHB3tF8SrAsQ+Ojd+xGgEq39UMKmkmbuBdd0iMucEEzWN73bh6Latxw8a9p+xFh1iKXL7CS3QnAatNnrDhBEEbkTEXkhakU0qyWxSxOYQqdZnt97XV79QzDSw8zb9h8/tkvkpVNDr66Q7CevlghiCRfO3k/C/5zvP+a91OylUnOfHOezz//eV49+WpuGL0BIE2hVOmvOo6RUSmCyUJAV4uE5aaHlKqurwdd+/RgaC8sxseP2z+YukY7qpLVB9LU51Cq741MUvMVepgC3EjnqQvqdcn33ZXCVgnWNHAkTpNACPEfgS9JKX/xpRpYH/8y8Ef3Psej1Y3NFPomCn300ccrAT+uJbsQwkSRq89KKf/hxR3VeuimRRgXyQvDUmk0K2fSeqhnZ2tc01jBsHJpelm9LTEygqsXv8ZEMeKEpnietUFKXz62HGtFK3z51He4fuR6bpu6DUBZYGsGt0zcwrHlY2kaGKgmoIkZRDdSG3ZNZ1yPA6bWKlg5Dg0f4uHZh5WrYa3Ctec/yYnAA78OmsF4bpQnJSwnaW8JwUrs1gd2wuh+uPAoeA1aMiSSknwj/n/THaBtu0X9FkIFeWcfhMp52oV96S5mHJAN5200Edupo4wLdE3gh5LnZwTn2w32Do/ihi7Vlo8VNpTiUOoYrnzpyRmOza5wpvVQeozAN7GNiIyRwTZ06gR88+w3KdLglsgHoTPgDGDrNo+eXeE7z6qUzMR2Ogkc234IVhYviBgUMZlMgshkrgwLxg9jzx0F6rhRCOVtXDx/kaOnv0o7Vwa/jebVyGAQGgWKA0NwGuyuhqtJ6mbg+xS8c1Bco2xmBmD7rejP3oeu56j5TYpxHVrWyJI1szTcgK//aI6cZaTkIpRSkZXpm9LjBHvfCO4yw8YEk2IGM6pTRRBEkryVoeZpGFi4UZVRO8ubbzrIAxeUklm2y8wLDaKwh9QB8Ohnev68PTPBc9U6laZJ7EHRU68IHdOKSMLe7H7c9oy6/7TOfgN2VxsDu8A7c3uYKVzFt+NstUNTJfY1oWxP8VhbNffeO5rvWJIbOnq3U6eVI69ZuCIglKKjYEU+lLezYo3hGiK9B0Jh9SgwP5qpMnbVCEEEg2bAgYki7bDFSuhjokF2kKxm0OpSf4+vHKcVtPBWTqFrGnqwhHb+OOgQ1Ocx4vTJJP33XO08jqPMZBKClaiVpyunuWH0Bpp+k4UknTjycbFxMmXqSzPUm/T0tZuptHjsrPo8D+e7DGwgtXAHVPpjfV4R3dFrYOpGnnn44xjzKqXR1AUN6dKOarSDNpGMOLwty9IFO72WBC6GrrEqTU4uKOWznF3zni8ztpqgOAZ0J1t6vBiVcn300cdLhunqI5v+/Ng4df/mP3308QqFEOJWIcTDQoi6EMITQoRCiA2qq3teI1DNiX/0cqXB66aj+v8kBCu2PNY1ga9nqLsBK8tKlQncEprQGXN2IAFNhoS+IBfX8GhivaBWcFRw7NiKbDyx2KnJcP0mQjewddVAttvuOWcbNL2QoMvxLookLU+RvLeVD3CdFa/4xylPju6gCY2m32Rl9iQYEboXN+wNfcqFEaSAR5sX8GWo0guhU/x/6D0weQPYBWguU4/JXL5ZSSZL/S5v7zVtSNSeynmClbPp5ulVRYYcU+ejd+7iNXs7CoWpazS8gBFzHwfzb2NPYQerJ77PyPN/pwhWJMHqpDg9N1ejEqj+UzuGsoSRRAgbU5MIGZExLUKpzCWQEfOhmtukxishVwA7h1Sg6cSK2rHZGhcaAi+MKFHrPafknIUO+VHsmz8CpSlcIhi/ls+3znJi9XmV5hb5CCCHhafnmBoqEwkdo4s4V9s+QSQZqx7F8ZbX9Q8DwC5iaBqWsAjDzj2VBOAnFxqcXGhwNFYNksbNUSRZbXqcW1ZqS9KTKiOGMXSN3cIk0GzafkTeyhJFEiF0jLgmrltBGs4MK2VShgw7Q7ByRilOG9QNWbEieap1XerQmKS2dfZR1yGSsKtwgF8pHeaa4g5unbg13afnNZrBuJFlR1cN3L7RPJpXY2xkFMvQ+OFplTbndilYvfOYJycMQhHR0JyOghX3SOu29W/6IWgGe0fy3BYvVD92dhU3jGgLm4xwKWVMZmUTMwpVip5dJKNbNN0Owbr3zL08cOEB3NBFE+ATIpMeYV09s4yYCDY89RlrhS3OVM8ws9riLx8+RtDlsLkYv27/4H4IlfU+hsPRCxXuP91kueFxfE7dt3/90DmenVWP15Ed3egsHJjZzr2t22AX+XbzPF+/cH88Pg1ftni2+RU++dQn+dTTn2J4oM7e0XyHYIU+hiZoRzq2obFzOPviN1V+gdiqgvUZ4CEhxD/Gf78T+PRLM6Q+Xmn4+OMf31SlesE4dT/T1X6/q1cCvr+JjXtfeezjXyH+K/A+4G9RKe8fAC5ngXo7ytr9qBDi8Xjbf5BSfvmlGqRhGERSEkV0go7cMHprhqNj7+LIxb/Cq6rgvNnKcm3+XViotCQpBE0v4PW563my+kRao9CNPSN53nBgkPvm70UTyonrSye/xFt3vZV22MbSbTSh4egObtgJtguOgZRK8ShlVdDyJ/ed5GLzBOMTkqKZQ4vJVmKpLoQgY2Soe02qS6uUHBXE7bHKnCgMMT11BMGnOOeX+Gr9HG+L++Pg1dV5J5btVh6WTlCPFah8koqom/DafwddqYwARJ1AVVbOp4/LzTPg1sAurOsZZeqCejtACIEtcojKcyyuLJKPLuLrWQKh9VqQo3rwXL+tTBA30tWEowK60CdnOYQywA8lEDIXtnB0ZXaw1kxgekApMsmYnrlY5dlzbV4VRAxEVdDpEKwkwI9TDG3dBiuHd937kOXtaTpl9zzkMPD0HANZk+GdEyzOd+yuqy1FAnPeEnp2k95ApoOuCQyRUU6W6ZypsXhh2LP7nftGuPeZOSotn09977TadtUId0zexfHKMZbPe+iaoBgFhEIdY8ApciZqEko/bUI7khlJj1mySyrdLwoZXDoNz98LB96RGkv0DNfQOD70etr2GIcGrse2ovX7xPMYRqA5BTRf8Lqha2F4H2WnjC7WqL9xA2/T75jMODpqMcAuMFZ0OLfcxA3ClGCtq3O08uQ0EyEENUmHzMYEK3HaEyijE8fS0TTBLbuHODZbY7nhsVT3aGORjZqEMmIlbGMFrrpHNIOsVWQlduXrvs8qXg1NCHzpEcWLEW23TqIhJU3MW7Gpy6NzjzLfnIfmQU7UnuSqXCZ1bUxcCqfyUxwLfdyMmdZMenqOT8fX/Fde21EapwcyvWpe15zgt9V3XVJfaDp4yYJJfA9bhkYtmGOi1FEYkzTPtBdb0EbXBBVfY7HusWNokxTElxFbIlhSyv9DCPEV4I5404eklI+9dMPqo48+XkpcWsW6+2UbRx99vFyQUj4vhNCllCHw50KIx4B/f4n9H2Bd9P7SwtQ1npz6OSZyGkYYB2hHfomg3sZ7eJaWWcJbncEPI6ptH03oNNwAHYkeBbiRpFSd5brKUwSnV2Hv23qOr2sC3ziD1qX4nKmeYa4xh+s3cOxETXF6FKxirHzNVtsYuiBr6SqNSQbK4nvH7XDuIajNqYApRs7MMd+oELYvoJuq4ewbMtPcfcd/QAhBfux3Odf6Fs+JllIookhZr3en/9lKOUqsvvMJydDM1JChB139s2SrQsMaJuctUs6Yanz2eqtmy1AKVoLQ9RBAQMSQqOAJK1XJpJQIAfvGHDxTR0p1nTRh4xg6RD5Z08aTK0pB0UKakU85DgSbXtzQdyTHruFcusqe6UoHCzWbCIHtV9YQrHifmGAZmnJUc6XPiruiAtWmWjjLoNECdDQ8PUvG0ikW8tyRyzExOsxMpUWtHeAFEUbkom/WfHVgJ9rEIVbbgjA6wURuAlM3efXEq3vOB+A1+4YZyCli/JWnZtPt9z2nFgV++41v4DNHv4WuCUIhieKgumBngSaGsDH1gPdf8/6enmQDduxMF/mIyhm1ceV0x9SkC7au4RrqGh8cvJHJcgYpVb3iwckihq6l5hyONoRm51WDr1h53V1aQ9qiKCVDRtBJr3RwlYJm5bh+W5lzy01Wm36nBktfQ7B0k5xmogH1qK3qjGKXSXSLRisg7xhUSvvRWktpyijAPddO8P99/wy1dkAbh2F/iRlLEZ2b7NHYaEYjYxe52FQOf9127St+HSEglO2UeLlex5mvHROr2H9GkSugGVQJY+WxFZPM5HfZLkPk09YMyI5gaGdZzuxMj5n0rXrd/lGu72rvEMmIr535GgcGD7A9dgvEzKQNiNFtWrE9PbHa5pg6V09KLLNjAd/wG+hBNH65AAAgAElEQVRC76R/Buq7qRYYoHeaK19JvJBmwVmgKqX8cyHEiBBil5Ty1GVf1ccrGn0HwD766OPfAJpCCAt4XAjxfwMzbD1F/mWDqQsaeomG7WAkrn2GxWDJ5JbdHkuLw0S1OVabPlIqZaneDhhtn0J1UAKxfIKMZuA2F6G+APneILTbvKJoFal6Vf7xmb9gm9/ELikXetuwWW517J4HcorUfPnoDABvPawqLULp0fYjrJH9MHYI7vvDVMECVaczW1nkePA4u4wGQ8LBGNyVkpWMOcZwuIcl+TQyDBCtFRXodhOsODWvFvloZjY1dkhTimKoFDOoeIJWq8lESSkuNWuMa0stlaIUO8SthaFprHY1YQ2aSqkYK9nIoEaNYvqcH0qkBCnU9RFCcP22MrfYk+SWn4PZo9henZA6fggYKuB24pqTlaZ6n+umy+wc7l1lnypnuLDaAqFSQgeoAXpHPUus+buMKGzdxg1cGl5D7Rf6sHSC67yIB4EJciyaZZUeamQYlAGv2jXIt47Nc2G1hRdE2EFtY4UBwMphHHwH5oUf4kbH2Tewj0PDh9Knm15IwTH40O270DWRuk1uVLO3UHdxsdGFYH+2xL3tBnuyd6Q1QDucV3HndpGmHyYoWAVGM8PsdENVqwMw88S6eyCZk3tefS2fe3QuJTvPzdX55rF56m7A7XuHyZk57tl1D62FGnq8qIC3vn8UoAxTpATDxvAaCBkiha4IFoCZJRfXNjbceMHB0NK6yZ7z0CwiI8usMwrUoHKec4sVpO3TCAJKWYu5qTeyVPfY1WXQkCxwHJutYkgLJ1zmwbYisLs0OyUnWadMu3KCcO5plhe72vXJSC2qyCBtT9D2OmQxUd1qrs9SPWQor+63Cy2lEklIF1xafgtd6BSsAkQBrqYhD7yDoxemCLpq3eZran6Sus8Edb/OydWTnFw9yS+0ItU7w8rDrjvgR18Ep0jbXVH3eKyaKWOTBmsRyrDjYOi3MDSNQFNjz1kvhN68NNjSPxghxB8A/wud1T4T+IuXalB99NHHlcO5x7626U8fffwLxf+A+n/366j/1NuA91zREW0AQ9MIwgg/lJhdjmZCCG7bM4yWG4R2ldVnvokeuWwfzBJEkvFzX0n3bfkhttBVc9u5o+n2ulfnzLnvIZrLMPc0RAG/eCD2qbrwKPXIx4l702T0TI/JRcExU3tkgK8cVcFdKH2CUHZSqoxMTw+qrJnlqbnzCBmha4KCZkGhUwb/uv2jZLQydanzx5WjVJZPgFvvqXdKFKdq5FHIDKqASohey3Lgzx44xVeemuVzvJl/1u5EIglDiWsWGXn9rytFYZMg2tQFrt9JJXMrq4RCR+hgCInb1fsoSaeKRIeQZSydfROxKcLJ72CefYicd0GlCMar8HZMsFZjm/iBDQrwJZ20rsmiTcmJ5zVJgzLWr8rbuo0bujSCBtgxEaxe5BprkF8pHebW1/8qew/cSM7SFXGNTUQKjoHrR9TaHnZ4CYKFUj6LVpm7xt/bY+8NSv3IWB1Dh7XW2NsHs7z5oLrmZ5aa+HoGQ9fYbw/yjpG3UzImydo610wUMbUMN050yNtHDn+EDx78ILqm8zPb3sRNzqgyUUlw/oe9A736LXDbb2BaKtBParAS44lutW0yvw0NC9O01Lye+W7qWteDRMktTGBoYIUq0LdlvN3MkEkNSiJcP9y0/1Lhzn9HY/gwpw3lgDl74TTnl2r84EyNhheSs/RUueqeR8vQKGeVeUMoDHRdYKAhhKAUyfSzkLHLEPq0nvp7Tp+5r1OjFvrYQkeTUUfB8jsEK1Gwgsjjubl6anMexHWPjp6lHSj1qxW2cAxHqYBRQFsIPGFRMccY6jKyWKi5zHnHmG332rC3ur4f/tKb4XF3AcrbVN+s1/17MGzc0IsVbTWuoUynbOGWiVv4wIEPoAudN+98c891MnRBEBuVZK6wRTtsXcF6F6oHSNJ08WLc2b6PPvroYx22ooz+2vW/9jKMpI9/6xBC6MD/KaV8P9AG/vcrPKRNYejKzS4Io9Q+vAdWnrAp0U7fz2vaAblr/1eOnV/ECyWOqbFMGfxl9FwZl6UeE4CvPff3zB7/Z66zh8Fd5ipd/Qu/c/wW7jt1Pythm5G8CoQdw8EN3DgdLjYdyFtp76gEvmyhk+msIpuZTkAKZIwMDTckIyM0p0Bh2x2w8470+eu3lfnR/BTfPB+vmD/zt5QyY721NTHBakifgjOoLLa67MQBml5A3Q1UQb2Wo23bLNRUHyqRzSHyI3F90sYEa20xvN+o4Wk5hK7IhSs7xCZRRSR+bypll5piCo1y+xxz2TE0JJEQlByVJrXSVDVIBWd9+HXjjgEurs7wsTt3k3vQUjUoWpcZwAaKTUKw2kFbNXG1cuA1yMRB99DOQ9ye7JwdhIVjEEUpYf7qI8e5ISbAl4Jt6AjpdK51jKYX9pCB7uffft0Ee0cLSCn51rPzXFxtEWhOmo4YmgXwVQrY3QfGeMM1oz33vaVbnYbaVpd74HXvgyf+ev0gzRzYeaw4nTRRZpKPQffIE/JlGVqnHurZf4brfq73mMk9UxhDrJzGCaqUB0cRQayomJmOA2QQpgrWRtDMDKVMgdNLMwRZm/riOTUPwqDlheRsg7qb9HDqvT9+6vAEf/mDszhBDUMTBERMG/FCROLs6JRBSs4GNY66i7F1ugWhT0m3MfC7UgQ7ipAbRBQcg7Cm5q3tR3Tz/4IxSMA87bBNK2ilrQYcCU0kbU/N5Y07BhjJ23z2B2d55PwZLrSf4OH5M7xm+3XpsZIUQwCKk3yvEHJ9cTLdVPWqah9hdOoIDbU4IRAcGT2CEIJfvu6X11ynlpqX2EgmZ//LIVielFIKoWyJhBBXvnqsj1cs0vqeU5lL79hHH3308RJDShkKIXYIISwpN3B+eAUhCS7dINpwBVY4RYI4Fc7UNfJaGyuuC8mYOhV9iqy/jO4ME+g1gtZy+k9+rqoMH5bCNqbQef3I9QDsNArcBzB6TerI5RgOEknDb5CP1aS1gfVEyeFky0XQFYmtITFNv4mhC8oZHSF0zIGd60jCRH4ML5RUpc2K64Ll99ZJxcSkLUMyegZJE7FGvVpp9hK/SOiciK2atXIcrsTEYyN0B/WmBlGzTmA5YOrovqAddilYcdAe4TPoDHKxrtwEuxU1S+hoQiC8JkY2wtN0BhylWlRaPkXH2DCFbO9ogd95U3zu+++BZ/6pdwd9YwXLCz3aYRshBG959e+Te+TTMHk97H5d785WXrENv0HRMdGigD1L3wJAXvVWmNzc98U2tVTp6EbTCzdU4wCmyooUCSEYzFlcXG0TaUZK5m49uBtjQWe86KBpAu1SJY9De5Vtf3EKBnfBxLUw8yQ4pY7yFBujJApSojZ2m3MkSK6jqXe9p7/B/eF3FCyAnzlYwJiehIUn1XYzg21oCKGUINeP1tdfdWEwk+X5aJnz7Swn5y9SAKLY7CNnGWl95NrP/2hcU3Rq4HZu4mu0dYdyFI89vveylrp3vt1Un/Xd2XGc/BjPnH6AopnFlHWiWCVt+w3OVs/ihR6uL9k3VeA784rQ+GGkaqxQ9Yx5Y4BV9xSt7/4R7fIomfwYhAE5dBpENP3YIdLUGY7TC6uBUrnXzkVCsH7xwC/yF8/8hSJSMc7XzvOFE3G73S4FK6mZM3Vz3fcQUsKFR6ByXtXTxfWJzgZtKl5ubJVg/Y0Q4k+AshDio8CHgT996YbVx4uFl6rGaitW3+dW+26BfWyOy92bfYWrjxcRJ4HvCiG+QFcy/8tlv75VJHbJLT9kZINgWnPyyjIcpXaNHP1Tiq5qerp89c+yeLHBRO0p5NABaFzEa62k/+R1v0kALERtspqB5rdh5glyP/oStmbgmpk0kElWjD/zzGf4let+BU1oHJwscmK+zvRABkMXvGbvCN9fCCDqUhbMjKr7irGvfIAgfIDdVom8k1XWzmtQzDhcX/g5nl/8OMdrq9xemEiNLdQx1ZiaYcDJMw0OGi12jHXe89xykxMLa5oqdwVhmpPvjG0TBas7mB3OSIxI9SHCstFbPq6wcQMfSzd6CFbe7BrnGgVLEwIrCPDcGhgZipZK33P9jcnzOmTjRsrdTZcTNaeLiFi6Rc1T/YEc3WHX4F54w39UgebaYDRJIWxXKGbGOXLxsxiRUm9y43vAKbIZHENPFaFutP0Qx+wNon/+Vdu5sNrqOc/BnMVsRZEVzXKAiIHBUd40ssUwVDfTJs9qQHGdVmagQ7Diz0xCmP14vG5MDKMuRTchX7ahekjRXFYmKHNPw1hXGmRFqUwUp0BoFGmCZXRSYQ2l4NqGMn5p+eGG6mSCO7bdykNn/47vzVWZim3vRUwMi5kOwVqbZpgQi6Y1hHvj79A+99fYs8+qJ2Pzk8FMb73lnYMH+WH1ZNyUWseUXpqE6gYtvnjyi3Fj87vJ2pKbdw3w8KkVvCBiODOMF5wGYoI1c5K2PkSreoFyeSeELjnN4KmFCk6xSi2Y54ml0+wafhONcIlZ76n4WpgsthZZaa+wu7Sbb51ThD5jZDg0fCh1AwTVlDw9X83gtvwOcjvuph6nMyYNunuw9Dwcv1c9n5+A+CO+0QLGy43L3tlxL5DPAftRdPZq4H+TUt77Eo+tjz766KOPPl4MnIh/NOAVm96eBIZtP9wwZUt3CmkvKsc0sHSNvbWHCIFsfoCWk+cH2z7MRKEGro3bXiWhIkZjkQBwo4ABw1ar9SunEULgCB1X7zTtLFidKbpQu8C24jb2jOT57Tfu61lB1jSPMOxSpIxeElMwBzlS/DnewFeZHJmE7Oi6cyrYKgxxne00WnHriDVOf+f3f4Dvfff/5SqRYbG2yo4xyWylzYXVJvc9t7j2kD2IElJhZpVj2QboLogfNlwiNELdQBo6uhZQjyR/+uR/wzFNdmdvBjKE0sfWbbJGlvH8eMdCHTAOvhvtex9nrHYKaWiI/Gia6uaF0TpCsiEyg4okbbu5s83OKyVu52s6m7oULGet2+C6Y8Z1YiunyRQmKZshA9kMgzkLzSlt/JrkfUyNWlevJlB24l4QpTVICcZLDuNdltoAebszx+6tvwUFez0BfCFIrmt30B3XqOmawNDEOvvxboLYUbA02P+2TsPi8z/sJVhnH1S/naK6LxMy57cU6dPVeeVsnSfOVdLHm2HXwCS6BjUNLK/JgYkigzsmONrOMlnO8PTFanoOCWYbszw2/xiR3IkmdBzHxpMBTlKbFytYltWbXJZZfB7t7DcByAoTI/KQWtLMuAmUCUKJlCGaFqp+Z4bOfK3Nal2kNWuGyEMU0NICWoFPxshA4JLD5Gy9zszxb7DonSBfK3O+dg3zfIdIRuweyRFEAX/z7N8AsLe8Nx2bqZk4uoMXemkq8qrbqa+zDUelMw/s5djyMUA5EK6D23ENtTO5lGC9EnBZghWnBn5ZSnkY2DKpEkJ8EngbMC+lPBRvG0SRtZ3AaeBnpZQrMYn7L8BPoabng1LKR1/gufTRRx999NHHOkgpX7F1V91ImqxKuSZ1KXnezqfpTkZMxhw9ohGAnSti6Mt4UidvOyzplrJijiIIWhhd9um20FW6XByQejIETU+LyYt2R8lYaC2wrbgN6E0TfGbpGaTWJgi6woikBktK5YQXB7gGQQ8B6UYuDrwN4bCUGVMb1wT7f/nkEoGwEFoW29BpeQF/9dDZtYfium2lNMj19BxW2CCTiVPVrRysntlwDFePFfju84p8DeptVtHQTIdAKqK7TBsZBmia5L4L36Ao7yGKCdYHD31QHaTVafBq2UU0BCaamgqjQ169IEpd4S4Jw4LbfqNj0Q7qet3+mz27WbqFG7q4gduxrN4Mmdgu+9T9iLGDHJ6K5zk7CNqlSZ9t6CwGnQxbKWVak+eYl1fkutUsS99AXXuhGNihfk8dgeVY+dA7qYqmoaX3X9tPfndSHP1YPbIMDUpTcPVb4dmv9I4rOd/kvZxSahJC0OqYj6BMQ5bqav/KmpTVbuTNPJah0xQBI3mbUsakNDXE1eVpAMaKNs/O1nrm9B+O/wMAoRhGo4Suq+PbhgMhnfRUw+bd+T3MhS00QCwc40Z7lAjJtcXdfHHhDBIoW8VUFQoiSRDVMWLVWouytKMaPzxdJaOXEGjIyIAoohZ5BJ4XE6w2tjRwiah4J9Sc6xqPzj/K/vEiUkom8hPMNjp2/cnjO6fvjMdvI5G4obuuNUTOyCoLe0jva7FRCmnX584e3w8vUsvWFwNbtal9VAhx8+V368GngLes2fb7wDeklPuAb8R/A7wV2Bf/fAz44xf4Xn300UcfffSxIeLWIn8ohPiyEOKbyc+VHtdaGF2r1sYGAa9t6pzO38DRobegxalz+Vh9MU0zXZUfzRdAN1kKWjRbS8iVM7RlkFq2Z4ShHPXigOauzDQ7SjsZyyqCkzEyvGffezA0Iw3EutH0m3z73LfJWjotV0/fFzOjyFV83GS7If0NHfCgm2DZLOe3wbU/20OwgjDCkyqrcyA7gBdGPHVhdd1x3n1kitfvH+O337gPgKfHfhrttl/jjdfEpM3MqnqaaH0dUSnbITy5qIKBQJgOftBUzUs1kaZmhlLiRjV0jY4BA3SCXN3E1E1aI9dioitnwPx4R8EKNjdBWAcre3nio9uEMqTu11MStym6la3VmKDuvwde9bHLDsVZU4P11IVq2kh4KymP3SqhvRUF77IDKsFdvw/D+zrbuq6HpWvp/ZeMu72ZggWqZm3qRmUDHzePTnpjMX44fs+icrkEpWB19WUayXfI7TUTm6da6ppO3szRELIzD13X7fBUmbceHmfHoCJvftQha285PMhrrx4hjJtuJ86UnXvPZtzIcZ09zGF7GICMZnBnZgpr4lruMXbxWrmNwcwg855aiPDDiHZUQdPipr4xmYmIeP3UT3Pb6E8plVqGrIQuBLFSGrSxIx0Z11AZukDXBBfqFwC1GDOcGe459+S7ZFdpl5rO+L2SpubdBGspbKXmI0kz4e6FnxTNZciPwp2/hzGprlO3WnolsdW7/BbgQSHECSHEk0KIo0KIJy/1AinlfcDyms3vAD4dP/408M6u7Z+RCg+iar0mtji2Pvroo48++rgUPgscA3ahXARPAw9fyQFthG5SZWyQImibGufLN1HJbGP12o/A1I1MD2YZLzpsH+ykB20fLIJm8p3WBT719KdpNZcIZAQDu8ApktNMFTzGpg+7Dr6Xe3bf09PcdSw3RskqUfWqNNfULiWBkmPqGMKm2o6DwDjgbDbrSCmVgiAlRuRtSrCSYEgXFm0ZwdCenucbbshF90n2jOTYNzKBF0R4a8wWPvyaXewYip3GhOBDt+/kPbcf5JZrdneUgMSFbpM6rASDs9/FQEPTLVy/hRBwOjxLGNfvBKGkGS2ja6KX0CRK0+671Eq7lePU8Fvxp28D0+lJEdwywdoCkjFUNunxtQ43vF/9Xo1ri8zsltQkx1REOiGaFyudGuutGApk1ypYLwbWjrurDs4ytDQlsB3btLs9ClaXi2A6yCHlvJfcIyfiNZgk9U5KlSLYWlH7dBGsg5Mq+H/LoXFetWvwksPOGHmaIqKpxQpZ12fDMjT2jxfTGqLuz94Ds1/lwGQmJSLZtfb9Rhfhz8bW5nYB7vhdcEqMWBmyocVgdhQZJo6BIc1oBU1Tf187oRz9QumxZ+X77Fm+D9cHB8FS1AavgaPZKkUwsojQyZgaHzvyHqYL0z3nuZZggfp8Zgw1b8m9mxhfuKHL/sH9CARvG7sFYuI1khlhb3kvd++4u/dg9QVYOqGuT3ztP3jbTn7x1h2bTf3LikvSPCHEdinlWeDNl9rvBWBMSjkTP54F4qUlpoBzXfudj7fNsAZCiI+hVC62b9/+Ig2rjz76+Ilx6v7Nn9t1x+bP9dHHS48hKeWfCSF+S0r5HeA7QohXHsHqSgs0NghCu9OG7EwWdt2NNX6YXVYODI23Hh5noeZSsDKdYDP0WGnNgxDcseMNPJ2f4EBoqQBbSpi8QaVZbYC8ledM9QyfevpTfPjQh9MaHzdeWXYMHallWW36yj3MyND2Qz57/zFuuvYQedtAlz66kKo+awPomuA337CPP3vkeb537gKfuO8E+8eL3HmVUtuePL9KLZhnSi8wmB+hBQgiZckcB/ulTG/KXXkjVzuzq6Gsvb4MT72fRD4hkcIkZzm4I9czP3eeUNOIIsm2wjaOzTyNE9XSJr+dEzFVHx/AnX0YXRPoms1bdr6DJe8sutCJ4pqlF41g0Kui7SnvucSeMYrTSsmqxeGVuTW33+Tec4OQrGUQdTnzbUWR6iZYl7OEf8G4/hdg5XQP4bJ0LU0DbMW1RG0/pO2HHJ+rp/VZPdciMVfx6urxYmzAkCgnoweUCcbi80rBSmragIGcxW+9Yd+WzBWuHhnmu4tH+edwFsfX2LHJ4gNAY42z4UJzgS+f+jIAjpkHljrkvvt+zA5Cc0mdh2FBeTuOqRNGkpIzrpRcKVmuhzS8E6Aps5y79lzN9849gSFshquP4/ohD9u3MYHGUtwbL3P2QRg5QCYyQBNct63MofFpnlhY4nztPDeP38yQM9Sr8MbIGbnUrCL9PgldgijAj3yKVpFfvf5X4fQDsHgK2hWEU+LunXevOxbn46/wfKe2cyC3saPllcDldLTPA0eklGeEEH8vpXzRGjN2276/wNd9AvgEwE033fSCX9/HC0BXwDxd7TsC9tFHH/9ikeTZzAgh7gEuApdeZr4C6LEL36AGq7t2JzUWKHaSPfaPF9k/DmEUdgiW3+Js5QxoBtsK2zk8ci2c/A7Mxw5k3f2F1qDbJW/VXWXcUH2ykibEjqkh9EGevlghkpKrnAxnl5sYWZeTCw32TxTQIw9dF5sqWKAC7oKtjCPqbZ9Hzqxw51UjrLRXeGLpIQDu2ft68m5eESwpedeRKZYbHkP5y6TFJUjO85E/VwF5uXeB9sYdKlj2TxXR7SmuHvNoF8apDN8MD/4jNwzfzu3brubvnngcYShVwd7knEp2CU0IcvoQg/YYB0bVinrS8PbFVLC0OBFpMj/J1YNXb+EFmiKYieHHlgmWep+ZSpupcoaWHzJcsHnN3uHUQvxSyHWlba2z2v5JMbCjUycVwzI0mp4iVA1XzbsfSj738DmWGx7DcVPcHoKVKFVeo1N/BcpwBJS6alixgtVbgwVbd67bOzJCtT6MNj/HcuSy4xKpnQnBMjSDIAqYa84RSnU+mewQLJ/pfNa7WyAkY0sWFrKDOJksNTvPMOpel5HqH6drEScrzwGws7STm0feiNsqY3pPUA0ihAzRfQgHpmH1LPbCc+AM4QeSXeWbmS6o74ojo0ewdZsbRm/A0Azmm/PpcLJGlmbQJGd2lPZEyWoH7VSVS7alZPH7H08XLtbBqytSveuuzSf7CuJyn/Luu2X3pnttHXNJ6l/8O5n9C8C2rv2m42199NHHv3acun/jn2/95ys9sj7+9eA/CSFKwO8Cvwf8N+B3ruyQ1qM7LXCjRsPdBOtSxgK6pndMJZae5+TCkwjd6rgDdruNWZu3tUx6YAE8Pv94+jipmXjL7rvJWQ4nFxp86ckZMDNU2z5G1I5NBiRG1FaKhXFpA4a8FduxRys8Wv0cTy8+zVdOfYXT9acxdcFUYYJsJgloJaWMybXTZabKW+y3mJyLlMrMYBOYBNy6b5yincUNXUKpAr8xZwcaJpGEiUG1trtZzdO+8j7evvs9lIypNBUN1liDv0iYzE8ykZvgtdOv3fqLuk1EzM0JdjfsOA3wC49f5O8eOU/TCyk6BruGc1siTC/mOW8FjqnR8kP++NsniKRkJCaByw1FnBbrHoYmeklRSrDqHfOEg+/q1MEJochWY17VB22RnK5FwSygGerzGUl5yTq7hGD9/P6fB+DppacBde8l7RRoLnfGlyAZW9cYrTt+g2dG76Hh2izWXc4u1tjp3ErWMphtziKEwNIsRp1pNKFj6hr7RvPYQQ0RCNB05Og1qv/v8gnaUmffwA28Y+87EEKQNbPcPH5zmmpsdhnbJPVT3QSrO0UwSTtOn9+gqfY6tCuqP9pl6hSvFC43KrnJ4x8XXwB+KX78S8A/dW3/gFC4Fah0pRL20UcfffTRxwuGEMIRQvw2ynDpfcAxKeXrpJQ3Sim/cIWHtw7daYEbqRz5rv46lzUW6ApQKqFL2S4p4gW9AXYXiVqLrNEJvk9XT6ePk9XmPaU9PQXloe4QSTDDNtWWj+cHDLbOqCDWvDTBmigq8leVaiX9q6e+yaq7ShBJTF1j0Bkkl+kEZy+4kL27QH4zUhmFqu+UbmHrNm7o4ksXTWhEkUHbFQgh0A11/hulQIFSaEazKsWxh2AFG9T9/ITImlnete9dDDgDl985QTIXmn5JZbEb3dbyCzWXlheus2e/FIQQjJcc9o5ufr+9mMjZRupyCLB9cD2RXNeAOCHMgdex/17bG6ww3qlf2yTt9XLIGJnUmKItg0vu2/AbGJpB3syjC52G30AXOh8+9GHESKxYTm6Q4pumDXa+B7KZLDnH4cmZFru9QbTWBGVzmt0jJaSU2LqNEELxNKk+d1nLYNRsIQINhMZCmOVHFxtUVpZoSatHmVyL7s9HyVLfOU7XQout2wgEbuimtWbpok63eYncgH4k9XBxI/JXIi73DXWdEKKKUrIy8WPiv6WUclOrFCHEXwF3AcNCiPPAHwD/F6pp8f8InAF+Nt79yyiL9udRNu0f+vFOp4+fBN8/0etv2U8L7GOruFRT6W3lzKXrs/ro46XDp1Hpgfej3GoPAL91RUd0CXSnBW6kYHXXruSty/z7FkI5o11UylOxOxjsDkou0f9oMj+p+tUYTqpagUoRNDUTXdOZLGVSe+paoBNGYEQuMzWXQ5xge/URtKHByypYQ7kct+4eJAoDZs5ARowiWSIIJVPZPVyU7PcAACAASURBVOiaTjGnMZs/yHJ2F69+oWlmetd8hZvYaMe20OgWDg5Vr0oQuejCxg8l7SBCx8SPmoB1Sde+5FomdUDQRbBexBqsHwvJNdetLdulrzWyqLsB2cvdg2vwszdt28ho+yXB2sB/72ieZ2aqaT3WhkjIZuhBOw531zrXFSaAWM39MRWsjNmpkWzIACklQRRgdpEhKSVzzTnqfp2cmUvNIep+HcdwlGqYH9k8fS4KNhzj1ECGuVWTfZRpGlejOQbZfIlVdzW9n2/ZNcTCaj1tmDxh1LngS9B0Gm2Jaw5zYbVCg8FL9vyytA7BGswMwkpvs2AhBI7hcLpyOnVLTFMErRzsfSM8/3WVjrk2ldlvqc/xZfq3XUlc8tMhpdz68sT61/78Jk+9YYN9JfA//bjv1Ucffbw8uBSR6qOPVyAOxD0cEUL8GfDQFR7PJdHtIrhZStV7b5pmttK+bL3HoeFDrLqrzEUR/uyTFLQugpPZGsEq2SU+cvgjPDL3CA/NPkQQBRiaoXouxYRp10iOoxeUg91S0yfQbIyojRb5uM98GV0TylXvMkpJsnqu6W00ATP1BcbLGjuzN7OvvB9QAdnVd7znxzdJuOv34dkvK+exjZASLJOMyFDzalTcCqamKztrP0IXJqauIRA9AeRaJGpkt4K1oXPdlUByzaNLqyc9L9lArdqKPXs3XnRzi/+fvTePsuyu7ns/+5471zx19awe1C2pNbVaAkmAZYEFyAaMB2IIdoId2zgmODZJlg1ZyXrOy8uLk7xlTOwHfsQ4OEwCBBgFjAaQEGhuqdWaeu7qobq7qrrmuvM9w+/9cc4dqupWdVX3vXWru/dnrVr3TPee3/3VOff89m/v/d2L0FZlYP3Kng2s70zw22/byv7BKUZm8hwdSc83DkKW/+cW/TDBcHS+t3NWeOXFGVhxKw5iQayNTOcmHjn5CGfSZ/jNG3+zHF53OnWa7w98H/AnOsA3zNJ2evF6Z2/6Hd94cwpwbh/03TBr95aeFs6djJKIhHjzplau33UNj55+nanCVPlzN/ck+dg9m+Fp/zpdkzpAwWnheMEQCUXJRhJMZ8bIxaN0L2JkVxuMO7t2Mpga5Na+W2f3RTjOeH6c8fw4QkVhEKj0vZ2db2AFCqiLhTg3m9UhFq8oiqIo9afsqjDGOHVPrq8z1TlYCxlYG7uSbOy6cN7MPRvvwRjD5yaPgxWmbW3VwKY6v+ECnqVSbgXA62Ovk7Wz5N18ebZ7W28L993Qzw8PjjCRKWJbca7vjTCSn8EzEC31+QVyfUrhRCJCLGIxU8iwljaMF5sVirZr/cI1hi6IiO+RKGb8cMDQnAF2ybNlRdnetp1XR/1qNB55io5H3naxJIoVMkSt6KK5RyUPVnUYWi6QCV/pfKR5lNTvFvLk1SBeQylwOSGCK021B6styF2MWCHetKUbx/W49zqvZikErKhvYOWm/Hyruf/j6gH9xXqwwomyhzkTbWdo2i+UnC6m6Qy8y2O5sUr7g9zJkgG0kLgKUK51B8Bb5zvr13bE8UIROpNRtqxPQsQq5z3N+tyqa6PXyjJKmGR6N1s33kR+Yp9/SCiyaIhgNS2RFn5x+y/O217tBY6H47M8XGWjqpiBljmS7yV1xUVEepqNGlirjYtN7F/ITXwhVClQUZQrl1vnhLYnqsLeFw1zbwbVXqlYHQavIoHnaPPdtPQtoDC3BKOzLeIP8J459wwAnbHOcq6EiNDf7g+SxtMFQqEYaxMekYyfU3Fy8y9z213XL8mDVaK6SKxxY4sKeiybkkR7ITXbkwezQgT7kpWB6vXtb6XoehQcl1iolbCVnpVLUotIDQ9WSc1uqYPShlGqkbQMahmTyWV6sFaS6nzFuZ6qsBWidaEwzbBf44nM+XlKk8Bso6pW4dslkIwkuX/L/ZyYOcHhicPl7RknQyf+NTlTygGjEmpXyom80LW3GN0tUd5/+xbWHEiWr/eSWmjMivn5ZdOD0Luz/J7OZJTWWJiE1cdEyqI/2QHTEDLOBa/lX7/h1ym6xQX3VwthzPtekSpVx7nYudnHrELUwLrM+dTJ5wE4863/uOT33L19+T+uilJvLpi3pSiXyKWEuTebeJ28HG/b8DaeOvsUPfE5v/tv/t0lh4i1zhHCmCpM0ZOofF7JGByezrMmFCchNm2hIGcr1jarXtBCVA+uktEo45kcnmcQE2+CgRUhHApz17q7OD59nEJ+U+DB8oiFWrAkQ3t08cF1OOSLBZybyvHs8XHu3t5Druj6BYqb7cGKJqFvJ/QuQda9ivfdup5T4xlePeOHhK5mA6ulKnQttoRCyGWsKOSnoJAO8q3mUB3CdpEeLIBtnduYKc7M2lZd82qqMFVevr3/dqCSn1QtPnMx9He1+RMrwfVe8mB5xoOXv+wf1BnI3reugfR5NnUneNpEyNsuyVb/2s9Fumi5wDXQEVs8R+qd17yTbxz+Bmk77ZeXqGZucfDTz0P7eujc5Nezqz5mFaIG1lXAxpmXZm84oYNXZeXQvC1FWTo/f/Nazk3lahYavhhu6buFG3pumDVTDMwPuVmEZI3wvuo8kFKo2GTWpjsUI+Ll6ZQsIFjxpanGVbfvpt4beGz6RQYns6yVWH1D0Upeh0Jq9nanWJkpD8IV9/TvYU//Hr754iBF1w8RbIu2IjI6vz/nICJErBADoxkGRjPsuaaTTNEhGbXqXwfqYrhp+WVNr13Tyva+lrKB1Z5YgpR2k7BCwjU9STbVUA9clHDc9+BAbU9ftVjKJf4f53psqg2s6cI0a5JruL3/9vL9V8pputC1d0FK6n5BGGDp80y1WHjJg7b+NjjyCBErRJHAa929jWM9b2c8ubUcfnmxxMNx3rH5HTx0/CGK3hxPVymUspiB/V+FyVP+9rd/yg8RFLloJceVQA0sRVEURVkl+MWC6xu5eKkDslpiDtX5GtWiDSaSJFQcp7NwllSkg1hs+eFMd226jkNnPTqcDRCqnf9z0VR7sKp56tO+RDtUBqAB0bBvKJ2dzJEsyc0vYWwdDgmlIWM675C33WULQ6w2RITulii269XXs9gAfmXPxuW/KRyryIIvFEp5/S9UrpVLYHPb7BDEdNGvBVVwC2SdLLf03cLWjq3l/b0Jf1LkQl6hC1I2sPyrsxQOu6V9C/Cyv69UB6y1H276VcIjh3CH/PfdvqWb/aE7aC86dbmeS97weV7hUMjP3bSzFeOqRH7Gz4dbpTWwQA2s5tDkAqrqUVAURVGWiojQE+9hfet6Xht7DWCektmGrgRnJ3OEokEYU26IyVAvIzP5JZ/nZzf+LD858xM2tPfz4d09PHZgxD9XPQfykbivDldIwcgbcGYv7PnI7AFzaOGhUbHQShLY1rHtwqeyQoAf9pQuOBRsb3nhaquUf/zmzeSdReTOL2dKxocVXlhhc92ttbcvk2QkSTgUxglCdV8be422aBtrW9YCzKtttqV9C7907S/Rn+y/tBOLVJQGge54N79102/NVvDLBSGKVgT6dhLp2QFDRwHoSES4b9cltqGKRDjB/Vvup7+lxmdGkxXJfPDvTWMgO35RuYQriRpYVwjzwgAV5TJmcCrHsxPjPOccmbX9E+/cucA7FEVpJB+8/oMAZQNrbphbqfBvKNh+3do2DqW28Iu3rl/yOW7svZEbe28EYENnJVyo7qIQEvINqxL5qdn753iwfnZnHwOjfvjWurZePnzzby9aA6tEpMqz9+19Z4lHLDZ1r96QpqUSDYeaLzXfKEphe7UUBBvAe7e9l7yb5+ETDwO+kMx919wHVNQDS4hIWbL9kom2+lL0AYlwYnZB31KIYDDZUC3AU6tG36WyrXOBCYtIC0wMBI3s9A0/twi5iXkS9KsNNbAuA54dGF945xX6G6cotfj0Y0cW3KfGl6I0np54D+P5cbpis2fX84EEeaF3F8TzhNfs4lfX777o81Tn97TH6zxUsed41caOzV6fY2B1JqN84p07mc7axCIhYtbSvFAtUYuxqvW87c4r2KusMsLB/36FCtjWMphKEu1zDay6EmvzvbhOARD/e1fL9uf9PLvqe+HOrd1UVR1YGapDedvW+gZWdty/h5cgntNM1MBqFE0OA1SUy52HQsc4M/P1Bffvaf/gCrZGURTwPVlZOztP+GJjV5JT41netHMzdF9/yeexQsLO/jY/j73eM+Y3/yN47ZuV9ckTleVQeMG8jo7k8nLZagkAxOqZT6bUn6AOVT1yrJbDr+74VX5y9ieMZkcZy40RCUUWLWR9ycRaYeYcvPR3vqFyyz+q1JaCSg5WVc28t1y7dGGcuhHv8A0q8D1W5w/57QY1sBRFURRFuXKopSr45q3dvGlLV10V8t5zSw2Z7HrQey1s+1kYeNJfHz9e2WfVb1hUCptMRi2yRd/Dt9qFIa56urb43p31e1b0tP0t/dy97m4eOv4QY7kxWiItjVWbjLb63iHPrRgwdlV+filc8FIVCy+Vmz/gqwhKqBK2mBryX1fIy3ixqIGlKMqqZdHcQvVgKcqqYlXIjy+VDXfA1GmYOHHhYy+SUp2omzZ0cHBohlTeaX4NLGVxEp3wlo8359SByETeyc+vCVVvIgnfuCrxygMggfFvhcENauQ1W6UvZEE8UBcs1alLDfuvc+vYrTLUwLoUGhwG+NmpVwEYDKnqn6IoiqLUjXAUbv0QHPo+DL1a2S71G1Bet7aNVN7h9mu6ODTs55Ks5uK8SnOpVvG7pv2axp6sd2fFgwuzJxra1sHU4LJq5a0IpcLOmTF/OXxhoZlmogaWoijKUllsUuXtn1q5digrgojcD3wGsIC/Mcb8WZObpNSbBuZxxCMWb9vhD1JLvr26KyIqVwzVhYffteVdjT1ZS68vc56tIaLWf6NvYK3Z1dg2LJdw3M+R9JxVHx4IamApinKFsJDC4Dx1wQt5ntVQUgARsYD/F3gncAbYKyIPGWMONLdlSl2JzVVqa0yY41uu7eHJw6N0tzRQuEC5rAlJiLdteNvselSNZMMeOPrY/O3rdoMVg94dK9OOpSICyW5In1/14YGgBtbiXGIIYCnEbyE+1nnLrPW5cuwaGqgoC7NvEYXBEhdSGqx5j+7/bHnxY7s/tux2KVcMbwaOGWMGAETkAeD9gBpYVxKJbv91zfW+QlmDuH5tO9evbW/Y5ytXBrf03XLhg+rF+j2+DPuh71e2Scg3ZPpXmfeqRLzDN7DUg6UoirLylMQxzs+8xGe/s/zZwGeP+5MdhdHZXrG7Ti9ck+7uty/7NMrqZgMwWLV+BrizSW1RGkXHBrjz93wFtfOHVqS4rKKsCkIhaO2fva1ne3PaslRCQQ5jXD1Yy+JqiHcfnKp4pZ6dWKSAsKIoi7KowmAV1ffcXDZ11jC+TvyUjTP+e+6amr6otilXByLyUeCjAJs3b25ya5SLJtntJ84DjQoRVJRVSaSS98XuD/vFfFcz170H2jfCulub3ZILsmoMrKbFuzdICfDZgXEN8VOUVc5ixpdy1XMW2FS1vjHYVsYY83ng8wB33HGHWbmmKXWnVNur/8bmtkNRVpLqfK+uBisX1oNwFDa9qdmtWBKrxsDiKox3fyh0rNlNUBRlEZZzj75clbtVzdWUx/XZBfqgxGXWF3uBHSKyFd+w+hDw4eY2SWkY0SS89V9WDC1FuRoIq+hKoxBjVsekm4h8ALjfGPM7wfo/Ae40xnx8znHlkAzgOuDwijbUpxcYu+BRVwfaFxW0LypoX1TQvqhQj764xhjTV4/GXAgR+QXgL/DD1v/WGPOfFjl2FDhVh9Pq9TIf7ZPaaL/MR/ukNtov86lXn9R8Jq0mD9aSqA7JaBYi8qIx5o5mtmG1oH1RQfuigvZFBe2LCpdbXxhj/gH4hyUeWxej73Lro5VA+6Q22i/z0T6pjfbLfBrdJ/UrWX7pXDDeXVEURVEURVEUZTWzmgyscry7iETx490fanKbFEVRFEVRFEVRlsyqCRE0xjgi8nHgESrx7m80uVkL0dQQxVWG9kUF7YsK2hcVtC8qaF9cGO2j+Wif1Eb7ZT7aJ7XRfplPQ/tk1YhcKIqiKIqiKIqiXO6sphBBRVEURVEURVGUyxo1sBRFURRFURRFUeqEGljLQETuF5HDInJMRD7Z7PY0ExH5WxE5LyKvN7stzURENonIEyJyQETeEJE/bHabmoWIxEXkBRF5JeiL/9DsNjUbEbFE5GUR+V6z29JsROSkiLwmIvtF5MVmt2e1cbU9X2o9Q0SkW0QeE5GjwWtXsF1E5L8HffOqiOypes9HguOPishHmvFd6sVCzxPtl9rPlkAU7fng+389EEhDRGLB+rFg/5aqz/pUsP2wiLy7Od+ofsx9xmif1H7WNOUeMsbo3xL+8IU3jgPbgCjwCrCr2e1qYn/cA+wBXm92W5rcD+uAPcFyG3Dkar0uAAFag+UI8DxwV7Pb1eQ++VfAV4HvNbstzf4DTgK9zW7Havy7Gp8vtZ4hwH8FPhksfxL4L8HyLwA/CH5j7gKeD7Z3AwPBa1ew3NXs73YJfVLzeaL9UvvZAnwD+FCw/a+B3w+WPwb8dbD8IeDrwfKu4N6KAVuDe85q9ve7xL6Z9YzRPqn9rGnGPaQerKXzZuCYMWbAGFMEHgDe3+Q2NQ1jzE+AiWa3o9kYY4aMMfuC5RRwENjQ3FY1B+OTDlYjwd9Vq6IjIhuB9wB/0+y2KKueq+75ssAz5P3A3wXLfwf8UtX2/xX8xjwHdIrIOuDdwGPGmAljzCTwGHB/41vfGBZ5nlzt/bLQs+UdwIPB9rn9UuqvB4GfExEJtj9gjCkYY04Ax/DvvcuSuc+Y4Dte1X2yCCt+D6mBtXQ2AINV62e4SgfSSm0Cl/tt+LNrVyVBuMJ+4Dz+j9NV2xfAXwB/DHjNbsgqwQCPishLIvLRZjdmlaHPF59+Y8xQsDwM9AfLC/XPFdtvc54nV32/zH224HtapowxTnBI9Xcsf/9g/zTQw5XXL3OfMT1on0DtZ82K30NqYClKHRCRVuBbwB8ZY2aa3Z5mYYxxjTG7gY3Am0Xkpma3qRmIyHuB88aYl5rdllXE24wxe4CfB/6FiNzT7AYpqxfjx+lclR7wxZ4nV2u/zH22ANc3uUlNRZ8xi7Los2al7iE1sJbOWWBT1frGYJtylSMiEfyH4VeMMd9udntWA8aYKeAJLuOwlEvkrcAvishJ/HCvd4jIl5vbpOZijDkbvJ4HvsOVGYZysejzxWckCM8heD0fbF+of664flvgeXLV90uJqmfL3fjhXOFgV/V3LH//YH8HMM6V1S/znjHAZ7i6+wRY8Fmz4veQGlhLZy+wI1BoieInCT7U5DYpTSaIYf4CcNAY8+fNbk8zEZE+EekMlhPAO4FDzW1VczDGfMoYs9EYswX/t+JxY8xvNLlZTUNEWkSkrbQMvAu4qhVI56DPF5+HgJJa10eA71Zt/6eB4tddwHQQ7vMI8C4R6QpUwd4VbLssWeR5crX3S61ny0F8Q+sDwWFz+6XUXx/A//01wfYPBYp6W4EdwAsr8y3qywLPmF/nKu4TWPRZs+L3UPjChyjgx6yKyMfxO9gC/tYY80aTm9U0RORrwL1Ar4icAf4PY8wXmtuqpvBW4J8ArwXx4QD/1hjzD01sU7NYB/ydiFj4kzffMMZc9fLkCuDHu3/HHz8SBr5qjHm4uU1aPVyNz5dazxDgz4BviMhvA6eAXwsO/wd8ta9jQBb4LQBjzISI/Ed8AxXg/zTGXM7iSzWfJ2i/1Hy2iMgB4AER+b+Al/GNU4LXL4nIMXwhlQ8BGGPeEJFvAAcAB/gXxhh3hb9Lo/kTru4+qfmsEZG9rPA9JL4BqyiKoiiKoiiKolwqGiKoKIqiKIqiKIpSJ9TAUhRFURRFURRFqRNqYCmKoiiKoiiKotQJNbAURVEURVEURVHqhBpYiqIoiqIoiqIodUINLEWpAyLiish+EXldRL4pIslV0KZ7ReQtF/G+HhF5QkTSIvJXjWiboiiK0hxEJB28bhGRD9f5s//tnPVn6vn5inK5oAaWotSHnDFmtzHmJqAI/POlvKmq4nojuBdYloEVtCcP/Hvg3zSgTYqiKMrqYAuwLANrCc+sWQaWMWbZk3yKciWgBpai1J+fAteKyPtE5HkReVlEfigi/QAi8qci8iUReRq/8N8WEfmpiOwL/t4SHHeviDwpIt8VkQER+TMR+XUReUFEXhOR7cFxfSLyLRHZG/y9VUS24Bt5nwg8az9T67ha7THGZIwxT+EbWoqiKMqVyZ8BPxM8Iz4hIpaI/Lfg+fCqiPwelJ9FPxWRh/AL0iIify8iL4nIGyLy0WDbnwGJ4PO+Emwrecsk+OzXg+fXB6s++8ci8qCIHBKRr0hQJVZRLmcaOXuuKFcdwezezwMPA08BdxljjIj8DvDHwL8ODt0FvM0YkwvCCd9pjMmLyA7ga8AdwXG3AjfgV14fAP7GGPNmEflD4A+APwI+A3zaGPOUiGwGHjHG3CAifw2kjTH/T9C2r849LvjsWe1pWOcoiqIoq4lPAv/GGPNegMBQmjbGvElEYsDTIvJocOwe4CZjzIlg/Z8ZYyZEJAHsFZFvGWM+KSIfN8bsrnGuXwF24z/TeoP3/CTYdxtwI3AOeBp4K/7zU1EuW9TAUpT6kBCR/cHyT4EvANcBXxeRdUAUOFF1/ENVxkwE+CsR2Q24wM6q4/YaY4YAROQ4UHrYvQa8PVi+D9hVNenXLiKtNdq42HEPqXGlKIpyVfMu4BYR+UCw3gHswA97f6HKuAL4lyLyy8HypuC48UU++23A14wxLjAiIk8CbwJmgs8+AxA8R7egBpZymaMGlqLUh9zcWTsR+Uvgz40xD4nIvcCfVu3OVC1/AhjBn9kLMTs0r1C17FWte1Tu3xC+p2xWSF+NKIvFjsvMPVhRFEW5qhDgD4wxj8za6D+/MnPW7wPuNsZkReTHQPwSzlv9nHPRsalyBaA5WIrSODqAs8HyRy5w3JAxxgP+CWAt8zyP4ocLAhB4wgBSQNsSjlMURVGuPuY+Ix4Bfl9EIgAislNEWmq8rwOYDIyr64G7qvbZpffP4afAB4M8rz7gHuCFunwLRVmFqIGlKI3jT4FvishLwNgix30W+IiIvAJcz/K9Sf8SuCNISj5ARcHwfwO/XBK5WOS4eYjISeDPgd8UkTMismuZbVIURVFWN68Croi8IiKfAP4GX8Rin4i8Dvx/1PYmPQyEReQgvlDGc1X7Pg+8WhK5qOI7wfleAR4H/tgYM1zXb6MoqwgxxjS7DYqiKIqiKIqiKFcE6sFSFEVRFEVRFEWpE2pgKYqiKIqiKIqi1Ak1sBRFURRFURRFUeqEGliKoiiKoiiKoih1Qg0sRVEURVEURVGUOqEGlqIoiqIoiqIoSp1QA0tRFEVRFEVRFKVOqIGlKIqiKIqiKIpSJ9TAUhRFURRFURRFqRNqYCmKoiiKoiiKotQJNbAURVEURVEURVHqhBpYiqIoiqIoiqIodaLhBpaIWCLysoh8L1jfKiLPi8gxEfm6iESD7bFg/Viwf0uj26YoiqIoiqIoilJPwitwjj8EDgLtwfp/AT5tjHlARP4a+G3gc8HrpDHmWhH5UHDcBxf74N7eXrNly5aGNVxRFEVZXbz00ktjxpi+ZrdjLvo8UpQ6kZsEpwDJHrAizW6NoizKQs+khhpYIrIReA/wn4B/JSICvAP4cHDI3wF/im9gvT9YBngQ+CsREWOMWejzt2zZwosvvtiYxiuKoiirDhE51ew21EKfR4pSJ575Kyik4MZfhjXXN7s1irIoCz2TGh0i+BfAHwNesN4DTBljnGD9DLAhWN4ADAIE+6eD42chIh8VkRdF5MXR0dFGtl1RFEW5ihGRThF5UEQOichBEbm72W1SlCseEwwZ81PNbYeiXAINM7BE5L3AeWPMS/X8XGPM540xdxhj7ujrW3VRIoqiKMqVw2eAh40x1wO34oe7K4rSKDwX7Jy/nJtsblsU5RJoZIjgW4FfFJFfAOL4OVifATpFJBx4qTYCZ4PjzwKbgDMiEgY6gPEGtk9RFEVRaiIiHcA9wG8CGGOKQLHR5x2YGiBtp7ml75ZGn0pRVh/FTMWDVcw0ty2Kcgk0zMAyxnwK+BSAiNwL/BtjzK+LyDeBDwAPAB8Bvhu85aFg/dlg/+OL5V8pilKbTz92ZNH9n3jnzhVqiaJc1mwFRoH/KSK3Ai8Bf2iMaeio7+GTDwOogaVcndjZquVc89qhKJdIM+pg/Qm+4MUx/ByrLwTbvwD0BNv/FfDJJrRNURRFUcCfgNwDfM4YcxuQYc5zqZE5wV5pFl9RriZKXqtoEtxCc9sC6Dz/5YtnPF4+/zJFt+GBBzVZEQPLGPNjY8x7g+UBY8ybjTHXGmP+kTGmEGzPB+vXBvsHVqJtiqIoilKDM8AZY8zzwfqD+AZXmUbmBDdrULAkJk/CzLlmt0K5EikZWIkucO2mNuXkWIbP/vg451P5prZDuTiOTx3n2XPPsnd4b1PO3wwPlqIoiqKsaowxw8CgiFwXbPo54MBKnb/ozTawXM9dqVNfmP1fg5f+rtmtUK5ESiGC8U6/FlYTGRhLU3Q8To9nL3ywsqrI2lnOpf1JoLzbHAN5JQoNK4qiKMrlyB8AXxGRKDAA/NZKnbjgFCDqLw9nhvn20W9z/9b72daxbaWaUJvqkCnPg5DO0yp1pJgGKwyx1qZ7sLwgSjdVcBY/UFlVeMbjSwe+hGv8SSnHa87/T38ZFUVRFKUGxpj9QQjgLcaYXzLGNFQ3ujrfY6Y4U14+MX0CgNMzpxt5+qVR7VVwVIRAqTO5Kd97ZcXAc3zZ9gBjDK63cjlRmaI/MD9+Pr1i51QunbHcWNm4AkgVU01ph3qwFEWpO6pkqCjLp1rY4pGTj/Cx3R8DwPYaN5P/3f1nuXZNKzeu71jaG4pVg81iMBZ93wAAIABJREFUBqItjWmYcvXhOjB2FPp2ghW4b90ihBIA/OToGPtOTfJH9+1ARBrenFzRH6Sn8g4zeZv2eKTh51QunVzVxM/alrVNM7DUg6UoiqIoq4C5yoF2ECKVdfwckEKdVdXytsvAaIZH3xhZ+psKVYMVW3NTlDpy6in/1fMgHBhYVR7Tfad8B3K2uDL5iDnbpWTHjaeXITozcgBee3CW901ZOUq/k//4+n/M2pa15JxcU9Qg1cBSFEVRlFVAKaylPdoO+AOFdDHNUHoIqL+yYCp/EbkJ1cVfbVVXU+qE50I+CIvt31XlwZrvvS2F7jWanO2yY00bAFPZZdx7B77re+JyDY0oVhag9DsZs2Ikwgk84zU0CmAh1MBSFEVRlFVAyYPVFvUHdQW3wFcPfbUc8lJvD9ZM/iIGHdUhgurBUurB1Gl48r9C5rxf/6r/xtkhggElb1K+2PgacZ5nKNgeXS0RQiIX5zXLT9e/YRdBruheVfW88k4eCimix35EPORfR7km5IuqgaUoiqIoqwDH+DPzibCfc1J0i7MUsOppYHme4eHXh8vrSx6AFdIgwdDBUQ+WUgdG3vBf06OVnL6ygVW55sMh38LK2o33YOUd36BKRsO0xCzSy1ASLN9LxeaLY4zM5PnrJ49zcKg5eUjNoOgWCU+eJDz8OrF8qrxtFude9stNNDCMU0UuFOUy40ICEivx+SpSoSj1xwt0oePhODBbSRDqGyI4kspTdCqegKLrEQtblQMO/m8Yfh3u/D1Idlc1IgWJTijMgK0qgkodqM7riyT915KBNX6c/3XQcE1fO1YohO26K5KDVRK4iEdCJKNhsksMS3zh3HMMpI/ywdYdyCoIoT0z6XuZT09k2LW+vcmtWRnybp5Y8FsaCa6tuXUFSY1AegRC1ty31w31YCmKoijKKqCUg1XyYFUbWH3JPgpuoW6hPrk5g9RMYc6gdfh1/3VqjjR8STkwnFAD6zJkujDNwycebkpOyoJUS/9H/Gu/JHJhBvcSHd7HvlOTWMGINb8CBlbBKU12WCSj1pKNuheHnmfCzTPopHl29OVGNvGCeJ7hxJhvYNnu1RMiWHSLxILQwFjwGzVvcio/DfHGGpxqYCmKoijKKqBkYMWt2R6s9217H7u6d+EZj5Rdn1Cf0gDyHdevASBTCoHKjMHRH1Y1as5AvJiBaKs/OFklOSaXPfkZOPqYL1PeYH569qcMTA9wNnW24edaMot4sIquR0txHKgYCQeGZhiebqx3KG/792IsEiIRteZNSCxIcL98L3OClyePkF3BPMWi4/HMsTHG0wVOjWf4zI+OMjgRKJA6jc9bWy0U3AKxIJ81emYfUDGwbM/mmbPPMJoegvgSS1NcJGpgKYqiKMoqoCRyUQ4RLMyU17vjfpjeRG6iLucqDbi6W/yBbFmZ7eijcGZv5cDqAeLECchOQDgGiW7fuzXXw7XKGEwN8vjpx1d3kv+JJzGDe9l/4hGm8lOLHvrU0TH2Dy5+zGKEQ35myKrxYLnObEO95MGyYkBgVAXiFqWQ1lTe4Wsv1O+6y9sue09O4LgVI6TagxWPWEs2UCJUXWeevaLiCt/ad4bnT0zw7X1nef7E7N+JYjMMLDvvF44O2Hd6smzwNZKCkyca5FZFg3zRkoE1nB5m//CLPDq+H2JqYCmKoijKFc9cD9ZQxpdnb4u20RXvAmCysDTpZ2MMnrewUVEIZuh7WgMDqxQiODfszylAMesLERx8yN8WbYWuLf7yy19ZUnuaxROnn+DQxKF5+WyrCmM446R5Zuh5vnroqwseNp212XtygicOnb/oU8VCvuEyLyelWQy/Mns94V/npdwYx/MILyDu8vDrQ7iLXONLZd+pSZ46OsbAWKUEQbUHKx4OUXS8JZ0rVBJNkBB4bt2VPxdjNOWfyzWGWLgyvF/fGafoNKEm16HvwXOfg2By48nDozz40pmGnzZVmKRVwhCJEw2FwXPL13vBLcDpZ5l2C7glY75BqIGlKIqiKKuAkshFOBQuexrAr+cSD8eJWTFSxaWFCP748ChfXWSWv+B4RCwhEbEIh6QSImhFZh/o5ODEk3DgoUquzDVvhe6tlWNWsXco7/qhZOP58Sa3ZBGsCBNeAQIP5kKD8sMjlx4eGg1C7wpVeU8Pn3yYg+MHl/9hhRRMDFxag4qBRyPZ47+WwrZEwArjeoaIVzH6o1WGw8GhFOemLt1DlAnC/0pGFVQ8WLGwRSxizdtfC894FEse30gCPNuXDF8hklG/nQXbI5V3WN8Z5w/ecS09LTGKbhM8WGNH/dfM2Ip5kG3PppAZo00i0LGJMELILZbvqWLVvTXS0d/QtqiBpSiKolzRiEikxrbeZrRlMUoy7VbIIhLym7yjawcSFACKh+NLDjnaPzjFaKqwoPpZwfFVA0WEZKxKJa2k3gbQ1u8bVaVBtOfCulshFPKFLq69L2h489XS5nJq5hRfO/S1sldwPFfbwDo2eYyvH/r6pXkaipmlyT2f+Ck8/ZnZxZoDMp5dzt+pZUS7nkvW9t8Xi1z60G264Ifl5Z08A1MDPDH4xPI/5PAP4JWvzxapWC521jdGbvpV2HgHtG+o7Lv7D0i3bSfiVsLK7r2uj4+9fXt5vR6KgoH6+ywhiLztEg2HsEJCPOjvC4UJFgopjJ3ljng/uzq2g+eQc1cmRNAYQ7boYoUEzxjG00V6W2OErRDRwAO3olQbVNOnV8zAyxUzMPIG8VAYOjcDEDWGyfwkhycOUwzCrmnfQJrGtkll2hXlCuau05+ft+3ZL/ivz23+6Aq3RlFWFhF5O/AlIC4i+4CPGmNOBrsfBfY0q221KOVghSSEJf5sdFukHWMMIkIinFj2jPhMziEZnf+oz9tueaDeGrNIl0IEqw2scAIyo74IQ4lSnSKAiB/KiJ2r5M40ienCNH9/7O95z7b30Jvo5cnBJ0nblTpEE/nauWvPDz/PdGGa4cww17Rfs/wTp8/D3i/Ahj2w890LH+facPIpf3n8OKy9GU49DZvuBNfmhDMDnt/38/7HTpGnT/yA7506zDrzXhw3Ur4mlkuprtrp1GmMMZycOVned2TyCDu7llGCY/y4/5qfhtY1y24L4NeKirZASw/seOfsfZE4uUgnETfne/ckRDxiEQtb3H/TWh5+fZiB0TTXrW27uHMHlGyBaiGLvO2Vw+zi4Qt7sA5PHGZy/5dh+iwdrVu5rXc3B8YPzPIUNpJCEMLY1xZjNFXAM4a2uD9JEw2HsF0/ZDgUWv41c1FU524eeZRC903l1ecHxrlzW09DTjs+7XvtExKG7u3Aj4gZf8Ll1MwpbkgEXqtEBxl7/kRHPVEPlqKsdp74z7P+7jr9+fKfoiiL8l+BdxtjeoHPA4+JyF3BvhUaaSydkrfFEouCW+DEWIbv7Z8qJ6xfjIGVytcWM/A9WP4QYFadn1Jh49t+3RezyM/JXYq1VpYDOfmSB2umOMOZVONzLEoMTA+UPTGHJw6TsTO8Murn9FR7+gSp6cH68eHzpPO+UTtVuEjhiJe+6L+e3bf4cdX9OH4UXv+W79F67UG87ATTbgEC4Yl5/+PjP+L11x+gmEtjmzyuZ3AuMveoZGBl7AwzxZly/wHlvlsqnjFkPJunB3988aIZxexso30OeYkjGCKe3yfRQKv9hnW+xPah4UsPmywVFa729mYKDq0xf2IivoQQwR+dfJR908f8440hEmvBMh75FVIRLIX49rRUJkhKIYOlsMoVDRPMzb6fijOj5eVXzzRGfdQYww8GvgdA4ob3Q9RXpAy5DsPTeYwxjKbOEhWLSKSl4QqPS/JgicjNxpjXGtoSRbkKqFXEd66hdHeDZnYU5Sokaox5A8AY86CIHAS+LSJ/Aqy6xKGSB8sKWdiezfB0np3JVp49Ps5d23qIW3FO5E+Qd/JlpcFaVOc7fO/VIe69zmH3ps5ZHo+C45YHkMmoxdkpF8f1CLtF6LrGD68ZeWP+h7dW5S1Ue7CABw49gOM5/OaNv0myJLfdIIYzwzx84mEAPrb7Y+XwSs94GGOwQhau6w+Ib+u/jZdHXsbxnHJu20ze5uXTU7yRGWXPljh7h/cSs2Jc33394ieeGPCNpfW7wfMgSKKn6wLerypDhtGq58DkSVJBeOLGcBtnqOSNlZkaxDUGJz2OlXTAwMhMno1dy+/jakNopjhDqpiiNdJKZ7yTM6kzPHLyEXb17GJT26ZFPydrZ/nidDAsjBTp6b/lwn1Xi2IG2tYufB6SCBBxs9hWkohV8Qvcvb2HZ4+Pkyu6pJ0JOuOd5dDaBclNwennfG9jcD+UwucyRce/B6wQ6YJTFoApTUTk7doGijFmlhJiTMIQThATq5KT1WBKoZI9rTHANzpbgvu7ZJQWHK9sLDacXCDGs/3tcPwJovv+lgjvo62ji3TBmeeBzdsuBdujI3mB/98iZJ2snzMKtLRvxAvFKDiG4VSOE7ZNS8xCiqOI7WGbKCPZkUv6ihdiqSGCnxWRGPBF4CvGGC1+oSiXGQ+Fjs1aPzPz9fLynvYPzjt+MQ/Zpx/T8ELlssAWkbXGmGEAY8wbIvJzwPeA7Yu/deVxvYoHKxlOAuPEQq1s6PI9RbGwrwD35YNf5ndu/p0FP2fuTPWPD4/SkYiwra/ifcrbHj0t/sArEfHr/Pzl48f4oMywvj8I9wrOh0gljqqlr/LBJQ9WYGCVvCNffOOLfGz3x5b35ZfJXI9UyWM1mh0l5+QoukXesv4t3NJ3CwNTAxgMLwy/wFvWvwXwZ/yNMdheDohTdIs8fvrxCxsJrwS/m/03Qna8kn9USFNwXJ4+Nsbd23pJROcMZOd6AquY8vzPuCPRzxmYn2dnPKZzNiEcrlsX5fXBaY4MJdjYHsGTMAawlhj6ZXs28XCcvJMnY2eYKkzREe0gam/HcU9zfOo4x6eOL/7/s/OMTVaJWzh5JvNLU7echWtDYQb6rlvwkBQJ2oG4M0M22jtL5KI3MIAGJs/w5ND3AS583Z38qV9Eu3tr+byl3KqTY1m+/9oQ771lPS+O/Yi2fJrT+yP88vYPBsfV9mDlnFwlD1GEeP+NvoKdhChWhak2CmMMM4GnuruGB6tkIK5oHlaptlmHb6i7niHhTXFNzwZePj3F/sEpbtvsK0YaY/jcj/1w09+/dzuDE1muXdO67BDYdDHtS8NLiJbWtTwzMIF3NkcmmodYBMc1mOwEqZTHkbNpwtFhck6uXNi93izJwDLG/IyI7AD+GfCSiLwA/E9jzGMNaZWiKEui2giaa0D521ayNYqy6vgk0A8MlzYYY86IyM8CH29aqxbANS4U0oRe/Qb3br2H/QPPEpZ4eWB0R/8d7D+/n5AsfmPXSsYfzxTZFthGxhgyBac8w10dLDk8OcP6dev9lZKXLByDWz4E02cqRldpO4BbWPG6SiUjJBbUSyqF+0wVphjO+P/unngPIQmxpsU3GPef389NvTfRHm2nYHtMO2fLXsNlM/h8xZvXsRHSIxw/n+GVwWls1/DuG+d4ZYrBQHvNDXDeV+zLeDbfTB9jS9jPIWrLTBBLbphnYHlOAdczhMShtXWC44Vn2P3qORjZxD/0fISZnMOH79xMuuAwnbPZ0LnwgNHxHDpjnQw7w6SKKaYL0yRlAwNDEU55GXb2LyGf6alPUyhWhYA5+Uq4VWbMr5EWWsLDJz3ie/+qhS3mMC6d9Fohdo79kOc2f5SIVblYS96YU9OVsNSRzAj9LYuowwX1kMoeFmYbHgOjGZ4+NsaUfY6+qD8hMRMUOl7Ig5V1shWRk813Eb/h/ZAZJSoWhSMPw5b7y+FqjeD7rw1xdMS/vvrbK/dnopkhgoWU//sQTMg4niHi5tjR38bLp6f48eFRbljXTjxikasKvfzx4VEODs3wgds3sqn7wn02OJHFdj229bX6943n8CtdNxKywhw7n2JTKE7E869Np5jHZCewrBY2xe/i5zava5hxBcvIwTLGHAX+HfAnwM8C/11EDonIrzSqcYqirE6q88Bq/SnKasAY80PgdRH5ypzt08aY/9SkZi2IZzyYPIE1fZZ1tsc1iTcjImWDKWpFedPaN1FwCtjuwgZNIRgI7lrfXt6WLlTyS/K2nxBfMrC29lZyYMLGqQhdlAysUBja18GmN80+Uek4156nfHfRhssSKYXRFd0invHIu/nyjPexKX+yqVQ7rD3azk29fpL9lw98GQDb9ci4YwCzJPEvKCddEvMoZitei2QPuDb5or9eU7nRKYAVhuvfA7d+EHa+i7NrbyDr2RwoTvhqjhImWcjMyw3JFtMUHI+eRIhDk4eIWiHGAyPs6EiakZk8nmf47v6zfGPv4CyxhrnYnl2W/d87vJeCWyCb9wflnd6d5etkXj/YOXjlAUj5xmsuCMlEQuAU/P/HxAC88D9g+NXF+7BEJsjLaVlY0HOmYIjHguvMmFkerETEIutOMDB9orxtNDc69yNmExhC01Mny/0817Pz0inf+GotT0D4583X8GBl7SxjuTEwru/pFYtoUIg7SgjbeHDuAvl5l0jJuALKwhYArYG4TTgIEXRW0sCyM369vHAU3vzRQG4/T1cywt3b/TSI8zO+53YyW/ktOzjke3rPp5YmDvLgS2f47v5zTGaKZQMrEfUnCayQ4FgJYqVrNTuGZ2AyeS0d4fXLE3S5CJZkYInILSLyaeAg8A7gfcaYG4LlTzewfYqiKIpy0RhjXOAaEYle8OAm43gOSAgLwbH9AUY4JLNCk7rj3RjMoqIMpeOv62/jmh5/FrhQNUtcGkS3BQPIdR2VWdyQsWsbWLWwIv6g0in44TlQHrQslkA+MJrmf79ybtFCyBei5OUxGHJOjryTZ0Or7wk5NnWMSChCS8Q3HE+OZUhIJbfV9dzAaBVCEuLajmvL+14ceXHhk3pexagqzPjhSFAujmtnM8Hn13ivG/SrFYHubbDhduz+XdDjR6omk71YEqJLwrNqdqXzRcayGQyQtPz+iopLquhwfLQysM7abnnAOpFduIhwKQ+tJVwxqkNONwAd4fXc3HUn4CsKzjKyhl6BiRNw1A9cyhsXEeGfb3o3G1wonn0JBvf6x2bGFjz/LHKTfkHhUnHhOdiuR67okt98DwBhL0+kyjMWj1gcyjzG+ex52qPtCMIjB0/xjb2DNb540Q8NDK7Trxz/Ll967s/Azs3z7JS+dym0LufkSEQs8nMMV2MMX3zjizx++nHfcBMLxL+miLYQFYuiccvXzKnxzAVraXF2H+z70vzacq896P8Pqig4LumCQ1sCPFP53N+9Zxv/9O5ryoqBkeC1Woa+4di5So5msrvswYqFLbYFEzp2UPdvqsb1miu6GGN449z0hfsM+OIzJzk4MuYbWJFWPM9QcDwKVgvRYDIm4ULRE1JR37vcaI/eUnOw/hL4G+DfGmPKvmtjzDkR+XcNaZmiKCvGvqp8rBLng5DDX/SunbfvYj+zwr+/qM9UlItkAHhaRB4Cytq8xpg/b16T5uMZD8QihODkUkAPLbEwM3m7nBReErdYrG5TyeOViFr8yp6NfPX507PCm0qKY+UQQeC6tW0cHprBLRYqxYYjFzCwRPxj3WLZ4FvXuo4jk0dI22lao6013/b4ofOk8g6pgkNH4uKS2quV9lLFFHknz7aObZzPnqfoFv0Bd+DR+s7LZ8m5WTqDqL2Mk6HoehRNhogkuKX3DoqmyMDUAHuH97J7ze7aYglOrjLwtavybhKdABTzGSBKrpYHyy2WDVfHc7A9m5Sd8g0MIBlth3CCHs9wojCD7dpMZlweePYoW0emkRDsSLRxDuiKh8ji+LP8nQZEZnnNZqrCBI0xOJ5DJPifOp5DJBQhGUkynh/ntjW3cex0J+BfT2+csTlrp4Af8croK/zadb/mf+jo4aDj/RT8nHGIiUUo4os5TE6eIFU0fDc9wH25LVQHSBbdIpZYWKE5eWmFtO/lWCDXJp33v1NrRw8T+HlYoZAwnBnGNS598X5EfEPMClnEw3GOTE0RiteoPXX8R3Buv/+vCLyr7thRvBNPU3Q2lw9ri4eZyuWwQlK+frJOlpZYNzP5PM8NPcft/bczOuMwURVmKMbFVH8/ESJrb6J4di9kJ9g/OMUTh84D8Il3LuI5OfJI0GkZX12xlP84dtT/W3dr+dDv7DvLiYnzDBQfIW97/N9v/9d+f8XCFe8blfw89xImNJaNnZtVNLooceIUsEJS9qjZgYHzyuB8WYeC4zI8k+fRN0a4cX2Od80NuWX+9xmcnCbmuUSirfyv506Ryjt0WG2EvBytZGlLtdLlbMRr96tz5IousXDjRD+WamC9B8gFM4GISAiIG2OyxpgvNax1inI58cR/Xnjf2z+1cu1QFGUux4O/EHBpRXMaiGtcQqEQIoKXnwF6aI2Fmc7Z2K4hGpbywL8658kYw+de+Rzt0XZ+Y9dvlEMESzPwsXBo1ixwuoaB9fM3rSUmLvY5t+LBCvKbmDswrsaKgVvkXOYcLZEW+pN+/stiNWbSBYeW4hg89ffw1t+BZPfSOij4rs8OPctgapDOWCdThSm+P/D9snhDT7yHocwQWzu2lo8HSFgd3LPxHn5y5idMZGcoOglsL0s01EKIOPduvJeBKV+4Ie/kiURrGFjFKq+ck/fD/sJRCBQT7UIWiJKpFaIXGFgT+QkeOPQAQNBGf/DbEopA21o6Jo9gwt2k7BTHRw2WZ1PExQA3RHwDqzshzBAUpTZFXImRLVTOWZ3Tsnd4Ly+OvMjv3vy7RKwItmcTDoWJBv/jRDhBwXa5dk0rx86nMU4HY+ki23pdxnJjHJo45At/lAq0BuIFac+mVSIQ7yAuFgXjMuikmfGKHJgZYK3nwd7/QW7Tm/mf558lJCH++Zq7IRSB/l1Bf6Zny/5XcWYyyzdf9HOrWjv7mADaCn544rePfhuAD13/IWLhEC2hft677b384MQPsD2/fSU1QACmBhk5/QxH7CnWWAn6urZDMKZ3Cv51evf2HrpbogyMZhjPzhCuEg2ZKcwQj1i8MfEa4yOn2Deyj/z5n2PSOU0pXVGMxy9130LLrt8ovy+69laKUwOQHeeJkfM1v+eCPPOX/uu1Pwfrb6t5yNB0npw3Td72WNsRZ0NXbWXRuQbNimDnZimOFkJxEoERX8qjsx2D6xlGZuaXnsjbHqnAwM4t4MGqDnsGKLh5Oo1BIgkmMr5XbDK5hRvDnRxx0rR7UbqtfoZC/uRDtujS2UCx06XmYP0QqM4ESwbbFEVRFGVVY4z5D8aY/wD8t9JysL6qcI1LOAib8bJ+7atkzDduSoOjaMgfGFcbWKVwuZmi7/kohQiWZmfjEWuW8EXZwKpSuhMR2iIG2zW4Je9NydBqWaSIrBUFp8BYdoy1LWvLYXnpGuppeduXgrdE6M6ewM5nYXh5FWAydob9531PRMmYK3nz4uE4u9fsBigXDa6uF9Ub72c8XeBvnznEmckcDjaWRMnbLvFwnJt7bwYWCW8sGY3Jbr+QqpP3wygDA8sp+O/LFd353oLAwHph6IXyphPTJ8rewVikBTqvIWkXYGg/WTvLVD5F3hllUGZoSbbQZywwhjAeNv7/867NvoHy1LFKWF51TtHBCV9QY7o4HfSHHyLYHfeN2kgoQsHxaI0H+ToSY50L7af2gp3j8dOPM5Ebn21cAulIjNbua2H724lFkuSMg2eMn6PmFCE/BdkJxg5+Bwi8s4f+AQ58l3TB4cWTExg7X1GinMPDr5d1aejq8YUS1qVem+W5HcmMkIhadIdvpC3aRtxKYAdBVpmiC9kJeOXrjL/4N3wrfYzXCmP8KDvIVMc66NsJkST5wGBsjYXZ2d9GImrhGpuwJbzrmnexrWMbo7lRYmELpyrEzjY5cm4lTNdzbdYlemmPVvIeo1YUOxzB5KaIWf7/ZG3HwuUVanLsRxWlyjm0xPy2gj+JstB1WzJoLrZ22kXhVIUIAvlQgqTJQiFdDlksuh77B/0+/IWtITpyfmhnT2uUIyMpvv/qEAChBTycc1UdHS9P3PMgVplD6+jbwF3dG3lb/AbWemFsq3K91cyVrCNL9WDFjTHlX0tjTFpEGlvkQlGuUp4dmF8Q80rjs/s/u+j+wuh9i+5fNMRCUeYgIncDXwBagc0icivwe8aYxmqJLxPXc7GC8CWT8X8HWoJE9aLj0RKjHOpVLXJxcuZkeTllpyg4Qa7OQh6svEMialVm+AOyuRwx4OD5PDdtAlr7OLX+fpL9O+hjAcJRHKdAihQ7u3YSt+JYYpEpzvZgVUsxWyHBk7CfA7HA4HEhJvIT5eVEOOHLn3sOJLtJWAm2dmzl92/9/XJ416xZey/BTM7Fdcc4M5nFNUXCgYEFsKNrB6+NvTZfJr1EychI9sD48cDAikEkzqCd4vH0w3S2fJBYqIVs0ZklOIBbhHBiXo2rrq7tTDp5rHW3Qvc2WiQMxQwZO8OjZ/6emdwkW2MFutrX0CkR7u6/nTPD+xgSDwxs6rDgjM1olShAtTEdCUXAc5ja90U6rnsfrnGJW3Fu6LkBz3hc27GDR52TxKtCpe4rJtjsbuAH6QlOF9t5MP8EHzWeL3Qy4w960/27WNe7C6wIid6dmFNnmDE2RBIYt+iHuAEZz/GFMZw8jukgLCGeOz7Oa2en2RlO095Su+5jyUDdvamTZCJBPtxOyLhlhUjwDdRExCKbjZG3XWJWAtv4/ZspOHSM7oOJAYbd2YbHuFf0vSuZMVJZP8yvdK8kIhYuNiERolaU/pZ+BqYH6IsUyNhpevGvZdvkKJpMpZ6T51Y8vgExK4YJJygWHaz8FES6l5RPVCaa9K+5fFW+pfFDQs9O5cgUXJzAoIyFQ2TsTM2w3EqIYIM8WOPHfbXAeGBcuja4TnniASAXaqXNOQPP/GXgPX0fjuuVJ3t2nn8YJ3WGx+IfoT0eYTxdycsq2VeeZzgwNMM7NqnfAAAgAElEQVQN69qxQkLB9si6EwwXD7IlfhejmQFuD0Xxqozc3rY4EenmmpQh5+WYCVXa9P1Xh/n4O1qXXOJguSzVwMqIyB5jzD4AEbkdWOAXSFGuXhYyjp5z5hcYXohacuslLjYfSlGucv4CeDfwEIAx5hURuae5TZqPYxysQOVMsmO0cJ6WmK+wVkrIrhUi+OTgk+XldDFNwUkQsaQ8cCh5sIwxHBpO8drZ6ZoFR2/f1MLrL0HG8d9njOHbp1uQwXP80X0LTGpYUdLFGUzU0BHrQERojbZyPjc7JKpaKcz1DGEv7xs/7sKCDHNxPZfvDXyvvB6xImweG+C0nfLlsYP8tOr6OdXenFxR6Ir2czozju0VsL184MHyjykVR17QwKpWvRs76ofNBR6shzInyBS6sJIDxLiZbNGdbWA5RYh3UHSLbG7fzNb2rQxlhljXuo4nC5O4oRC09dPWug6xhxjJjuB4htYodEeiEE0QEuG29u1448d9j1POo6/KIZKMWoRESOcdjp1Psb2v1VdILGY4N3qOzuJ3oKudZCRJIpzgznV3lgf88UhgbBuDE4oymbXZPLydN+I5jmRHoBPovAZmhigal4JxaY20Buf1c22GvTxEEhSr6kKl3TyM+UZZpi1JhxVjOAgJc+18WUjlfPY8PfGecp5Wa9yv73XPTt+097q20pM9xplURZL9dOo07fEkVjbC08fGiCTjOCbPWPE4B0amWH/OF93IebM9FQcyZyEcgZDFSG4CQpVivImIhWuKGHwPVEfM/25G8mScdJDTZnBMnqKXpS+xlrH8CLcl+v1w0SoiVgTbijOZy5AuHCIXuo64veBUhW+UBORtlx9N9XAb46zPViYVcPLkiZaFPGwTeG8j1oLXbUkYpCEiF3YeXv0GtK6BN/12sC1oR1Ux9Iy00iX+fRZyi4TwPWpD03k2dCWQVIod/W2subGFl8ZnT/yUjO1jo2keOzDCYwdG+KP7dlBwXI5lf4JjCgzJ61jFCXqTcYqt64Fprl3T6l8/BzrxRp/H8gzxljZ2b+pk/+AUnjE0yLbyv/4Sj/sj4Jsicg4/YHgtML8yqaIoVxULGYNnFhW4gGePL+6l29O+6G5FWTbGmME5hSuXMZW8MnjG8w2sUBjXy9NVHCQZvZmQ51AMBsKRUARBZoVKGQxRK0rRLZKyUxSd2Kzk7VgkhOv54X+l0Kuu5PwcozbLozUW5mTWkCu65ZnjRZXLrSgzdgqiyXJ4lCUW59LnmMpP0Rn3BSDmKoVZXhHbGD/UbonUCjt8d3Iz/2P6DUgNlWtilclPIwd/iOXuwLXizORsEuE2Mu5JXk39PbFIiLDEyvLbpZo4CxpY48egc3NF9S43BZ2bKRiHkbQDIQdCgedmTn5IKUQwa0+zJrmGG3tv5MbeGzk8cZiJTJG9M2O8faMh3NZP+2SE41PHcTxDUgwYfG+ACxRmiHoObfEwo60pwqZiuP7yng08/PowR0ZSHBlJYXlFulsOcWpsGntigqlsGLraZ9X+qeTrWcTsaW4bqvx2tzspuotZ3FAMg0GCelUpzwYR2gI57M3tmxARht0chNrI5WfKg+whp/I/mzE2HcT8vDhjcIp5sKKM5cZ48MiD3LnuTm7tu5WhzBAF22NLT7I8SfCOmzZhTp3lcTtLS6SFvJPHNS7bursZzsJ0zqavJYExhtP5F3l2IM3PxNqIlZT81u/2RTXGj5EJhdjYtpEz48d4YuYI56IvEw37BXET0RCe8YtQl/LUAFx8g6oj2stQegzH2NgmS4sn/FrrTpjOQKSizAiQycG+szmun57ieGIvRessRfMmjNleu4huUOogW3R45cw0Y719nBrbz/pclYFVSJOh8oAMhWxf/MbNkEsNQceWeR8bCgkhkVkhjnWjVN8tXTWhUhJ/CSYs8rbLUCHG5qrvnCRD3u5gPF3kji1dkPKN3L6YQyw8O4yydI1Wt388U/TLTVCkry3KSOoQ/U6encktFGLdwDRbe1uIWCEIx9je18LhkTRv23UNbdvWlEMTl1vMeDkstdDwXhG5HiiV2z5sjFnZqoLK/8/emwbJdd1Xnr/71tyz9h1AYSFALASJhTspUJSojZJseWR5ZFmSPbJkj+Tudrtn3G7Ph/a37oiJ6XHb4U1ewtNqq23ZkiVZVlsLRVEUd1IECYAgQCyFqgJQqD33t9/5cF++zKwqgNBCkbLzRFSg8PJl5s3Ml8D/3PP/n9NFFz9STJSfe72X0EUXPy7MCCHuAqQQwgT+DSp25A2FMAwwohDGDxCWHkPIiJwRcdvsX6ANvx36H0DErUtNguXFCtDNgzfzzNwzNPyGapcy2+ysY7LVPhS+d6y4fgGBS8bSmatJvvD8LG/bs965ax10i7JXhWyGgq0Kv2Zh+tmXP8snb1FdmGWn9dxmUGN7cBZfE0kr2fWgmbXVY/eo9rb8Fkyhs9vq46RTJlVfgXRby9nF5+DKCfpci4XcLp48t4RmtsoeW9ewtHSi4piaiamZKji2HVLC8c+rInL8YKv1KXDBsKn7dZxIoIkAR5ZAtL3emafVTEhMsDzPS+boQJG6cwtVenRJ2fHp0W3yQmM2aBCEEUNmD7jTarYpIViq4JwNqoSBw/92z07qXsBQPtXRWjVcPcnFlRNIJ2JO+FzyptnCDQymWypKMq9namR9VcgbmlDqmTfPJn+OecMmCLdhxmYk9Vg9bc7bpWxldNEA0EwakZeYYsz4rXy0SqTW5ocSTYaEYQhGiiv1KwBcql4ikhHPzD1D3bmVrcaW5L5CtxFI6n6VnJkjpadYcpZIm2kmBzJMLdaZrbfInHBLLBkmY0YWR4ZYqR7ee9MvqZkyZ5nx3DizmoEMA2rhQtIimGpTsGzdThTjEIdAOuTMIl44z4XGUwDocy8pe3ZQLZRtePjlZSKhUxcRmgzIWDq1YAUvjDZ2r4u/C83vacUaUhYo7QqWV6FOi8jtGDE5kN5B6dSXaFSXYOLO9Y8LGLogeC1aBIP1BhXJpomZouGF/PEjZ8mYvdB2ajFYZL7STyQlg/m2jRGvhqZ1+hA1r9H29c8s1wkipcpP9mcBgbkYkU/1shB0mvwgI/qyNndus6GgNnxu39pH4Qd0ML1eXK+CBXArMBnf56AQAinlf3tNVtVFF138i8a1LN4PFrrieRffN34V+K/AOHAR+Drwhpq/AggiDx3AzOAbOexahVykzAnMi0/DLQ8AysyhSbCabn0Fq4ClWzSCBhVHKRxNNMnWfEVVOBO96Y4Q4iak3+CkXKKMQ7Xs8vWXWvMuYSQ3nlXQLZb9CpY+QcZQxOOBLQ/wmZc+w2CmVciXGn4ybH+w8Rxmcy7sWgpWfVmRmXhYvkl83rH1HcqkYXUagHvTY+yLXLIv/m3LsdWrwfRThFIyVHuZhdwu6l7IeH4r8Lxaui7I6OlkhxwU4VmnYJVmVUsgwOCuVkENYKrzDcMiG9kU+wWsRspiXEplUgAgBKFmdFimA2zKb2LUPESvuZmaF9JjWKRiyTCKNO4vHOaZhRcZKmwB7zLUlzFCXzk7RiFVZ4XisLnO7l5KifSXKXt+MtenyZDt+e1JKyS05rVsQyNrqN8PbulFE3BhqU6qrBNEVRpBgGlm4IYH8P0KlE62FB4zhYGm+pvMFK4MCUuzyPh5d1g9nM0UqDjq+hNRgB65qvXLsJIWV0MzmCpPIaWkHtRbBTIkhit1r0IxM4ipmSw5S2TNLEbGAuosV9T7ZkQOurtIedMhxkQKtzZFzi4ylGmZtfSn+kHoRFGEE65ixdembeiEMgCpDGU0EbfXyTqB9MgaRRbjeTcjcshWKi1iFSt8TfiBAQie0ObRZIGMbeAH6j1fS7C+dPQi27jITUCpbz8L9SV8PYNuGFBv6/horFLX1fdqqGAj05L+VJGa0HCCq7fbmvprpGC1z1CGgQrT9lsK1kMvK/LcMHvYPtgihn2NGU4t9TPcuEB/uu19azNTcaMqV7yTRPIAf/DwGQ5tUcpxytSZr7gIvaGSIjSBoQsOMA5WNiGo6aaJz+jNcOUl9XtGbcDctePq4dY/KlwXwRJCfAbYDhyl1VYhgS7B6qKL68Ad05/u+Ht7a92Xr9fL8ycI11LHZguHfowr6aILAHZJKT/UfkAIcTfw2KvdUQihA88CF6WU736N1gdAEDjoCNAtXCNPNlggHald+ShqdTTaup3kQDUJVtbMkjbSVL06K3WPoXxrF7ipYP3PY4ow3XPDwIZkqdZY4oy+wjHnu9xsb0mCa0Htqm+UWVWKPI435hiy70zabfJWnvHcOGEcfjpfdjg2u0ohbfLzt21GO3GUqVOCihMpghUP7ne+GR489SeQH4HDvwS0WveaRI5VNYdipHsYdGIb8eZjnfs2oIihHVS4eVORF2ZKyDBP0RijFFyix+pj0Bqh5gX4YYSpa2TMzHqC1bQozw9D72RHkK6vpfjH41M0Qo0DVsBC7RLSDKh5QVJ8hjIikhDGxXp765kQggFLhQ07vrLIT0uBjCQ6WVJ6yC8W9mDueB9UPgOr00y6DSazo0xVZik7K7RrkR+5cwteGHFs4WW+Mv8s2TDC1ATFtMlizWM47HSEbKp3tqHz5h1FojCHHn8WvRmLvlKac7LEfOhSMNMwcRh/+RSUTraywowUt9gDPOovKWe+KOBPpr7CQJztPapnmO/ZQkXqUFrm5vN/yrP9P0UYSdrptR/5LNQXCKXEixyW/VmOL86xb2Bfks3W8KqMFrYk15apmdyxrZ+j06vomIBkpHqCyDIopwpw48/gZGzs+P6D6UGWnWV6U728c+wePjd3BiKXC9Uz3JTeo5z58OjN2BiagRCCtJGmFqwipWSxIliMVcLt+mZ2iUu8Ml9hc18Ge01gco+dhRpEwkCPFaylqovjhxTa5vOklMws10kFi9xkwuLArZxtqO+3o2VUK2oTZ74J2RVgE+87MM7fnHZIiz7SwqAhg42/SygnvunqK/hhXwfB/0HwlXNfYamxxEf2fATRrmC5ZeWw2VSljRRhbJt//55RDO8eyI/C8c8zWDuFUZnBDir0yttbjzHzJFuXH+JF892cdb9HKbhMn7EFTQzxypUKlqExUrSVqYu5hKkLNE3D0AQ9PkRGhsWq+t4N5GJlrHcS7v0NFWz9fURC/LC4XgXrMLBHymt2YnfRRRevMa5lgPHP6Tm76OJHjN8HDl7HsY3QbCd8zScDvcAhJ3TQDGqpUXLBK1hVZRDQbvudM3MsNhYpuaWEYOXMHGkjzfTKKl4QsaW/pVK0twsC9KQ7h/GbqFcvY1k2t20eZn+2j2emWq1JFcffkGB9a/VliCIyeqfdtq3bSfjw3zwzQxBJCilTORdGAaauEYQSGfiI0F9nEJA4p1XmkqKxETQQQrRmrWrzKuTXyik3QVCEzcq2yE0k8fUMI/kUUOLSqsOQtQs3qnDH0Nso1TVeuVLlwtI5PvXmHaSNNOUmoWrCjVvPbv6g+rNtRuSlBY/zSw4aEROpLAvL5zEGfWUBHRefn68q98S3i3sASOmt+7eXVYpg2aSFQRAGWCJHSoRkdFM5yiGhMocO3JueYKp6kbOVaTa1LbU/Liq/M3sJEZOQviiNpkfcEY2ScjqnOxIFy9QopIC8Dfs/AJU5iue/w6GRPp6dn2MZLSncg9g0wmgGUGsmRc0GoRPqKWpuQNaSLIp4tk0Y5FO9lGNiGkSSvsYUIRFPrZ5CSsmLsyWe8Ja4ZVMPmgZ+5PDswreYdlPs7d+L0C1CGeH4dTJmhp29O1lsLHLbyG2kTJ29YwWenSlhRHHWEhqVdAF0Ew9JIf7M3jTxJnb27aRoFykWt/JOfSuviAgnUN+jjGXwlj19zFZLyYZB1sxyxVEq0ssXW5sOm7RNLFWneDp7hLniAPfG51fdgGemlnF9k9GeFH7NJBWUsCKHUHodiikoAxs/lNTKq4T9gnpkkTJ9bt5UpD5nEYXK1bCpWqYvfBs7935sQ+AEDmk00ppBXcbXnLne+t6Ri5xZeYzHLgXct+m+dbdfL6SUTJeVcrzkLDHQTrDmT8Kl77VMLswMYVQmnzLYP9EDHFHH+7aiXTyKHVQYyFlotbb5La/OSFpyKFtGM7KcXbHx4+/yfKVBVZxiT+Y2phbrLHjzeIHkg7s+yAsXl9Gm/hxPS7FYccnZRqeRj2GrzZofI6537/w48ONdWRdddNFFF138EBBC3CmE+HfAoBDiN9p+fge4Rnpucv8J4EHgz17jpQLg+A3smGA1zD50AUbshDa9VCUKVcE6kZ+g7JX5q5N/xUPTD+H4IY+eKoHU+O7UaV6ofIHtgy275nYL7t6M2WqdWQO3eiWZLxopdhpGrNY3Hrt24jymI6N3dBw3dTNpY2zm7wihsrrOV2agOM653rvxI6nypVamOlzUOmaz4oKt4TfIGJnWYLpbgVRR2bQnLyKe+fHr0LOZSs9ujNBhqG3OI28MsSf3LnJWNnHP82KXxbSRXj+D5VWUgtIkVm0F7PNzAYF0aJg9bEqr9y5kgZobJgRrMWywGDZoENvntylY7ZbqbhCBbmIKjSAI0IWBTaDa40TnvFp+93sQmkHDr6m2quXzHUvOWTaaVO/L4fQQnxg7wjBZ/NpKx3mtzDRNrVczoH970ko1YKnXvNRmCdN0sEwUrEwf5sB2GNzJQtVnydU6wmMzmkku1UtN+kgkUSTJeoucCVc5WblAww+xpGqzu1RqEEaSULqJyuqGLugmjgyRUUDGyFC0i3xg1weSdkfb1DGEhR55aALC/B5Olc8zV5vDCZ2ElJu6yaZ8TEnNFKnQIKcbNMKWanm5foGs1dqgSBtp3EhdE4bWIseGDPCjiKo1RC0zkRx/6twSR6dX0YROxtTxDNUa17dwgiisdnzmQBISrQd1atKmEURkbZ2MZRBoqdbmSqyQ+WFEn1zGDV0kkjRCKVhR0CI3ayCEet+bmx4/KNrNdcpuubNF8MLjajMiCqEwBrrBcs1jU9+aVKetR2hqbClT7zTIQJld3DVhM9GbYaI3TdpW19uC/wpXvJOsRmrTN5AuwwWbvJVnKNWLEbl4epqGHya5bq8nrpdgDQAvCSG+JoT4cvPntVxYF1100UUXXfyQsFDZVwaQb/spA++/jvv/LvCbwGsUINMJN2iQEjroJqvZLWiaQDRLESm5vKAUgJFs537n2YUqZ+ZdSg1VUGtagNNWMLYXGx+9a3Ld887X53nm4hO4lctKDQJ6s4qEDeRt0pbOhaUW6Ti/WOOR08qyvBZ53GQPkNU61S1btzus5AEm+7M8dfkp/ufKMV7QarhGjtmVumr1O/o/4Mw3Wie3z2a5Zep+nZPLJxPFTp0T79a3ZYIlapOvgk5dLYUdNejbwDXR0EQH+fRDRbCcwFHBuO2PaeVarVexlXgQRdSsASQut+y+heG9PwOAHq2y0lhloXqp4/lW4s+kXcGqtJl/NFsENxk5THQGrZ1YIlC77wBb7laE8r7fgr5tbE31s+Kuwom/hxf+uqO41vUIjRBPz7Htzp8ldegj6KaF32iZToByaBMitikPvJaSGBOMrG5gCY2lNoOB5ufaVLAeP7/CY9HbuHXL/RwZ+Vl26DuV4hKvOy100laBeuQThhIJFJ1ZLkU1ZYrhhZhCkdb5skvdUVlURmwvvtBYoC4jpdDIkPQGCo1taOjCIoVgUiuwqqv1PzT9EG7orneYBLByuEFEn2ExV5tjqjTFVGmKRtBgxWkR0ayZTcieLbIMF2wOT/aiR54KldYsFbIcoz3PN2sbDE3cwGDOpke3GKh8b10WljP/CndMf5qB+llKgXo/UoaObWgEmtUKCG5a2ldcLL+SbAQkBEsGVzeNEQGRpPO6/gHQTrCqfrXT5KJ9o2PkJqJIUnUD8vYaspPuTfLpFMFSc1rtAcGELpGMSJk6b97Tww1jAfVwGSFgvEcR1i0DBjeO9KFrOmmh2jZdkcLxI9IbxFD8uHG9FO93XstFdNFFF118P/h/v/HquWLdMOIupJSPAI8IIf5SSnlBCJGRUl6XL7gQ4t3AvJTyOSHEfVc55xPAJwA2b978w66Vd4zfTXp1hRNzNapehlJxD3CZrK1Tc0P81YswMqwG9NvQrL9uHjjEt86cZKSoHNaau/u6Jvjle7eia2JDW+JvXvgmq2e/yc1aNgkLNXSfe28YYHNfhifOLbFUaxVWX3z+IgCHJ/N4MiKnmZ0kB0WwvNAjCEOMsMHhi59h78BhXk5FEAac9C6T5iaulF22rUypO7UP87cXil6Np1dfBtpUE1AkzEgn8zkA0inxzNkF9lQr5IoTuELDEFGHnfm9Nwzw6CuLNPywI2zZCULSRhqJxAmclhmEVwO7pQhKKTl9pULG0vHyOfaMpkmlwMwNk9MsnGiFF0sPo50t8yuyVei9WJ4CDWyjVey327k/dW6ZwXEP74rLwPAdhHoflriQGDyw5U7YfEdC9ApGlgt+GVm62HKbKyrDAF+6WGEN1+whO7IPrCzCzhE0Otsfm4YLQghVLDeJSOwQqFoydY57i0yXpxlID/DMnFJVmwYQT51TraTv2n+Ax5eXGLR2cJNT42g6gsoV6tWIJ85USOVsqrk+YAWBpCFDpGZw+kqF/fl91KLLDJs3MbN8nLTmY8TGE/9w9h/ArfL2yIPIJG/mYfEMHPtbuPNTkCpgGxqmDHjQybPJ0Jg2hoC6ugajYEOCteTpVN2AVKSz2Fjkq+e/mtx2y9Atye8ZM5OQPUOkeO+2n2PfWIGHzv9TPFtndgRa19wAXRN88LbN9GT+dz778mepVQsUIx3CVdw1BEub+o76UwacWAiYFQ12jeSVo6FmsVBxGcrbpDS95QTaWElmBdMS0ppBLfKRXj1Rh8pemYenH+b+zfcjhddBAjfCVY1s2tA+n6gIlqvIuO9AO3nLDlD1AqSkMw8OlHJo6ThBRMrQVBswwMGPKAX1yT+AwE1CuctumRdLT7LiV0ihYRsGH76nj2/PuDSCmMTHgcuuUK6gfdnX1iHwenBdClb8n9QUYMa/PwN87zVcVxdddNFFF138qDAmhHgJeBlACHGzEOIPX+U+dwPvFUJMAX8N3C+E+O/tJ0gpPy2lPCylPDw4eI0A0euAEIJN6SE0T+fJqTKzKw3C2HJ816Qib+lTX4Ll8wgheN+O99HwIAgjDhQfBCCj97M7+w4MTVMmGCtTql0HVeRkrI33VFNGCvwGp/zVpP3tfPk8hyf7GCqk6MtaLFU9grBz9/tKtQSaQUYY8PSnO+ykmwVtxWuQ8xbY0p9hduEFli49q9aazbFISbWmNWcwmjM9F59rue8BeDVeWlIuYL+47xfVMSlb8ybb74eBGwCYf+7LeI/8F6bmlsBI0cBWRaNf50N3bOaX7p5kuKCUgJSpE7YpMw0vZGrBxw8j6kEdxw/5p2OzNGolNdcVww0inkjfx8OassQWmqeypew8ec1krnEeJ6wQBD6lqOXsthRblqf0FI+cXmBmud5hnQ/wnbMlyk6AV1NEyKJNwYIOA4OclSMMfRpN8rhynlPLp/jy2S8zs3yaoZzNZLrVHheZWVZWVqg4fkII3CBsufWFXuu57Fyi1EUiwot0ji8eZ6nRmWHYfk1cWnWougESgRHqfGzy3fzcwCFerA1Qqun40uDY2EGme5SpQSlyWXUlg9YODGHxf7/91+g1N6NjEkinU4XQdM76JZAhPcsXFLmCJPzZNnTGyi/SE5RIGRoT6TsZzgwnhCC1JlsJ4MUr6rPpM9Z/L7YVt4FTgof/EyONakI8hBAMZ/voS/di4xMKE4ToaPurugFb+jMM5m1M3eTBbQ9y54FfoW/iNgIR4TideW51och7PmXgxy2ItqGRMjUCzebiaoPnZiu4PdupugGhMHnLpNkyfZHKSAXgfKk1M316+TQXqxd5efllInxCKa+qYM2XHX7voVf45ktXNry9iXYFq+bX4qiCdKJ4NnEpKHBmXr3ODdv1jnwMd/+HyBT6lPJl59TmjpVRGwqhl7y+JWeJXKyCDeZtZiozfO7U55ivzyfXti0VGWugcu3sN4CCdV0ESwjxceDvgD+JD40DX3ytFtVFF1100UUXP0L8LvB2YAlASvkC8KZr3UFK+R+klBNSykngfwW+JaX8hdd0lWFAEEZEsQ24nx0GQO/fiq+nVavQ9BMA9FhD1JdvQXiTGKgCrVJ3mSy9gBVWcWvzqu3u9Neu9gKTdjoROxc6upnMeTx+6XEW6qp4Hcqrom9qqdZhyrDcqIBhKwULOkhRs6Atu3Xy7hyGJjjpr0L5Mg9mJxFWjmxvHT+MkM0ZjCiA2Wfh7MOda/XrZIwMu/p2Mb3kUnZ8Ra6kVDNjvVvgpvdTJ8W5xRq69Gm4Hl84tsjp5UgpIV6NoXyKnozFRG+aB/ePcvvWviT/COCVK1WOXmgwu9LACRxOnp8h/8zvszjfap0EVUCvZCZZyu5QB9oIlgQsFOEJAo9S1DajEhNIQ9h878IKX37hUtIiuG9ceQFGQp2zY1m9B6b0WwrWGqSNLIQ+jTgLrT79OA9NP8RsZRYaK9iGhtG3OSlCQzOHFdb5s0fP84XvzQKxgtU0QQmcFsEybLjrX0FhjNvMETwMbMOm7HUqYPU2NeZyqUHVDZjL72PFHEaO3krxtk9xeuABDJEiiCKeuPQYj0YnKePSkAGb0gfYlDrEx9+0jULKZM9YAV2Y6EYDrV1NETpnvFWEDDEvPd86Hs8A2aZGJs7x0jWNKDLY3rM9OW0jBcsNIdRM7h1bvzli6zYsnwNg8vJL7B/cz6aUcsBtzu3lzYgwvva9NoJV94KOzYyB9AAHRg+TyQwiBNRjUjizXOf8Yo3AraEJ2DNaYKSg7hdEkpxtEMZOjBKNhcI+Xpz8JbzsCAXdpx630aajkL2Wcsc7sXwqed6mAtQIGkS4yEiua9ttYj62nj92sdTxHX/y0hPDuqoAACAASURBVJN8a/pbrceMWwIzRqaNYFmtbLjRm3l85MP8zfPzPHJKvc7cmhbBqlfl4fmvEw2voGdULhWZlm36uaDG8dI53PizXXFWMHSNW7f2Mt6TTkw2oKVoNwlWXaRw/aij9ff1wvXOYH0KtZtXBpBSvgIMXfMeXXTRRRdddPEGgZRyZs2hcMMTX0/EMwzNIjvIjcOND2LsuJ/To+9VqoOZgdln8V78PDl9gKC6k1IjoL92hoHnfpfN1ZdIr5zCbZo9XDm+8XNdPgqP/z6yusCKswyRD9mBDoVksaFmvrYPZhECZpYbOG0OaCuNMpgZciImWEtnFOkB0rGr4HR5BjOo0iDgvLdKRjPZYhZUfhQlfGFxdHqV84tVNYv1yjc62w11g9AtUw/q5M08Xz56ic89M9PmVNaax2mfbdE1gRMZ+HpKEci2mS4hBDuH8xi6xqHNfYnj4krdwxA2DS/kXOkcsnoZTYbqJbUpWJ97tvNSCqSjrOM1nbFUH0ZMsMIg6FCw0A0+sf8T+HEekRdETC3VyNo6D+wZ5tffegM1SxWamgxBSkyuQbCsHHg1NXujGSw4K8n7j1vhA/kb+MBt/2fSFrpncgwzVO/DpVVVkLp+WyZT4HY+l5kGGbLH7COl9VFxq5S8UscamgYNAM9OrbBQcRHpAi8Nv5dKlOI758tEmkFW71PmFZGkpME3rVVKmS1oMkc+ZSRFeF/WQhcWprkm0ylW03Ka3SrmIWkltQ2NtK/mpsoTR/CCSJHeGBsSrCAilcmx0ypyQ+8NHbfZuq0ULIB0L/eM38P79t5B1tYZLarH7UtBGIdGNwlWFEnqXkh2AyOZfHEzmhCYM19jYXGBv3tuli8+fxHfqWHoOpoQ7BlXqvXesQI52yDQ1Lo1QlbqASueRiadQYQeFa+C6VaxK/P0pvtA05mpqbk/KaUi2sBSYwnhLSOjMCFIa9Fo++54sSp5bqHKHzzxDY5eOZHc1iRt/en+mGA5ajYs3lAJzRxPzXZ2YefXKFjN2bFzpXOtTLk2Beyfauf5zspLSDpbGg1NW9fi3Axat+L5xhVfPVfKfP3zb653Ba6UMrnahRAGcM1mTiHEJiHEw0KIl4QQJ4QQ/yY+3ieE+IYQ4pX4z974uBBC/J4Q4owQ4kUhxPXY53bRRRc/YZgoP3fNn1fD98p/c9WfLrq4CmaEEHcBUghhCiH+D5T1+nVBSvnt1zoDC4DIR0oSBcs0dBjdD2YKme6nlhpVROGVbxBdOUnKbzmC9TWmcIMIHQ1LaLh+3IbUlp/lnvkm88f+Wv0lnnsqL53GcUvKvVC3yZk5tha3AiSOY4ausXUgy9RSjYrbIj+rTgWEIHP//wU9sTNbUvCqwvDxS99lObzEd31V+N2aGoZbfp5bhg5g6OBoKZwgYq4tc6sDVo5aYwVqC9gV1Z5WcdqG+dsIlhcbOBRSBm4QEWoWvpZWTnledd1DAxQzJg/sUUrhasPHEDZBFHF88TgnV48CsZV6e4tgG8m8cTSLF3pJMX9bfjsjsWtcFPqUYx7/nuxWPnnwX2NoRse8zlzJIRuTCyEEUuhc6LkDISPMqIHW3ra3Bql4TsqJAhg7wJPOFQh9bhq4iU8O3MpA3w0MZFvqTC7fgy599Jj0NbxQtQjGs06qRXBNK10YYOgaupan5NYoe2Us3eIX9igxt+6pTYH24OrRonqM755Z4NyC+pw0YXDb0H1xK5ug3LObmjWAIXuS1w9NgrVBO2s877U7M9ZpphCbnqRwSQVlZoq34o8eIpISS3sVguVHRHYvojrP/Zvu58N7Ptx5fjMwN752bp3s4xNv2p6onn22VC2CkHymTqAIeWatsQOQzY+jCfBqF3G/99fJ8XK5RL13F4zuJ3vj/fzbB3Yy0avcMoOYwOlEzJUdLq06WKk0BC4VZ5n8lZOI0gxYOQ7mtiDCQM0Irpxm2VGK3uXFl0jNfZOB0nGcwGGjxKWG1/p3ohaT5lNXFMFsdxB1AxeBoD/VT8WrIAMXqVs8P73MxdUGjXhjxY8cwrh1tSMwOn4MgDAKYeJWdXDbm4E4AkDoyb9b7SR5I+RiZVkP6gjdYNVR1/LVnFJ/nLhegvWIEOK3gbQQ4gHgb4F/eJX7BMC/k1LuAe4APiWE2AP8FvCQlPIG4KH47wDvBG6Ifz4B/NH39Uq66KKLLrroYmP8KqoTYxy4CNwS//2NhSggkjJRsKw2Awbb1HA0G1YuAKqgGy8fTW4PtFSy85wBStUr+M15CylBSp45/SX+7syX+MPn/4BjtUt8rT7Nldpl8BvsMnvATOFFHu/c+k7SRjrZHQYopk1W6z5/9WSrPafkVrF1W7XpbFbzSDSUitBsEQwjyUK0yCKqWN1r9UFuiL50H4YOZe0qhZCZglt/GcwMVWcF5l8me/YRAIQM4Pl4HM5uFfbL2W1oAnoyVvyeWPh6mmwmA/WVdU/RRDMvp1T3MIRFzQ2JpKQcv5Ygkkl7X1OpuOeGAX79rTdwz071/E1nO82wGIuJjww8SpoG2QHMza0wVW+NTXcQdha8dbOX3ozJZMaD0G0ZT6xdd+xG6BJBcVw594Ue94zfo9SXVLHjfN1W6zLi3f65skPg1rjxzKfh4f+kssTWkrnCGIYmEHqRsluh4lUYzgxTsNTrrseF+R3bWsYrzRm3qcU6QgiGCuoxR9NbOTigspBMXcPWiviB2UGwRosp+jIZemLXx1uGbmEsN8Ynbv4VPtx7EwdyE51W5HH+Waqu8uLKqdGEABmiRRY3msFyg5AgNwKNFXQEeSuPqZkIBLqmQ9PQwa22lME2jOU0doz1sW+8mDj9Nd+PzAYFftbK4dt9VGVA6FTYsvI4Q9WXkV4DK9sLNz647jN78MBWbhzJk7Z0jl9UhCcUFgQO5cplCjEBI/RJW1lk6OGGLieWTsRrHAOvzpJsoEWeMnAJ16tY7QpW03hloaY2WIIoSloLndDB0i3yVp5IRnx55RiuNFiouEwv12lI9T2Qhe9ytvEowDrVqWmJH8kIBnbAm/9DYq5T82vquxaT6B67Z91aAYYyQxzZdIQ3b1LEDL+ONLOsNtQ63wgtgtfrIvhbwMeAY8CvAF/lVXJBpJSXgcvx7xUhxEnUf24/BdwXn/b/Ad8G/n18/L/FYcZPCiF6hBCj8eN00cVPHLoBvV108caAlHIR+NDrvY5XRRhbKccEq33n19I1XGkTSclLl8p4YYS0W4WLEblJ4W5pGudnvss/mXlG9Ay7nVVyXp3LcXsYfp1HVy+At4pXOgv1ZSbMPC+aGfy4Pc/SLZzQwY98DKGCQp+f7szQqXhVRrOxshPPbqmA4E1Ji6DKNGqQzwywp1mkmmmKVhFL1yjrGqPx40VSoqXyqqAd2gu5QbCyVFdVGZBCxwqqilg2hxQyfcyXHR56eR4jfw/+9gNsK39BPbewODjZz9bFMZh9Rq1x4tC6t93UNUxd4IcSESslS1WPoSCepYqkyvVBBS6DantadpZ5eVm5G2Zj1Qrd4tbMKF+pZJD+eWZDYHQ/1uS9yfM1DRGEUHX7cq1FZA9u6eXEmRK7RvLcuMOC0xuEMMew4nYvX4Zg57HRGDbziMaKIh6jnW6TmBkylo4RubjA0eefZu/sVzHbMsLWtSPueCu+Po48PUXNm6bslukt9CY3txOK27f28dT5ZfaOFZldbrDa8Kg6ARO9eebLLn4oGbInGbX3Ehhn8F2DmhswVmyRn4xl8K59m3nqsvrM9w3sS8hc3sqrrDS/DhOHFZmPDVLsOCi4YRQTgqXJ1utaq2BFkWSx6rE71wNOBG4Z0j28f+f7kyDlJOMp2jjAVw9dto4MctnW1SyhlIkStJFNuK3buL27ma143OLWmKgep8mtM9mNc8z7ewqQsVistgUcDxf4q6njlMRmJrSWw2Rm+lGo+FysXmSuppz57pu4j8/OPokQECKQUjlkrlWGHD/E0ARBJKl5AY4fcmZJPYYXRDiBg2mpbLuUkVKfBXDRXcHDxI+/79XIVMqV8NkxqnHb6Hrb+KaCtbYFEGKXQk1LHAkn8hNcrqlr4e2Tb+f0ymnOl86TMTLs7d+r7hT64NXQ7SwrsdqWegOYXFwXwZJSRsCfxj/fN4QQk8AB4ClguI00zQHD8e/jQHtj82x8rINg/Shtcbvo4vvFtezB75heuuptXXTRxesHIcRW4F8Bk7T9vyelfO/rtaYNEan2nibBat/Zt02NlTgjZymw8fU0GRpsH8oxblYJZs5SMvo4P3AP+egvIYQZv8KMX+HK9Ld4d2YTQVPRcspJC85MeQazscrwwCEwbPb07wGUOrLUWOJPX/xT7tt0H3v69/Drb72BP3v0PFU3IGfrXHJq7DDjFrRUUbVx1dTcVjMjKYwkdWrkRZ7MnvdB740AFO0ipi6o4nGKZazcHdw8eRMZQyiTi2aRa2WpNYvoyODg3GfV8aF+2P8B0HS+N73AXEmRja0D/Zg1RTxDzWT3aJ5UvQDuMrzydbVjvkYlAGWM4IchaUtnX+7dLLuPUPdUVtfxHR9jV0wgvTAikgG+rPOls19NZlqysWqFYZP1HTalDtHvP0Y1br9rt5dvtpP9LwcnOHGpxIHNLcJyZOcgR3b0w6PfhvIlxcCuomCZcSupt+0IpPvwiLAvPQ+lmAg32zaTO6TZO1Zg595B/vgY3Lj0EKuRxGg3k1irKJop9JHd5M41CKKpdZlSNTfAMjRMXeOuHQPctUPNkI32pLi4qpSK4UKKly6VObtQxQ1CRlI7WNSmGJSHaHhhx3UOkDNbhiIdxMhIKXIVuIrs6KYKWI5CDL/CUDHLOw9sw4wJ1pNny0mcuLWGOJ5diA1eUkVwUFlMbpnenra6sn1eya2uI1jNmABL15BS5ajV4pbJjRQsIQQ5M8+SWMELImxTZV2t1H1S2fy689X7r56zSRi2DmQRGUEpdMGtktdTcOQ3QdPJXnkBwoCvTSljm3vH76VgFzClRBOCnDQIo4hG0KCX3o6ncYOIvpzFfNml5gZUHJU7BS2ClbfyOIFypdyU30TWzFKXEY7UOdd7LxVrmHMLNm60SkrTSFs6Lyw9wd2bDuAEDo9deoy7x+7usHpfqC/w+KXHedfWd2HqsTOi0EGG3DN+T/K5mZrJ9p7tXCgrBT8hiNUFeEbpPXbb9/qN0CJ4XQRLCHGeDWaupJTbruO+OeDzwK9LKcvtUqGUUgohrm3Mv/45Pw18GuDw4cPf13276OJHjfa5n/muYtVFF29UfBH4c1Rr+48lNPgHQuTHCpYqDtoLzyCUNEKbc4s1NGng6jlGjAaHbh6DFz/H87pGxl/ByYzyoa0f5TMvfDohVDW3hBR5KsSkJfRas1n1JSzNJL35Lj46ui8paCzd4kpdWTafK51jT/8ehBB8/E3beOLSE3zxxHOsNjzu0reox9F0KIxCSe2TNv+vDyKJkBG6rmNnBhIlKG2ksQ2bxQLMecuEhsPbhg6SqbzcWiOAmeEZR61Dl636IZISrV+5xLXPNBXTZpJZFGq2KkzbLaRLFzckWE2DjJxtsKl3hG/N5nGCGqHoxW1r4fMDyWX3BP84dYlCukWaEoKlm2iRj6EJhkKDqq4n72cTTdUnaxu8Y98o66BpkO6BuiKrV1OwxM63YS4+g5fuBSuDK0PyWtu5PWs2oc00hqZh4DHR20NlKQM4ndlHG7TCpSydrNZPXarX295ut9rwkna+drRfu5v7MgihAqoBiuk8d45+lCfPqU3JtS5zTXUE1uSeGSlYfEX9rlsqmFZG4JQQbpntE6MwnE+s41fqvooVp5XZ1UTzM5gcH4VV4LhSPbnr11qBt76jWtecMsw8Cbvf0/k+xapWM0vte9MridK0ljQ2MZgtcnppmZW6T2/GVG2dgJnObnh+s2WzGda7bTDLSi0mfn6dQnZzQor7M4PQZqqyb2AfQgiK6KwKyGASBMGGRhdeEJFPGazoHlU3pOL41KIlLENZ0DfvU/NrFO0iuqazv/dGvhN8lXIgCPQUlwv7oeLhRhVyukATGpGM8EOfp+ee5tTyKfpT/ZxaaTkdfmv6Wyw5S8xUZtjWsy0hWB/K76IwcBOXYtOOQKp/u5qEOwmbXm21LOdF67VvRHB/3LjeFsHDbb+ngJ8F+l7tTkIIE0Wu/kpKGV+9XGm2/gkhRoHYn5WLQPt2y0R8rIsuuujiutBOeD/8+c7bDhZ+ruPv3SDif1FwpJS/93ov4lURBYpcxUVXu/uWbepUjTxVN8AgZOeWMba5Lyu1R2ikLJ0ZexLb0EmP3sKdp0Z4tBE7ikU+jcYSgW5xV2YCCpM8XnuaPVYfL3nLBEgY3NUiCXQW0ZbWWeA/P/88hUzA5UodxzVbAaXFCZh5BqIINI07Ru/gae8yF3gMTdfZ0bMjeQwhBD12D964C4XbmVrW+cwTF/jU3duwsgOw5W4A6kM3EsiIjGYmcy4AztjtNGlT+/xIIW0kioyrZ9UsRnuRXr0Cw3vWvfXjvWkurjRImToDOYsgsGj4DQLdxgtaj+9HEavBLENrlJ5kR123IHSxtYgxaXEuLr6bROH0lQrfiLOGLOMaY/BCU2QQrqpgYecxB28kiPcM/N5J7LKyxmbzHevPbxalfoNN5fOENaVQ1Hc8CDceUG2U4+v9xTKmCiKOIrXedlVppeYzUlw/35RvIxg9aRNT15IWViklltEidWuL4VybJX4HMWqfD+udbM1iXTkO8ycTQmnoGrtH81xaVYYO5xZrnF+scfJymTftHCRnGwnB6ult2YMD6j0fUiorgQODu+DS0Y6MN0A9t5RgpjFjlfKJs4owpkz9qi1qg9kiL8Tf75GCCtwFGBno3/D8pulIcWSSD2zfxFgxxRMnmwSrQa5tRsm2e3hfZitP2H3cOLQ/2eRISdCEIIvJ5VojmYFqhxcHTmdtg8urDb53YQUnLLGld5yp1YuJ6lTza2quC9AbJeYqLg9fqEDrI2PBP8OwJjgycYSHZx5mxV1hvq5KfTd0qXiV5NxqbMbT/JydwAFNIyMFgtYMVtOYo5nj1Zw/VC3JCu6NPwXnfIRQbb+vN643aHip7eeilPJ3gQevdR+hPtk/B05KKf9L201fBj4a//5R4Ettxz8SuwneAZS681dddNFFF138CPBfhRD/UQhxpxDiYPPn9V7UOoQBIa3CrL3N5c27BnEMNaehCckNYwPoQsD0kxD6ZC2DCz13qMwnK09Os0BXRa4MPWqNZdAtClaR/fYA7y/sZJ+tirow1aMUkza0F9GhXO9on7F1pJQ8eabK7z0UqwrpPqUouGoY/+DwQbZmDnBEjPHA0GEyZmcYac7KgRCYqRwRIaH0qUQW3PZxNX8FnKmrOZB3ZjZT7mkRo78/WeNvnpnm75+f7XBAy1gGxu2/zOmBt4LQYhLTpso0M7fWYNuAIpe6BgOVE/S7CwSygY/ZESLrhxGWllbvfYysmW0N8schqQVZJi0NPr7z5/jArg8kBeSzUy2zjWZhviHajRyu4iIIqhWz5Jb4s2N/Rj0/hLX3Z+DOT8L2N29wckqRd7/B6PLTACr0d3ivUskm717fBociLJahEURxwR4X/X4YUXb8DRWs9nBZTRMdhi0TvZkOArI2iLa9RbADjbiYLk5AbqilRE49pv5sy3hKWwZ1L2Br/ka8xiBffP4ip+YqPD+t3n8vjLAMDd20YGRf6znqcau/lK1WxOKE+n36SbV5AImZC+nejtcG623J29GbyeALyamBt1HY9SZShs7O4Typ9FVes6bD/g8g9v404z1phBAs+zWymsldVj8DmbbEJDPNqJHlZ+bOs0e2PhNThgghyEqT6cUKDb+BlJI/OvpHfOXcV4A4D83QFMEqOfhRg0B6bOsdQ4Y+K40a4Ykv4s6fSDYT9JL6bn43fIFSoDZzIhlSCxcZzAwymlXq7ExlJiFYxxaPAXB4WOk2zeDi5txbI2hg6hYmwLN/Qcb32JTfxNsn364+lvi7nGxoOCXI9MGR3yRVVO/F7VuvQlZ/zLjeFsH2/4g0lKL1ave9G/gwcEwI0bQ6+m3gPwOfE0J8DLgAfCC+7avAu4AzQB34petZWxdddPHPC9eyap8trB9Q76KL68BNqP+P7qfVIijjv79xEAWEcXvgndv7O1SAfMrkwcO7WPmazo6hHAze2CosV6awcr0EWlqRAU0jc+gX4fTnYe4YMgqou3XQLTJWHs13GBIGfpyxc8u2B9Ytpb2lrbnLDK2dZEvXsE0NU1OkabXu0dMkaU4J0r0sVl0qtQY79Sw7C1vXPYcdP3/a0tGMVV6ofIGvTd3Cz+9rtWLVAuVEd/GSyyOjt6BP7KG3Mc1iZjvEWU62qTE5kEFKNaNimAWWM20TDFpbueJ05jg10Szy/VAyOPdttpYv8JLWQEvZHa5/fiCJZEjchcgdo3dwcLitRNItCAN63MuEkcTs285AqmVg4LapYWsL8w6MH4Rzj8SPuZ7ANGFqJherrWYfK1XcsAUSUOTKTCvylh+i5EZcKty8zkZ7I2QsndDpzDirOgFSQk96fQtjX1YdazoIhvF1c+NInvt2DXK51GpTK6Q6X9/adr4EE4fg9NfV7B2o19nmONdu3561dPxQclPfnZxKt5qjmmTc9cPW6+7ZAnNxXtzqNHC3alGVERhpRXBLs0otzg5C/3ZYjOex032Yjc71XkuZ7E1l0PWQga170Apt0QFrNh+akFLy+aXn2cMe9sSfaylsMGJkucUe7Pys2x9j5mmoLcDmO7HCENOyMdAwEDSCBlfqV5BILpQuUHMDvEARzqxl4EYVTlS/CsB25zInKy+wOr0Fpz4L5ctk9DS4VczLJwg1i0gYnGs8yn9+66/xu9/5NgLJ4eHDFGKHz6cuP5Usyws9DM3gxv4befbKs8lxN3JpBA1eWHiBZNuhOo+YP8F7trf+Pbh58GaklGzrib/fTbdMTWeyP8P7D00w0Xtta/cfF663RfD/afs9AKZoEaMNIaX8LnC17Zm3bHC+5I1om9tFF1100cVPOn4W2Nae5/iGROQTolNImx22101sHiqyeVMfjB9SO/i3fBCO/g8A9E2H4KIylQDI5MeU1Tng+XXqbgUMi4xdjI0CPEyh8fHiPoyJN617rqQFB5KWnkhGiXW7EIK8bVAQapd6serSE7vLuaV5jOIW/vvj58h4S5iatiFJaFfJdgzleGGmxJnVzllWN3Qx9QxlmQUhCIXNYrYzFNb1I0aL6Y737FeObGvNFm25S/3pN1ShvAGyce6SqQtytoEdK4mmrebIrlQXObH8IgW5n0C66EIRiHU5Pc2WLn8OT6Ra8zwx2i3Z19pXd2DT7W0E69oKVjs2ynvqgJkBv0YmrNEwRtR9rsPSOmPpaI0MUE9a+JqtmRvNu9iGzofu2JyQpyaxGetJkzJ1+nMtUrZRO93to7d3XIOAuu5HD5CwWyGgqa7qBuz+qeTUpvq7VOv8ypcdRcKaig0A+bY5uGZeWhJknepU9cqXFMGqXlHPmenD8Dpb7q5FWDNmhpsnenjTrh6otynD2sb38SOf+fo88/X5xICmISATG+GQaZvWaV/n6rT6KW7CjAJ0K81Q0cSKNGqem7gMlp2AP37kFTShk7GUG6ITVcjaOtsGcwxEdSyp0Zh9kkavul7SfgMe/330SEPELXuaEPz92c8SWFW29+SYyE+gCY2B9EASWG7pFl7oUbAK6743buAyXVbzVFIz2mLgO78jRbvIkU1HWge8qvq3EPV92tS3MVF9PXC9LoIbaM1ddPGTgz88+odXve2Tt3zyx7iSLl4vrA0i/sOjrWKsew38s8dxoIfWzO8bE1FAKAyu1TnGff++9XvPluTX/I67Sc1f4K7t6rpOG+lEuWm4ZWqhB3aGdKpHFYkAm2/HLG5e1x4InTNYTuBwYukEj8w8wnu3t4wX+1IDCE8tdr7ismOwn1qk8/WnTjAUbGNy5QmGqy9h5KyNCVZb61tTzZldrvPKlTI3DKvdbzd00Ta9iaP2rcm5//aBnTx9fpnHziwmx7Jrgmk7gmrtPOx8O7zyTZUrtQFGiil2j+Y5uLmI9pwgb5gQgTGyDVbgC6e+gdRXmLRGCKSHFqtv7fNC6oWoVsOCc5myUUzm6ZrYyJp6Q7TPeFlXMUBgPcG6Wm5QArsA1QVs4eMaau3X47iWtgxG7ZvY21+l2rBYrrTUl6vNGw3lW9fQ1oEs5xdrSSBxIWXynptHGS1urDYcGr5Kt8JaItI05Tj8sQ6y0bwelmudn3fTZr+p2KiTBxQJL19SxAlaDoJGGra/RRGupbNKMZESKpdVlIAQ65TI/uzVSa6t2xi6hh+5rEQedhSQ0a5eiq/NrAqiAA9IJwSrbSNmIxWstsCQsECPKOgGZiio+Q7nli/z9PllBvM2g9KnEa2y4JXos7fjRw3Spk7ONug3hrHQma3UaRQVOU17DRACXQquZHcDamNHCMGOIbWh0FTA7xq7iy+f/TKgsqtmK7MUrEKneQlxa2B87P27fx5ejIeow2vsiUWRChxf+x18g+B6WwR/41q3r5mx6qKLLrrooos3EnqAl4UQzwBJxfWGs2kPfQJhoF/vgLYQKqQT5T71q0e2JaqIoRnK7lgIpF9jNYqwrEFMO9dyEMwOKdvyDbB2h/k7s98BSHaj7xq7i+zYZr7ygvr7YtUDIVj2TcyowcnLZcYDFQJr6tr6fCU61RZdEwgBDT/ib58/xW+/QxEqN3QRwkaKziL+tq19FNMmXz2mRrWvy5bZsFRmjpTriI+pa8rRL57R2j0ywKPmFnKj47ACx2bL7NsCdd9B4ifub/2pNUpjTIYs6VLXO7ONVE7S92FiefAjsHDymgSrWZRuLW7lrrG7KNpXaQ9M7pCG5XMqV81QxXD2Ot67jKljyB6ObDqUxJW8ba9K2dko82kt3r53hLoXdJgPNIvxHwq3/jIsnupUcmipk5OsnQAAIABJREFUakvVzgJ9te5zdGYVN4haypsQsO0InH8UVi+owr1dwbIyqi3xub9UBb1bUQ6DsXLSrgC+ZfcQe0Y3zrRS56pr3gkdvnT+KxRrZ/lQftdVz/fWEAwncEAI0k1SVhhv3ZgqKnVt6WzrWGWOXWYPvaN7MM4exfQi6p7D7GqFMJLMlRz6cj6nat+kUO7lrsERpp1n6c2a3DN+D/0LF7DQ8QipxTNuab8BdoGoZzOZlTLD1m7O1L+TPOWuvtbrGc+11jeYHmS2MpvMYk7kJ5itKEX5hYUXkvN6eiZb6/fXG3K0bqur77L9E0ywUDNXt6KMKADeAzwNvPJaLKqLLrrooosufoT4j6/3Aq4LgUuA0WGg8P1gXcuZEIpkuTWWpCBjFzpb1jZQrppoOgf22D2suqvJ7FU9UGHFI9kRRrJ9/Ou39PJPx+eYK6ud9gY2ZtjACyPCWOUxNPGqLYJCiESM8GQrnNQJHAQbzyC1t2Jl7eshWKk284L1zndAolwMH/ggE5e+hWm4QAZdmEDIsruIpgl29OzA1u31LYLxbrouBNU1BMsNIiIp6cmYHdlXV0VxXP1cA1qs6BSt4quTK1AzRIBpaNRNRUqu2aoYI23pNLwouQ6gZW2fsl59QyBt6a9NNlFuMDFEaUcmnl9c2yII8PDL8wgBu4bXEDwro66Pcw+3VJH2z9fMqJY0L74+4/mnpqnFeE+a/RPXVhCb18tCfQF0k5Kmw463XvX8tZbqTTe/9O73Qma083ulG635NIAn/gDKFxFCMNy/i/KF46SjOjXfoRHWsLQ0XtQglB7bh7IYmsaVxpR62ZrG/sH9MHea4b4hzlRcSpqhct68Ovh1fG2UGzKH+blbN+GzC10PGM4Mo7epr+3XVpNYNWfs3r3t3ZxZPcOxhWNJJATEmwa3fQKe+wtFoq6GZjvnT7KChbJMPyilrAAIIX4H+Ecp5S+8Vgvroosuuvh+cC1zDOgaZPxLhpTykdd7DdeFwCXQ7M7g1x8CP73jp5lbvsyTpTMsC8FIqh8KE60T0lcv8ocyQ+zu283Ovp186cyXkuP1uOBptgDpmmAwb3P6SgXHD6lGKcxoGdePMCJVHKYtfUMFa92MTYxAukipWo7c0CUINz6vffYnY15HOdNsSQycaxAsJXCm7DyWblH2y2waEpy8sAKkmW/MoWuCXX272FLYsv7+VtONUFDVOglWk5DcvrU/aZX7YVGLi/2+9Ksm5yhM3Arnvo0uBCLTx+QGFusbIW3pRFLi+C0FbrXuo2vrW+TeCGiqas3Zr3zKYN94MbFSl1KZo3SgGVMw83Tbsbb3x8wo44hm0R/PPGna/9/enUdJVlcJHv/eWDNyi1xrzawFKGqlLIpFSsQBlEUaF4RRTjNAt6NMa+PCOMdB/+i2p7tn7J459jg6jNKiR21coVXacaMVFRkRpKqggCqwqAJqhUqysjIr94i488d7EfkyttxexIvMvJ9z8sT2IuIXv8zI9+67v9/9Ce+9eO20AshkPImIsK93n1OKv+s8UivPLXkw/uixR3PXM5rJBVj17eugYVn5N4s3T8w5rGshIsqS4UOMnlBSw8PUhTYzlhlmkIN0u8M5Xxx8ijUd9XQ2ut+V9BjJaBMv1y/hle6tNBz6V6LDfZAeZzgUJxoWVrQkgNKFJbZ2buXkyEnWNK/h6Z6nc3PJQhLi7Naz2X9y8rxLEYGGdic7Vy7AGs0GWKUzvEGaboC1FPCeBhhz7zNmQcufu7Wz/7WAWmJg6iDKmGLcpT8+B2wEYkAYGFRVf45y/aAKo6cYDXdNXvh1DlY0riCW6OTRU/tRVerr25z5JlklKpcBhENhLlt1Wa58cla2oqB3bay2Bucs+jNHT3E6EyPqrrMTSw9yzsqks5BsqPwcLIDmyFL6U6+Q0lF2Hn+SZU2dToCVKl66vslTfW46WZRsAYpsEJXTsx+O7YYt1+cek2iCzkQnhwYO8fRrj7mlres4MXyMsAjJWIlskfuZQiFhQJrJZJRQSFBVvvnYoYLPMFcb2jfwytArdDV2Tb0xOFmOJRuguYtblq7JLco8lWwwu+94f+6+ntOj1EVD08qAVVs4JG7WLU1bQ4xb37CGVwdGcgEWQCyc93uIFfk+TMpgJcDN3ji3J7ZPFilVX0w0FCUZS9I7MrGuVt9oHx2JjoJth8aHcuXNwclmZYfSFWROi/HO7Yo3On1ChJ6T+4mPp0m0vIF+jtM70ku3u2qTiLA8meD9W9/vPC81Qks8SXpklMPDJ1hZ15orZT+UiZacf+f1xpVvzF2/aeNNhc0s9TcYb5q0kHCBUfdvMV47/8a9phtgfQ14TES+595+J/DVyjTJmOoqVwBjkoMP09VfZjywqWkFwdlBzw7KilwsdJ8HbgS+izPk/Rag9laa3nojPXt6fQuwABLZ+VZta93CF2FoXu4snDqNA+P8IgqD407GxFvGfW2HM0RnaCzNKa2nMzNKOD1CfWaQxuzBT5EhgtlCGiLC9euu5/yk8PldXySVGeGhQ7/OFapIj0dorY9yTlcy914AdZ4MxLSyKN4Mltee7zqXowMTRTDCMToTnRw5fcRZWwxnIn9GlUQkkStBXSA3B04YiTYzmsqQiIXpH07lMlht9YXZvNna3L6Z9a3rC35P5Z90HQAzqbeWzRD+8rkTuft6To/RXGbNp6A1uAFWNpvVkVd8oiCDlVfxkXAkt5Yc4GRKMqmJUv9lTlCUs7xhOX2jEwvkHjl9hHQmTWtd66TvVfa7lvXMa89waMAJ0r1FaEpasQ1Ovui2tYHQWZfT+PLLnFDnb7m7uZ1XeqA+MUgs3M6ZyTPZ27vX2Tx7QiQ1RmOsCRhlYOw0LfFWGHKOg4Y0SoMPv//6SIl+jDc5WSp34XIATr7kZBg3X+d8XyU0v4cIqurfisiPgUvcu/5UVXdVrlnGGGOMf1R1v4iEVTUNfEVEdgGfCLpdOSLQ0s1QJE2LjwFWXeNyp3ZiXXLirPfW98z69QbHBxFkUhWwcEhoTkQZGEnRn0nQCdSn+oiLtwx14eFGboigOkMSl6yFC3uX8tyR0xztG6Z3cJwlTXGWxUI0NkQ5b/XkYXAiwgcuPZPR8cz0sijZz997wBk6tebiyY/3HpjIbkXitNS15D4fwEgqw9BYms2tG0uv1eQ+Nx4ZQyVC3/AYiViCEXf9q23dLdPOdkzXjIKrWSqWdRtLZaaVwQhKQzxCz+mxXCAVCgk3XbSKex91siIF5dTz57DlZ4myZdAHe5wD+zILQJezY8UOtnRsobO+k/uev49Hjjjr2W1fup2Lll+U2y4bYG3r3MbuE7t5/uTzuce8GeSS2s6cuB4KEVn9ehq4l4w6JwrW1DeQ6m4hGhHG0mNctuqywr+l1AhNdR1AD+mM0lTfnAuwTqejRUv0z9TWjq0Mp4Y5eOog7QlP0Zi6pLMW2XDvROb9xYeh75BT7XG03wl6p5mFrbaZfCvrgX5V/YqIdIrIWlU9WKmGGWOMMT4ZEpEYsFtE/h44BtTkXjmdUV8zWOEN18LoIYg1TBSViM5+Ic5UJkUsHCsIaJrrIhztGyYkMUKCs/5VOATLzoFTh4rOk4iGomxq38TZrRPJxNZEA6OZHvoGnFkJx06N0NkaLnkgVxcNT/8gP3tA/LI7r2Xppsnz0J77MbSf5WT5QhGaok5GY13Leo70/IGDx2OMpTJ0N66jrO23wtAY7B6gb2ic5clEbrHis5bU5tn2qTSVyFTUeoAFk6sc5uYWUWT9r1AILvoAvPALOPFc4Ty9bMbq1b1OgDXLoZF1kbpcBqqrqSs3DPDE0IlJ2w2mnABrdXI1u0/s5tToxCLZ0zuhEHOGgza460SFwiTDMdKqpBU6oxGOuOu9Lal3trmk65KJ57sFYTpaOoCDpDNKe2IJnHQKUpxOR1gam3tw31LXwlVrrmJofGhSBo+mFc7lY/8Im98JSzY6ARc42av+o9BYu7OVplum/S9xhlWsB74CRIF/Ai4u9zxjjDGmBtyME1DdDtwBdAPXB9qiElI+B1jEG4klWhlLj029CO005a9hA84B+OGTwzSGYtTHItSP9zpD61aeBxuvLfo6IsKl3ZdOuq8+mqC5fpzhgYn7BkdDk4YDzlr+sKqxwcL7Bo46BTlE6Grq4orVVxDXZbx6fB2qGTKk0cwU2YOGdprrMogMcHLICRRH3QxWwbC0eaIuGuayDUt4aN/kpeSmU6I9KNlS+tkFkWFyYLKytciJhkTLRMn3/L8Nb8aqVJGUGVrZsJKd7AQmD7sFZw6WIJPmZ52RPIMdK3ZM/w3c4aBZR1e+i5Onf0Db6Euc+dK/sHvVEhDh2jOKfEczKdAM8XgD25vfw8XdDayO98LRPSjKQDrKWh/nE9bnD7l0y+ADsPeHToCVzbCN9sNwH3Ru8O39/Tbd0PM64Fxw/gpU9aiI+LCAgTH+ya7NUczO/tfYcWZ7yceNMQuTiISB/6qqNwEjwF8F3KSyMqqzLtNeSjQUZSw9VnAAN1PxcJzR9GjR12mMO0FXWqIkE1Hqh08SjgrUzWwCel2kjrWddazuqKPn9CgHTgwSkbg/mZL8IV2pUWcumtfYUC6rJSKsa11Hz2m38IWECBPi8g1LmEokHCKZiDrrg+GUaAeI5xdWmEe2dbfw0L5XSSaiDI+nGXPnl9WqDcuaePrIKTbmrUu1flkTw2Npp/hKMaXm9HiHDJ51hS9t7G7u5qaNN/Hzl3/OaN4i2IPjgyQiiUknRs5fdv70yvGXkGpezer0LVzQ+zWikRDXdF1KY+PS4nO63LmK0bjzWJgEO4+N0NJzmu7WesYl5ssQwZK8/wezWffseninX3GyWWWWmgjadAOsMVVVEVEAEanNmojGGGOMh6qmRWS1iMRUtXBRnBqTyijhsL8BVrYS4FwOzMAJfkbTo0UzWJ1NzkFgOhQjGhbqx3shHplxIYB4OI6IEBZyB8BRSfiTKckPXNNjE2saeUUmB5De4O71a9voaJxeJrCtIcapYWdx1lyANU8zWFnvu2Qt0XCIrzzyIlDbQwS72+q544rCWjZv3bKs/BC7UmW/vQG6j4vbJuNJ4uF4QVGLwfHBgqxOwcLWMzSaSpMOxRmMddAUT9MWb4UiFQwBSDn/LqOxBCLO3/AzR0bY0j/KsuY60hLNDcOsmKWb4JVnJzKG7mLHuRMjPmXlK2G6PfMdEfki0CIi7wfeC/xj5ZpljDFV9NB/K//4ZbVTC8HMygHgERF5AMgdxajqZ4JrUnHptP8ZrCtXX8ne3r20xqexuG0R16y9hv6xfmftHgqHMgGsW9LIypYE25a3wu8hnBlD460znqfiXRsrW4QgKnWVOZBPj7nVFEPQdga85q7Hk3fQ5i2G0JyYfoGK5kSUwyeHUdXcHKxaXDNqJrKl8RVnwWFfhm5W2ZTzl9wFhAvm93iDnai/eYa6cN2k0u3gBFgN7vu8edWbgWnOvSqjIR6hb2icobVXER3/CYz0Q/OKyRuN9MOxJ3MVCCWaIBZRRlMZUu7i4eNphahUfojo2W+FgeNOJUGYqAA67PbVLAuNVMOUAZY4v81vAxuAfpx5WH+hqg9WuG3GGGOMH15wf0JAzQ5vV1XSqr4tNJzV3dxNd3P3rJ+/JrkGgBf6XgCKVzALhYR3X9ANmQxHs/fNYviOd6jSuzfcQO+r+xAJ0dbgX2nznPS4c6CWaIWt/xZ23eusu5N30Bb1BEXJGQRYyUSUsVSGkfEMo6kMsUiIkM+/26DEI2FGxzM1PQdr1pqWw5Z3OUG3V37Jdh/FI/FJQwT7RvroGe7JVatc37bel/e5fnsXv9nfw5bOTtiNUywi35PfnDx0NhwjFh5nLJVhPOwEmYPqfB9LDrP0SyQGrWvhlaed225WjXE30JrPAZY7NPBHqnoOYEGVWdC8ixDmszWwFq67+p4q+dgHW7ZWsSWmElS1puddZWXUKdzla5ELH2UzV8WGCOaEQrQnGxkcTdG1bOYVvryLDy9rWEZbbIB0RidVf/PNUC+ceB463WFk2YPmMnPVZlJivdnN9hzvH2EslZn32Suv5ck6+ofHJwWfC4YIdJYIaDZc41QR9PnAPh6OM5YeI51JEw6F2d/nZFNXN6/29X3CIeHfnN3p/qOJQLYyYXocdt/r3J8/LzFSRzySpn94nHQoxr7OqxhqbyMyKDM64TBrsQZnvuTo6Yl16nIfaB4HWK6dInKBqj5e0dYYU2kHH55ig01VaYYxpnpEpBP4OLAZyKVIVPXywBpVRDrjDLuq1QArG1hFiywa7BWPRlm3pAkaZ5HBCk+ebH/rG9YwMDLuX+bn7Ktg8AQc3Q1H3MXHl2x2LrPFDcocPDfOoCz1qjbnbP/3dx1h3dJGYvnrLs1jl67vpLU+xsqW2Zf8n5eWv8758Vn27340PUp9qJ6h1BDxcJzzl57v+3sBThAZb57IYJ3YB/3Him8biYEMcfikc5K5L7Ga9HiElvoqZWSz892evn8ig5VrW+0GWNP9tr8eeFREXhCRp0Rkj4iUPuVrjDHG1I57gX3AWpwqgi8CNXfCMKPzI8CashphdvgOM/8c+aXkk4koXa0zK5RR1srtTpDlncvSssp982zhgsJ2v2XjUjYub57RAWUsEspV2RsYSRUubDuP1cci7DizfcEMeQxaNnM7kna+O4PjgzRGG+c856r8mzY7863AyQ55NXZOXI8k6BmYnDkaGEnNaD7inGRPgIwNOpUDkys9bZunAZaIuP91uAo4A7gceBtwrXtpzLzx2xde41DfcNkfY8yC1K6q9wDjqvorVX0vzv6sptR6BisccoKFKdfTWuoeEHVfOOP3KFouuhIyE2sj5UpAZ4c+ulUXvc7pSnL1lmUzfps3uyXdewZGF1QGy/grEXb+BgfdqpZD40OF60L5Ld40kcEaH5r8WJfnuxuJccN5XQVPr9rw0HDEqSaYrfhZ56mGGqrwHLA5mKpl3we2q+pLInK/qtbkwozG+KWr/4mgm2DmiXLrrgFFywObwLi1fTkmIn8EHAXaAmxPUWk3gxWq5FnrOYiIc8igbjtL2vg22HAthGZ+AJaMJYmEImxoq9ICohd/uLDSYci/wg3Z6oepjBKPLMCCEMYXSxuWEpIQL/a/SHdzN0OpoTkvqzClWAOMuyeWx4ecUujZ7HOsAerbYciZl97dVs+Kljqi4RAvveYEYyuqOTw01jhx4sMbYNXo/0qYOsDytvyMklsZY8w8M1XGsnuxzS1Y2P5GRJLAx4DPAc3AHcE2qVAmU9sBVmudU+a9KTZFIUaRWR/4RMNRbtl0S/lCGn7yZgmWbYFTL8Pqi317ee+wQMtgmVJi4RjLGpZxfOg4qlqdDFYk7gQt6ZSzwHZdC4wfdx+rg/P+ZFI29z0XrCKTUT778z8A8LquCgeAXt7Fn+uq+L5zMFWApSWuG2PM4lFknayLXnbO7D266rZqt8ZMk4jUAX8GnAWsBO5R1cum+dxu4GvAUpz9392q+tlKtRVqf4jghrYNNMebWdGwYuqN56AqwwRX73AmzHsDwUgcNl/n69t4h1EtpDlYxn9LEkvY07OHodQQaU3TGPVvMeOiskN9UyNOBstbej6acBfcnjzf0jvnrqLzw/LFF16A9ToR6cfJZCXc67i3VVWbK9o6Y2bhopfvLrjv1dD+AFpijAnYV3GGBz4MvBWnTOhHpvncFPAxVd0pIk3AEyLyoKo+W5mmTgwRrNXK1yLCysaVU284H5xxaVXeJmYZLDNNHfUdpDXNS/0vAVQ+wMoWiBgdcBbzbV1d+FgR65c10VRX5blP3uAvVuF+8UnZHlJVGzBsKqNIRmCSyz4x45fc2f9twIIpU13FAnoAHmp3Lmfxt2x8s8ldwxERuQd4bLpPVNVjwDH3+oCI7MXJglUswMpknMtaHSJoZs4bVFkGy5TTmXAq9+3r3QdAe6K9sm+YDaIO/tq5bFoGJ19yHyudRb7mnOWVbVcx3qAqHHOCwRZ/1wjzW+2W3zDGGGPmJlvcAlVNzXZIi4isAc4Ffpd3/23AbQCrVq0qeN5MpWu8TLuZuYjnd2kZLFNOMp4kJCGODx4nFo7RHKvwILFsgNV7wLlctcNZC6vvZV8LvfjCm8GK1MG2Pw6uLdNkAZaZN7JV20plDLosc2Uq4K6+4kv+HQo5RTLenjmrms0xM/O6vKHtCc+w92kNcxeRRuB+4KOq2u99TFXvBu4GOP/88+c8T7nWi1yYmfMG9VZF0JQTkhDJeJKTIydJxpOVn+PkXW6haZkz72rL9YUl22uBN6M21Tp8NcICLFObyhQVMMaY6ZjrMHcRieIEV/eq6j/706rSar3IhZkbGyJoptKR6ODkyEla462VfzNv4YhN73Auo3XOT60RgaalIOFZLf8QBAuwjDGmCFt4enET5/TxPcBeVf1MNd7ThggubImYZbBMednCFo3VKOQQa4CGDpAQ1NfcsoCFtv8JaHrKzWqFBVjGGGNMoYuBm4E9IrLbve+TqvqjSr2hDRFcmBriYQZH0zTE7JDLlJdRp9JNPFy6ip+vLnx/dd7HD6EQMD+yV2ABlqmkqSoF5vntARsCaIypDar6G5y5WlVjGayF6YpNyzh2atgyWGZKWzu3MjA+wKb2TUE3xcyRBVjGGDMHD5QorrKr7wgfbNla5daY+Sw3B8syWAvK2o4G1nY0TL2hWfSaYk1cvebqoJthfGABlqkay1CZRalcJtfWyDIeuXWw5s8oGGOMMUXYv3FjjDGmBtgQQWOMWRgsg2XmlVLDsYwxZr5LW5ELY4xZECzAMsaYCjjUN8xve8sPi91xmb/vedfuu8o+/sFtH/T3DY2vMpbBMsaYBcECLGOMCcpUlTZtjtaiYkUujDFmYbAAy8zeDMuwG7PYlBvS+vbMWVMWfvE7w2VqWyajiEDIMljGGDOvWYC1GMwlEJrmGXQ/KwTaPCtjXEW+u3f1PeVcWXtJlRtjKi2tatkrY4xZACzAMuWVCc5yB3rAodDwpMfenjmrYk0yZiGYKrsFxU9cZL9rh194jR1ntlemcSYQqbQSCVtxX2OMme8swDIVMZ2DR2PM3Pz2hSmGGFoANq+MpTNEw5bBMsaY+a6mAiwRuRr4LBAGvqSqnw64SYuCNxNVyqG+4Sm3mS4bAmhMedP5jnT1PzHlNod2Tb79iV0/A+Bw83nA5ADMlwqDVrRjTlJpJWoZLGOMmfdqJsASkTDwv4ErgMPA4yLygKo+G2zL5oeb7//rko919T9Bd0uiiq0xxtSyXHB2cOL/wl0HH57YIG9+16Tgy4rbVISq8lLvIG6ldmOMMfNYzQRYwIXAflU9ACAi3wLeAVQ0wPqHB5+fcps7rji7kk2oCj8zUMaYBc4bbAGcPBVMOxaRsXSG0fFM0M0wxhjjA9EaOV0mIjcAV6vq+9zbNwOvV9Xb87a7DbjNvbkeeM6nJnQAPT691nxlfWB9ANYHWdYPtdkHq1W1M+hG5BORE8BLPrxULfZ50KxPirN+KWR9Upz1SyG/+qToPqmWMljToqp3A3f7/boi8ntVPd/v151PrA+sD8D6IMv6wfpgJvwK+qzPC1mfFGf9Usj6pDjrl0KV7pNamk17BOj23O5y7zPGGGOMMcaYeaGWAqzHgXUislZEYsCNwAMBt8kYY4wxxhhjpq1mhgiqakpEbgd+ilOm/cuq+kwVm+D7sMN5yPrA+gCsD7KsH6wPgmB9Xsj6pDjrl0LWJ8VZvxSqaJ/UTJELY4wxxhhjjJnvammIoDHGGGOMMcbMaxZgGWOMMcYYY4xPFn2AJSJfFpFXReTpoNsSBBHpFpGHRORZEXlGRD4SdJuCICJ1IvKYiDzp9sNfBd2moIhIWER2icgPg25LEETkRRHZIyK7ReT3QbcnKCLSIiL3icg+EdkrIjuCbtNCJiJXi8hzIrJfRO4Muj2VVmzfKyJtIvKgiPzBvWx17xcR+V9u3zwlIts9z7nV3f4PInJrEJ/FL6X2x9YvxffPblG037mf/9tugTREJO7e3u8+vsbzWp9w739ORK4K5hP5J39/bX1SfB8eyHdIVRf1D/AmYDvwdNBtCejzLwe2u9ebgOeBTUG3K4B+EKDRvR4FfgdcFHS7AuqL/wh8A/hh0G0J6PO/CHQE3Y6gf4CvAu9zr8eAlqDbtFB/cAo7vQCc4fb1kwv9/3CxfS/w98Cd7vU7gb9zr18D/Nj9P30R8Dv3/jbggHvZ6l5vDfqzzaFPiu6PrV+K75+B7wA3uvd/AfiAe/2DwBfc6zcC33avb3K/W3FgrfudCwf9+ebYN5P219YnxffhQXyHFn0GS1V/DfQG3Y6gqOoxVd3pXh8A9gIrg21V9anjtHsz6v4sugowItIF/BHwpaDbYoIjIkmcA+B7AFR1TFX7gm3VgnYhsF9VD6jqGPAt4B0Bt6miSux734ET2ONevtNz/9fc/9OPAi0ishy4CnhQVXtV9STwIHB15VtfGWX2x4u9X0rtny8H7nPvz++XbH/dB7xZRMS9/1uqOqqqB4H9ON+9eSl/f+1+xkXdJ2VU/Tu06AMsM8FNGZ+Lc3Zo0XFT7buBV3G+WIuxH/4n8HEgE3RDAqTAz0TkCRG5LejGBGQtcAL4ijv85Esi0hB0oxawlcAhz+3DLMITXcBSVT3mXj8OLHWvl+qfBdtvefvjRd8v+ftnnExLn6qm3E28nzH3+d3HTwHtLLx+yd9ft2N9AsX34VX/DlmAZQAQkUbgfuCjqtofdHuCoKppVd0GdAEXisiWoNtUTSJyLfCqqj4RdFsC9kZV3Q68FfhzEXlT0A0KQARn+Nb/UdVzgUGcYRXGVIU643QW3SgCKL8/Xqz9kr9/BjYE3KRA2f66rLL78Gp9hyzAMohIFOef+b2q+s9Btydo7lCoh5jHQypm6WLg7SLyIs4QpctF5J+CbVL1qeoR9/JV4HsszOESUzkLYPGLAAAGiklEQVQMHPZkce/DCbhMZRwBuj23u9z7FptX3OE5uJevuveX6p8F128l9seLvl+yPPvnHTjDuSLuQ97PmPv87uNJ4DUWVr8U7K+Bz7K4+wQouQ+v+nfIAqxFzh2Dew+wV1U/E3R7giIinSLS4l5PAFcA+4JtVXWp6idUtUtV1+BMgv2Fqv67gJtVVSLSICJN2evAlcCiqzCqqseBQyKy3r3rzcCzATZpoXscWOdWAIvhfP8eCLhNQXgAyFbruhX4gef+W9yKXxcBp9zhPj8FrhSRVrcq2JXuffNSmf3xYu+XYvvnvTiB1g3uZvn9ku2vG3D2Zeref6NbUW8tsA54rDqfwl8l9tc3sYj7BMruw6v+HYpMvcnCJiLfBC4FOkTkMPCXqnpPsK2qqouBm4E97vhmgE+q6o8CbFMQlgNfFZEwzomH76jqoixTvsgtBb7nHOcQAb6hqj8JtkmB+RBwr3vAfwD404Dbs2CpakpEbsfZgYeBL6vqMwE3q6KK7XuBTwPfEZF/D7wEvNvd/Ec41b72A0O4f4uq2isif40ToAL8F1Wdz0Wriu6PsX4pun8WkWeBb4nI3wC7cIvyuJdfF5H9OIVUbgRQ1WdE5Ds4J4tSwJ+rarrKn6XS/jOLu0+K7sNF5HGq/B0SJ4A1xhhjjDHGGDNXNkTQGGOMMcYYY3xiAZYxxhhjjDHG+MQCLGOMMcYYY4zxiQVYxhhjjDHGGOMTC7CMMcYYY4wxxicWYBnjAxFJi8huEXlaRL4rIvU10KZLReQNs3jeFSLyhIjscS8vr0T7jDHGVJ+InHYv14jIH/v82p/Mu/3//Hx9Y+YLC7CM8cewqm5T1S3AGPBn03mSZ8X1SrgUmFGA5banB3ibqp6DsyDf1/1vmjHGmICtAWYUYE1jnzUpwFLVGZ/kM2YhsADLGP89DJwlIm8Tkd+JyC4R+VcRWQogIp8Ska+LyCM4C/+tEZGHRWSn+/MGd7tLReRXIvIDETkgIp8WkZtE5DE3u3Smu12niNwvIo+7PxeLyBqcIO8ON7N2SbHtirVHVXep6lH3szwDJEQkXtUeNMYYU2mfBi5x9xF3iEhYRP67u394SkT+A+T2RQ+LyAM4C9IiIt93Rzg8IyK3ufd9Gmd/sVtE7nXvy2bLxH3tp93913s8r/1LEblPRPaJyL3irhJrzHxWybPnxiw67tm9twI/AX4DXKSqKiLvAz4OfMzddBPwRlUddocTXqGqIyKyDvgmcL673euAjTgrrx8AvqSqF4rIR4APAR8FPgv8g6r+RkRWAT9V1Y0i8gXgtKr+D7dt38jfzn3tSe3J+0jXAztVddTHbjLGGBO8O4H/pKrXAriB0ilVvcA9qfaIiPzM3XY7sEVVD7q336uqvSKSAB4XkftV9U4RuV1VtxV5r3cB23D2aR3uc37tPnYusBk4CjwCXIyz/zRm3rIAyxh/JERkt3v9YeAeYD3wbRFZDsSAg57tH/AEM1Hg8yKyDUgDZ3u2e1xVjwGIyAtAdme3B7jMvf4WYJPnpF+ziDQWaWO57R7ID65EZDPwd8CVU314Y4wx896VwFYRucG9nQTW4Qx7f8wTXAF8WESuc693u9u9Vua13wh8U1XTwCsi8ivgAqDffe3DAO5+dA0WYJl5zgIsY/wxnH/WTkQ+B3xGVR8QkUuBT3keHvRcvwN4BefMXggY8TzmzRxlPLczTHx/QziZMu/zKDLKotx2g3n3dQHfA25R1RfyX8gYY8yCI8CHVPWnk+509l+DebffAuxQ1SER+SVQN4f39e7n0tixqVkAbA6WMZWTBI6412+dYrtjqpoBbgbCM3yfn+EMFwTAzYQBDABN09huEhFpAf4vcKeqPjLDthhjjJkf8vcRPwU+ICJRABE5W0QaijwvCZx0g6sNwEWex8azz8/zMPAed55XJ/Am4DFfPoUxNcgCLGMq51PAd0XkCZzKfKXcBdwqIk8CG8jLJk3Dh4Hz3UnJzzJRwfBfgOuyRS7KbJfvduAs4C/c5+4WkSUzbJMxxpja9hSQFpEnReQO4Es4RSx2isjTwBcpnk36CRARkb04hTIe9Tx2N/BUtsiFx/fc93sS+AXwcVU97uunMaaGiKoG3QZjjDHGGGOMWRAsg2WMMcYYY4wxPrEAyxhjjDHGGGN8YgGWMcYYY4wxxvjEAixjjDHGGGOM8YkFWMYYY4wxxhjjEwuwjDHGGGOMMcYnFmAZY4wxxhhjjE/+P+ph3uADfgvjAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "# Show traces and histograms\n", + "import pints.plot\n", + "pints.plot.trace(full_chains)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": "R-hat:\n[1.0113954178762339, 1.007984065285739]\n0.22677203821858427\n0.12450143877137254\n0.22622582498477395\n" + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAF3CAYAAACopUwjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdd3QUVRvH8e/dTUIIoYfeQu89NBGQpoDSRCmKigqIiuIrooCIUhQUlCZFQGnSm4IgCEjvvST03otAQhpJdu77x0YMPcBuZsvzOSeH3dnZmd8uyT47c+feq7TWCCGE8F4WswMIIYQwlxQCIYTwclIIhBDCy0khEEIILyeFQAghvJwUAiGE8HJOLQRKqQZKqYNKqSNKqe73WaelUipMKRWqlJrmzDxCCCHuppzVj0ApZQUOAfWBM8BWoI3WOizJOoWBWUAdrfU1pVRWrfUlpwQSQghxTz5O3HZl4IjW+hiAUmoG0BQIS7JOB2Ck1voaQHKKQFBQkA4ODnZ8WiGA7du3X9FaZzE7hxApyZmFIBdwOsn9M0CVO9YpAqCUWg9Yga+01ksetNHg4GC2bdvmyJxC3KKUOml2BiFSmjMLQXL3Xxh4BsgNrFFKldZaX0+6klKqI9ARIG/evCmdUQghPJozG4vPAnmS3M+duCypM8ACrXW81vo49jaFwnduSGs9VmsdorUOyZJFjtqFEMKRnFkItgKFlVL5lVJ+QGtgwR3r/Ib9aAClVBD2U0XHnJhJCCHEHZxWCLTWCUBnYCmwH5iltQ5VSvVVSjVJXG0p8I9SKgxYCXTTWv/jrExCCCHu5rTLR50lJCRES2OxcBal1HatdYjZOYRISWY3FotHENx90X0fOzHw+RRMIoTwJDLEhBBCeDkpBEII4eWkEAghhJeTQiCEEF5OCoEQQng5KQRCCOHlpBAIIYSXk34EXux+/RKkT4IQ3kWOCIQQwstJIRBCCC8nhcAN+RFPKuLMjiGE8BDSRuBGCqqzDPEdRQl1klj8GJPQmHG257mJn9nRhBBuTI4I3MW5Xczy60sO9Q+jbE1YZ5TmE9/Z/OQ7BF8SzE4nhHBjckTgDuKiYdbrxJCKV+N6clJnB6CVsZJvfccxmDGgm4BSJgcVQrgjOSJwB6u+gesn+Tju3VtFAGCmrTbfxbeiqXUDbBr9WJvOrS7ztnUxna3zyUy4oxILIdyIUwuBUqqBUuqgUuqIUqr7PR5vp5S6rJTalfjT3pl53NLFMNg4Eiq2Y4suftfDo2xN+MtWEZb1hjOPMGGP1rxl/ZPVfh/xhe+vfOwzh3WpuvCsZasDwwsh3IHTCoFSygqMBBoCJYA2SqkS91h1pta6XOLPeGflcVurBoBvGqj75X1WUHwS/w6kzQGz20H01Ydv0zBgUVd6+05huVGRGjeHUC9uEEd0Tr71HQc3LjryFQghXJwzjwgqA0e01se01nHADKCpE/fnec7vgf0LoNp7EJDpvqtFEAgtJ0HkRZjbHmwPaDw2DPjjI9j2M2MSGtMp/iNO62wc0zn5KP59UnPT/rgQwms4sxDkAk4nuX8mcdmdWiil9iil5iil8txrQ0qpjkqpbUqpbZcvX3ZGVte0+ltIlR6qvvfwdXNVgEaD4egK+K0TGLa710m4CXPfhh2ToMYnDExojU7yK3BU52J4wotwcDFc2OvAFyKEcGVmNxYvBIK11mWAZcCke62ktR6rtQ7RWodkyZIlRQOa5tJ+OPAHVO0EqTMk7zkV34C6vWHvbJjeBsLP/vfYhb0woRGEzoP6/aBOL+Duq4ym2uqCjz9sm+CY1yGEcHnOvHz0LJD0G37uxGW3aK3/SXJ3PPCdE/O4l3VD7G0DVTo92vNqdAW/QFj2JYyoADnKQlwUXAyFgMzw8kQo2fy+Tw8nEEq+CHtmQv0+kCrtk70OIYTLc2Yh2AoUVkrlx14AWgOvJF1BKZVDa30+8W4TYL8T87iNp3tMYJXfbCbanqN/342PvoEq70Dh+rBlHFs2rCBW+7HFeIkpV+sTPsUPuPeoo/9qvqUo81NF0qPvl0y31b21XEYlFcIzOa0QaK0TlFKdgaWAFfhFax2qlOoLbNNaLwA+VEo1ARKAq0A7Z+VxJ+9ZF2DDwriEJ/jgzVQAGgyg5aoHf+jfy05diKNGDhpattxWCIQQnsmpPYu11ouBxXcs653kdg+ghzMzuJ3wM7xkXc1MW20ucv8rhZxLsdyowJvWJQQSTSQBJuUQQqQEsxuLxZ3WDwNgdEITU2Mst1XET9moadljag4hhPNJIXAl107C9onMsdXkHEGmRtmhC3NVB1LPusPUHEII55NC4EpWfgPKwrCEFmYnwYaVlUZ5alt2YeUefRKEEB5DCoGruLDXfslmlU4mtg3cbqWtHBlVJKXVcbOjCCGcSIahdgVaw5/dIXVGePojWLHhkTdxv4non8QGoyQAT1n2sctWyOHbF0K4BjkicAVhv8HJdfbevqkzmp3mlqukI8zIR3VLqNlRhBBOJIXAbHFRsLQXZCsNFduZneYu642ShFgOyRzJQngwKQRmW/s9RJyBRt+BxWp2mrusN0qSSsUTYjlodhQhhJNIG4GTPejc/YluxWDDCCjTCvI9lYKpkm+LUZx4bZXTQ0J4MDkiMNPyL8HqB/X7mp3kvqLxZ7cuSFVLmNlRhBBOIoXAJBXUIdi/EKp3gbTZH/4EE20yilNGHYObkWZHEUI4gRQCU2h6+E6DwOxQ7X2zwzzUZqM4PsqA05vMjiKEcAIpBCaoZgmjkuUQ1OoGfmnMjvNQ240ixGsrnFhvdhQhhBNIY7EJOlkXclmn5+m5mbk51/EdwRwtGn/26AJUPLHO7ChCCCeQI4IUVlKdoJZ1D78kNOQmfmbHSbZNRnE4t0PaCYTwQE4tBEqpBkqpg0qpI0qp7g9Yr4VSSiulQpyZxxW0sy4hUvvb5wZ2I5uMEmAkSDuBEB7IaYVAKWUFRgINgRJAG6VUiXuslxboAmx2VhZXkZZoXrBuYoGtGhG4fttAUtuNImDxgeNrzY4ihHAwZx4RVAaOaK2Paa3jgBlA03us1w/4Foh1YhaX0MS6gdQqjhm2OmZHeWTR+EOuinBCCoEQniZZhUApVfoxtp0LOJ3k/pnEZUm3WwHIo7V2/RZTB2ht/ZswIx97dAGzozye4BpwbhfERpidRAjhQMk9IhillNqilHpPKZXeETtWSlmAH4CuyVi3o1Jqm1Jq2+XLlx2x+xRXRJ2mtOUEs2y1AGV2nMeTvwZoG5zaaHYSIYQDJasQaK1rAK8CeYDtSqlpSqn6D3na2cT1/5U7cdm/0gKlgFVKqRNAVWDBvRqMtdZjtdYhWuuQLFmyJCeyy2li3YBNK/6wVTM7yuPLU8U+JMbxNWYnEUI4ULLbCLTWh4FewGdALWC4UuqAUurF+zxlK1BYKZVfKeUHtAYWJNleuNY6SGsdrLUOBjYBTbTW2x7ztbgwTWPLRtYbpbiCQw6ozOGb2l4Mjq02O4kQwoGS20ZQRik1BNgP1AEaa62LJ94ecq/naK0TgM7A0sTnzdJahyql+iqlmjgkvZsop46Sz3KJhYYbHw38q8AzcHEvRF4yO4kQwkGSe0QwAtgBlNVav6+13gGgtT6H/SjhnrTWi7XWRbTWBbXWXycu6621XnCPdZ/xzKMBaGzdyE3tw1JbJbOjPLmCiVc8yVGBEB4juYXgeWCa1joG7A29SqkAAK31FGeF8wQKg0bWzawxyrpd34F7ylHWPp3msZVmJxFCOEhyC8FyIHWS+wGJy8RDlFdHyKGusshWxewojmGxQv5acHQlaG12GiGEAyS3EPhrrW8NMpN4O8A5kTzL89bN3NQ+rDAqmB3FcQrWgRvn4PIBs5MIIRwguYUgKrHzFwBKqYpAjHMieRDDoKF1M2uMMtzwpLpZKHGcpMN/mZtDCOEQyS0EHwGzlVJrlVLrgJnYrwgSD3JmKznVVRZ7ymmhf6XPDdlKwSEpBEJ4gmTNR6C13qqUKgYUTVx0UGsd77xYHmLfXGK1L8uMimYncbzCz8L6YRBzHVJnMDuNEOIJPMrENJWA4MTnVFBKobWe7JRUnsCwQeh8/jbKE+khp4WCu/83JFRFlZa5qWx07jeYP4xqnBj4vInJhBBPIrkdyqYAg4GnsReESoDHzx3wRE6shahLLHTnISUeYKcuzDUdSB3rTrOjCCGeUHKPCEKAElrL9YLJtnc2+AXyd2x5s5M4hYGFv41y1LXsxIcEs+MIIZ5AchuL9wHZnRnEo9y8AfvmQ8lmbjUd5aP6yxZCBhVFJctBs6MIIZ5Aco8IgoAwpdQW4Oa/C7XWXjVmULLtmwfxUVChHWz03DF51hhliNW+PGfZanYUIcQTSG4h+MqZITzOjkmQpTjkDgEWm53GaWLwZ41Rhmet2+y9jJWbzrMghJdL7nwEq4ETgG/i7a3YB6ETdzq3C85uhwqve8UH41JbJXKqq3BOfh2EcFfJOiJQSnUAOgKZgILYp5wcA9R1XjTXlPQSyqRuXT65bgikSgflX03BVOZZZlQgXlvxDfvdPqexEMLtJLex+H2gOhABtyapyeqsUG7rymEI+x0qtQd/N56A5hFEEMh6o5T9dctFZUK4peQWgpta67h/7yilfICH/tUrpRoopQ4qpY4opbrf4/FOSqm9SqldSql1SqkSyY/ugtZ+Dz6poOp7ZidJUYuNynDtBFzYY3YUIcRjSG4hWK2U6gmkTpyreDaw8EFPUEpZgZFAQ6AE0OYeH/TTtNaltdblgO+wT2bvns7tgt0z7EcDge45r/LjWmarCMoKob+ZHUUI8RiSe9VQd+BtYC/wDvZLYcY/5DmVgSNa62MASqkZQFMg7N8VtNYRSdZPQzKOMlyThiU9ICAz1PrU7DAp7hrpWJNQgjxrplJ7eUXgv0ZyGXpCCNeX3KuGDK31OK31y1rrlxJvP+xDOxdwOsn9M4nLbqOUel8pdRT7EcGHyQ3uSppYNsKpDVCnl9e0DdzpT6My+S0XKa5OmR1FCPGIkjvW0HGl1LE7fxwRQGs9UmtdEPiM+8x/rJTqqJTappTadvnyZUfs1mHSEcUXvlMgZ3n7JaNeaqmtEgnaQiPrZrOjCCEeUXLbCEL4b7C5GsBw4NeHPOcskCfJ/dyJy+5nBtDsXg9orcdqrUO01iFZsrjW+feuPrPIRAS8MNQ+jaOXuko6NhnFaWTZjNue4RPCSyX31NA/SX7Oaq2HYp/Q/kG2AoWVUvmVUn5Aa2BB0hWUUoWT3H0eOPwI2U1XWJ2hrXU5U2z1IWc5s+OY7k+jCgUt5ymmTj98ZSGEy0juqaEKSX5ClFKdeEhDs9Y6AfssZkuB/cAsrXWoUqqvUurfMYo6K6VClVK7gI+BNx7/paS8nj5TiSQ1QxNamB3FJSyxVcKmFQ2tW8yOIoR4BMm9auj7JLcTsA830fJhT9JaL+aOwXa01r2T3O6SzP27nGqWUGpbd9M//lWuk9bsOC7hH9KzVRejgWULQ3jJ7DhCiGRK7lSVtZ0dxN28Y/2Dyzq9/bSQuOVPW2X6+E6igDrHMZ3T7DhCiGRI7lhDHz/oca21+3YEewxF1Gmese7mu/iWt+YbuN8YRN5mqS2EPr6TaGDZwijbPdv+hRAu5lGuGnoXez+AXEAnoAKQNvHHq3SwLiJap2KqrZ7ZUVzOBTKz0ygk7QRCuJHkthHkBiporW8AKKW+AhZprds6K5irSkcUTawbmWl7hnACzY7jkv60VaKn73Ry4Vp9PoQQ95bcI4JsQFyS+3GJy7xOQ+sWUql45thqmh3FZS01KgHwnHWbyUmEEMmR3COCycAWpdT8xPvNgEnOieTaXrSu5YiRkz26gNlRXNZJnZ0DRh6es8oUlkK4g+R2KPsaeBO4lvjzptb6G2cGc0lXj1PFcoB5thokHVhN3G2pUYkQdRAi5fSQEK4uuaeGAAKACK31MOCMUiq/kzK5rtB5APxmq25yENe31BaCVWk46LlzNgvhKZLbs/hL7IPC9Uhc5MvDxxryPPv/YJdRgHMEmZ3E5YXpfJwyssCBP8yOIoR4iOQeETQHmgBRAFrrc3jbZaPhZ+HcDv6yVTI7iZtQ9kbjY6sgNuKhawshzJPcQhCXOP+ABlBKpXFeJBd1wN5hbKkRYnIQ97HEVglscXD4L7OjCCEeILmFYJZS6icgg1KqA7AcGOe8WC7owEIIKsJRfdfcOuI+dujCkCYr7H/grKZCCJM99PJRpZQCZgLFgAigKNBba73MydlcR8x1OLEeqn9on2dNJIvGAsWehz2zID4GfFObHUkIcQ8PPSJIPCW0WGu9TGvdTWv9iVcVAYCjK0DboEhDs5O4n5LNID4KDnvXr4wQ7iS5p4Z2KKW8t5X00FJInQlyS/vAI8v3NAQEQej8h68rhDBFcnsWVwHaKqVOYL9ySGE/WCjjrGAuw7DZGzsLP+fVU1E+NqsPlGgCu2dAXDT4BZidSAhxhwceESil8ibefA4oANQBGgMvJP77QEqpBkqpg0qpI0qp7vd4/GOlVJhSao9SaoVSKt+jvwQnO70FYq5B0QZmJ3FfJZtDfDQcXmp2EiHEPTzs1NBvAFrrk8APWuuTSX8e9ESllBUYCTQESgBtlFIl7lhtJxCSeGQxB/jucV6EUx36Eyw+ULCO2UncV77qEJgN9sw2O4kQ4h4eVgiSDqjzqKOsVQaOaK2Paa3jgBlA06QraK1Xaq2jE+9uwj7ctWs5sBiCnwb/9GYncV8WK5R+2X5EEHXF7DRCiDs8rBDo+9xOjlzA6ST3zyQuu5+3gT/v9YBSqqNSaptSatvlyyk4iNmVw/DPYSjaKOX26anKvQJGAuydY3YSIcQdHlYIyiqlIpRSN4AyibcjlFI3lFIOGzdAKdUW+yxog+71uNZ6rNY6RGsdkiVLFkft9uH+HTCtqFw2+sSylYQcZWH3NLOTCCHu8MBCoLW2aq3Taa3Taq19Em//ez/dQ7Z9FsiT5H7uxGW3UUrVAz4Hmmitbz7qC3CqA4she2nIkPfh64qHK9cWzu+Gs9vNTiKESOJRhqF+VFuBwkqp/EopP6A1sCDpCkqp8sBP2IvAJSdmeXQ3LsDpzVD0ebOTeI6yrcEvLWwaY3YSIUQSTisEWusEoDOwFNgPzNJahyql+iqlmiSuNggIBGYrpXYppRbcZ3MpL3Q+oKHUi2Yn8Rz+6aDCa/Z5HSLOm51GCJEouR3KHovWejGw+I5lvZPcrufM/T+RvbPtp4WyFDU7iWep3BE2jYbNY6B+H7PTCCFw7qkh93X1mP08dqmXzE7ieTLlh1ItYMtYuHHR7DRCCKQQ3Nu/HZ9KtTA3h6eq3dM+T8Ea1+s/KIQ3cuqpIbdki+fCytEcMkrz+sA9wB6zE7m14O6L7rn8xNNvwPaJUKk9ZC2esqGEELeRI4I7hf1OdnWNCTYZW8ipave099b+7T2wJZidRgivJoXgTpvHcMzIziqjrNlJPFuaIGg0GM7tgPVDzE4jhFeTU0NJHV4OZ7Yy0faGfXYt4TT2U0Z+DPetxvMrvqbdkgTWGvZRzU8MlL4bQqQk+bT7ly0elnSHTAWZbqtrdhovoege34FDOjcjfEdQUN3V8VwIkQKkEPxr0yj7AHMNBhAvB0opJhp/OsR3JR4fpvgNIBcpOKigEAKQQmB3ciOs6GsfTqLws2an8TpndFZei+tBILFM9fsGwuXIQIiUJIXg6nGY/QZkyAfNRoFSD3+OcLgDOi9vxH1GZhUBE5+XYiBECvLuQnD1OExqbO/c1HoqpM5gdiKvtlMX5vW47vbJayY1lvGIhEgh3lsIrhyxf/OMi4TXf5dOTS5ipy4MbedC5EV7MZAZzYRwOqX1o048Zq6QkBC9bdu2R3rOnb1bg9V5Zvn1w4qNtnE92a/zOTKicIBK6gBT/AZwWOeiTVwvIglIkctKlVLbtdYhTt+REC7E644IsnCdyb4DsWKjVdwXUgRc1FZdjE7x/6OYOs1I3+FYsZkdSQiP5VWFwIcExvr9QJCK4K24bhzRuc2OJB5glVGOXglvUcu6h94+k82OI4THcmohUEo1UEodVEodUUp1v8fjNZVSO5RSCUopp4/5/D+fOZS3HOGT+HfYrQs5e3fCAWbaajM24Xne8FkGu2eaHUcIj+S0QqCUsgIjgYZACaCNUqrEHaudAtoBTp/RPEQd4F3rQqYn1GaxUdXZuxMO9G1CazYbxeCPj+DyQbPjCOFxnHlEUBk4orU+prWOA2YATZOuoLU+obXeAxhOzIEVG/18J3KOzPRNeM2ZuxJOYMNK57gPwDcA5nWwDwcihHAYZxaCXMDpJPfPJC5Lca9al1Pccor+8W2Jwd+MCOIJXSYjNB4K53fDapnQRghHcotBdZRSHYGOAHnz5n20J8eG8z+fuayzlWSJUckJ6URKCZ5k4Xvfp2m6ejAvLMvEAW3/XZDRSoV4Ms48IjgL5ElyP3fiskemtR6rtQ7RWodkyZLl0Z68cSQZVSQDEl4BZPgId9c3/nWuE8hA33FYnHtGUQiv4cxCsBUorJTKr5TyA1oDC5y4v7tF/QMbR7LYVplQnT9Fdy2cI5xA+sa/RjnLUdpal5kdRwiP4LRCoLVOADoDS4H9wCytdahSqq9SqgmAUqqSUuoM8DLwk1Iq1KEhNgyHuCh+SHD6lakiBS0wnmKNrTSf+MwmiHCz4wjh9pzaj0BrvVhrXURrXVBr/XXist5a6wWJt7dqrXNrrdNorTNrrUs6bOfRV2HreCj1onQc8ziKrxLewJ+b9PB1+pXHQng8z+1ZvGm0fUC5Gp+YnUQ4wTGdk7G2F2hhXQsnN5gdRwi35pmFIOY6bP4JijeGbHf2YROeYmRCU87oIFjUVfoWCPEEPLMQbP4JboZDzU/NTiKcKAZ/+sa/BpfCYPMYs+MI4bY8rxDEhsOmkfZpJ3OUMTuNcLK/jBAo0hBWfgPXTpgdRwi35HmFYNMYezGoJUcD3kHB89+DssLCj8DN5tcQwhV4ViGIugIbRtjbBnKWMzuNSCnpc0H9r+DYStgy1uw0QrgdtxhiIjmCuy+il88U3rRG8uyumhzduejhTxKeI+RtOLwM/uoFearIFwEhHoHHHBEEq/O8Zl3GXFtNjmpTxrYTZlIKmo6CgCCY8SqEP9ZoJkJ4Jc8oBFrT12ciN/FlUEJLs9MIs6TJDK/MtLcR/doCblw0O5EQbsEzTg2FzqemdS9fxb9uH65YeJXg7refBqxm+ZCfbw7m+uCq5OwwG3LLXPRCPIj7F4LwM/DH/9htFGCKrb7ZaYQL2GiU5KW4Lxnr9wOMrwdlWkGl9vaCoOwj0N5ZPITwZu5dCGzxMO8dsMXTJf59bFjNTiRcRJgOpuHNgeytu8/e2WzPDAjMZm9Izh1CJZXALl2IeDf/ExDCEdz3r0Br+3XjJ9dB87GcmB5odiLhYm4QAPX7QI2PYf8fcGwVnN4E+xcwOxVEan/+MkKYkVCbLboYMl+F8FbuWQgMw36Z4K5foVZ3KNsKpsuhvrjbf6eAMgDNgGZkJIJKloM8Y9nFC9bNvJhqHZuNYnwb35qTJmYVwixKu1lPTP8chfT09kVobl3PhITn6JPwOvJNTjyuVMTR0rqK931+J7u6huoTsV1rLa3Lwqu43RFBYXWW5tbLfBffklG2pkgREE/iJn5MsT3LXFtN3vVZAEw2O5IQKc6p/QiUUg2UUgeVUkeUUt3v8XgqpdTMxMc3K6WCH7ZNCwavxPVklK0ZUgSEo0Tjz/fSB0V4KacVAqWUFRgJNARKAG2UUndODvA2cE1rXQgYAnz7sO0e1rnYYJRydFwhhPBazjwiqAwc0Vof01rHATOApnes0xSYlHh7DlBXKfXAr/lyiagQQjiWM9sIcgGnk9w/A1S53zpa6wSlVDiQGbiSdCWlVEegY+LdyJPfvnDQKYkfXRB3ZHUxku/R5TM7gBApzS0ai7XWYwGXG19YKbXNla8wkXxCiORw5qmhs0CeJPdzJy675zpKKR8gPfCPEzMJIYS4gzMLwVagsFIqv1LKD2gNLLhjnQXAG4m3XwL+1u7WsUEIIdyc004NJZ7z7wwsBazAL1rrUKVUX2Cb1noB8DMwRSl1BLiKvVi4E5c7XXUHySeEeCi361kshBDCsTxjYhohhBCPTQqBEEJ4OSkEQgjh5aQQCCGEl5NCIIQQXk4KgRBCeDkpBEII4eWkEAghhJeTQiCEEF5OCoEQQng5KQRCCOHlpBAIIYSXk0IghBBeTgqBEEJ4OSkEQgjh5aQQCCGEl5NCIIQQXk4KgRBCeDkpBEII4eWkEAghhJeTQiCEEF5OCoEQQng5KQRCCOHlpBAIIYSX8zE7wOPKHBSk8+TNZ3YM4SH27j+MLSZCmZkhKChIBwcHmxlBeLDt27df0VpnuddjblsI8uTNx7I1m82OITxEzvxFzY5AcHAw27ZtMzuG8FBKqZP3e0xODQkBWCzypyC8l/z2CwGkSuW2B8dCPDEpBEIA8Qk2syMIYRopBEIAhqHNjiCEaaQQCAFYpY1AeDE5MSoEoJEjAlcU3H3RfR87MfD5FEzi2eRrkBCAqR0IhDCZFAIhAMMwO4F4FAHEQtgCiLxkdhSPIKeGhAAMqQRuo6FlM319J8CsCLCmgmrvQ50vQNp5Hpu8c0IAWksbgTvIyjUG+47hvM4MradDyWaw7gf4sxvI/+FjkyMCIQCrVb4TuYNPfWfig43O8R+yplgjKNoQArPBhuHglwbq973vc6Xh+f7kt18I4RaKqlO8ZF3DBFtDTulsBHdfRHCPxQT/XYUpCfVg/TD6ff6e2THdkhwRCAEkxEvPYlfXwrqWOG1ldELjOx5RfJnQjkwqgi98p8KyIKj71V1tBrnVZUqq42RR4ew2ChKqgzHkuzAghUAIAHx8rWZHEA+gMHjBupHVRlnCCbzrcQMLH8Z/wFU9idfWD4MDi6BMa0idAa4cghPrWJcq7LbnbDWK8HZcNyJIk1Ivw2VJIRACKQSuLkQdIqe6ykBbm/uuY8PKFwlvstEoQcfLiyi3sj8A0ToVO41C/G20ZYtRjKs6LXWsO/nCZwoz/PrTMu6LlHoZLksKgXBZhmGwZdMGViebAj8AACAASURBVK1YRujePRiGQakyZWnRsg1FihV36L6sSrqUubLG1o3EaD+WGxUfsqZisVGVxXFVSUMMAdzkKmmxcXuhn2J7llM6GxN8v6Ozz2/Ay07L7g6kEAiXExkZya8Tx/PT6JGcPXUCi8VCgcLFsFgsrFi2hCGDBlCkeClq1KxJcP4CFCtRiuo1auHj8/i/zsoihcB1aZ61buNvoxzR+Cf7WVGkJorU9318tVGWubYavGldAlePQaYCjgjrlqQQCJcRfv06Y0eP4KeRI4gIv0bFKtV5v+vn1KrXkLTp0gNw5dJFliycy7JFvzFj6hSiIm8A0KbdOwwb8eNj79sqhcBlFVZnya6usdoo6/BtD0poRSPrZlL93R9e+sXh23cX0mQuTHfp0kW++6YvFUoVZtA3falY5Smm/LacCXOW8MKLrW8VAYCgrNlo+/Z7TJr3FxvCzrJy5zHqNmzC3OkTiQgPf+wMqX3lT8FV1bTsAWCdrbTDt32JjEy11YOw3716uAo5IhCmiLxxg43r1zJl8mRWLF1IfFwcz9RvxPuf9KJoieT9wSulyByUhfQZMmKxWLFYH7/BV9oIXFcNy16OGjk4R5BTtj/T9gwdjUWwaxo8/ZFT9uHqpBCIFHPl8mXmzJzK77/9xq5tm7DZbKRLn5GX275N6zc6EFyg8CNv8/CBMP6YN4Pnm7ciMPDuywqTK85mzlhDSqmOQEeAvHnzmpLBlfkRTxXLfmbYajttH0d1Lsj7FOyYBNW7gBd+KZBCIJzu7JnTfPN1f+bPnEJCfDxFipeiXaePqPxUTSpUfopU/slvAEwqOiqSzzq/SWDadPT/ZsATZYyJM6dDmdZ6LDAWICQkRAbLuUNFyyFSqzjWGo4/LXT7jt6A+e/AyfUQ/LRz9+WCpBAIp4mNjWXksO8ZOmggNsNG81av06bdOxQq+uSXfhqGQY8P23P8yEGmzV1IlixZn2h7FmksdknVLftI0BY2G469XPguxRvDwo8g9DcpBEI4yoZ1a+jyXkdOHj/Ksy805+PP+5Mzt2NOfWitGdy3Jyv/WkT/b7+ndt36T7xNm02+jLuipyyh7NYFH3gZqEP4pYHC9WH/Amj4LVi8q4OhXCohHCo6OprePbrRvFE9bDaDn6b+zuDRkx1WBAAmjB7Crz+PpON7H9Dh3Q8csk1fH/lTcDmxEZRRx1hvlEyZ/ZVsBpEX4fTmlNmfC5EjAuEwofv20P6NVzl66AAvt32brl98TUCAY8dxmTNtAkMHfEmDxi3oO2AwykENe3JqyAWd3ICPMtiYUoWg8LPg42+/lDTfUymzTxfhMoVAKXUCuAHYgAStdYi5iURyxcXFMez7bxkyaAAZMmbip6m/U61mnfuubxgGe3ZsYeVfi9gbuo+bMTE8U7suzVq+RpZs2e/7vOV//k7/Hh9R/Zn6jJ84GYsDZ6SySh1wPcfXEKt92WE8+tVkjyVVWihUzz4F5nMDvGrGM5cpBIlqa62vmB1CJN/undv58P1O7N+7i0bNWvJZn2/JmOne13tfunCehXOnMWf6FM6ePIqPjy95ChZBKQsjvuvLr7+MYf7yTWTKnOWu527buI7POr9F6fIhTJ05Bz8/P4e+jvCoeIduTzjA8dVsM4pwE8f+Xz9Q8cZw4A84txNyP2xcI8/haoVAuIno6GiGfPcNI4YMInNQVn4Y+yv1Gja9a71LF86zdeNa5s6Zzo71KzFsNkqUr8JL7T+kap2GpEmbDoAd61fy1btt2LR2FY2a3T4A2PEjB+nSoQ158uVn1ryFBAQEOPz1xEbHOHyb4glEnIOL+1hntE7Z/RZ5Diw+cGChFAKTaOAvpZQGfkq8vlq4mPj4eCb/MpbvvxvAlUsXad76dT754hvSpktPfFwc27dsYPO6lWzbvo2Th/dz/Z/LAGTOmoPm7d6jfrM25Mx39+Be+YvazwOfP3vqtuU3IsL58K1W+Pr6Mmv+H2TMlMkpr0t52VUiZrnfdJF3TRV5eBkAfxvlnR0JuD3XFN9i5Fwzg7rLK3nNFJauVAie1lqfVUplBZYppQ5ordckXSFpL8zceaQXZkqKjY1l/uwZDP1hEMePHCKk6tMMHj2ZCpWf4vLFC0wcM4xZUycQfvUKPj6+5C1UjIo16hJcuDglylemQPEyWB8wBMSaP+cDUKNOg9uW9+vehTOnTjB/0XLy5gt25ksUruTwX5AuN4cu5U7xXS81KtHfdwIF1dkU37dZXKYQaK3PJv57SSk1H6gMrLljnVu9MMtVqCgXfqeAiPBwpk2ZwPAhg7ly6SKFi5Vk2PjpPPPs81z95woDvviEOdMmkhAfR0iNetR/8RXKVa2J/yNcLRQTHcXs8cMoFVKNIsX/u0Jk5V+LWLJwLj1696Vqded28rH6yBGBy0i4CcdWQemX4VLKt+L/ZQuhv+8EGlk2k/i90+O5RCFQSqUBLFrrG4m3nwX6mhzLqx3YH8qQ77/nz9/nEBsbQ+Xqtfhm2HiqVK9F5I0IRnzXlynjRxIfH0e9pq1p8fYH5MgTfNs2EuLjObB7K2E7thB+7R9SpwmkSdsOpMtw++md3yePIeLaVT7r1e/WspiYaAb27kahoiXo/NEnTn+9Mh+BCzm5AeIi7efr16f8GFCXyMgWoyiNrN7Tn8AlCgGQDZifeE24DzBNa73E3EjexzAMli1ZzOhRI9mwejn+qQN4/sVWtGjTjlLlKhJ38ybTJoxh9NCBRFy7Ss2GzWnz7ifkCi54axtxN2PZvXktG1csZsOKJURHXAPAP01absZE8efcqYz5bTVp02cE4MqFc8z95Ueeqv8CZStWubWdX0YN4fzZ0yxYshJfX1+nv3bpUOZC9s0B3zSQvyawypQIi2xV6eM7CS4fgixFTMmQklyiEGitjwGOn3VCJEt0dDSzpk9h5LAhnDx+lKzZcvB+1160eqM9GTJmRmvNssW/M6h/Ly6cPkHpStV5q+uX5ClYhOMHw1i1aC7nTx1n+/atHN+zhfjYGFIFBFK0am1K1WxAcJnKBKTLwJ6VfzDr6/9x+thhSpSvDMCkYV9jGAZf9Bl4K8/lixeY9NNwnnvhRaefEvqXI/skiCcQGwH75kHpl+zDPpjkT1tlvvSZjCXsN6j1qWk5UopLFAJhjn+uXGHc6BH8PHY04devUapsRb4bOZG6DZvc+ha+ZcMaBvbpwZGwPeQtWJSeQydwI/w6owb349iuTdgS7NffK6XIkq8QFZ5rQdEqtSlQvio+vve+/ts3sQ/Agd3bWb1oLm+/35VcefLdevz7/p+TkBBPn/5fO/kd+I9hSJOTS9g3F+KjocIbpsa4REa26qJU2TcXanbz+KGppRB4oRsREfw4dDA/jRpBTHQUdZ57gbbt36dC5aduDdlwaP8+vvvmK7asWkqWHLno2L0/l8+f5fuenbkZHUWmnHmp1vx18pasQJa8BUmfNSd+/qkxbDaunDnOucOhZC9QDD///wYLC12zhDQZMlOgWGlsNhtjB/YkU9bsdPjgvzaAjWv+ZvFvs/j4s88pULBQir0nNsOc+QhEElrD9omQtQTkMv8a/oW2alS5PAHO74ac5cyO41RSCLyI1pr5c2bS89OPuXrlMs+98CKd/teDgkWK3Vrn0oXzfNOvF38vmEWatOlo9c7HxMfdZOLQb4i/GUOpZxpRtelr5C1Z4bZxfi4cO8iWBVPZvXoJN2/Y2wUy5C3KhyNn4Zc6gKvnTxO2fhnNXnsHq9XKktmTORK6mwHDfyYgjX1CmX8uX+Lz/3Ukf6EidOn6WYq+NzJnsQvYMQnO74ImI1ziG/hCWzX6+0+F3dOlEAjPcP3aNTp1eIu/l/5BqXIh/DhhNqXK/fetKyryBj+P/IHJ40di2Gw0e6MT6TMFMfvnkcTcuE6pZxpRu21nsub771u6LSGe/RuWs2LmJC4f3I7Vz5+c5WuRo0x1Yq5dZu+cERzdsYHi1euxZsZPWCxWmrTtyKVzp5k4pB+lK1W/1YvYMAw+/6gjEeHXmbPgT1KndvKww3dygQ8er3btJCztZW8gLtfW7DQAhBMIRRvC3tlQvx/4pOBQFylMCoEXCAvdyysvN+fShXN8/Hl/XuvQ+VbnLsMwWDh3OkMGfMnVyxep1ehFylevzbSxw7h08ggFyj9Fw3c+I2P2PFy/dJbD29YSceUiZw7sZt/6v4m5dok0QTkp07IL+Ws2I1WgfaL5kxsWA5AhW04unz7Gjj/n0Kh1OzJmycaXnVqjDYNvh465dVTx88jv2bBmBYOGjaRESSfPRnUPFikEplAYNLRsgXEfANp+NOBKDfdlX7GPRnr4Lyj+gtlpnEYKgYdbv3Y1r7V6kYCANEyYs4SyFSrfeuzQ/lB6ffoBB3ZtpUip8rz3xSDmz57K0M8/IGOOPLTo9i0RVy8zbcBnXDt10H4ON5GPfxqyFg+h4us9yF72aSx3DNFwYv0fpM6YlSzBhfn18474pQ6gZYePmPvLj+zetIbeA4eRO28wAJvWruTHQf1o2PRlXn+zQ4q8L3eSM0Mpr4llPV19ZpPPcgnSl4XmYyFjsNmxbleoLgRmg51TpBAI97R65QravtyM3PmCGT1lPtlz2rvrx8REM3JQP379ZTSB6dLzQZ8fiI2J5rvP3sWwJVCzTSdsCfH8NuxLbHGxZC5UlpJNO5IuV0H802UidcYsBGTOgcXqQ2zENRJiovFLk/bWfq8eD+Ni6CbqvfUxBzes4Mj2dbT/tB9njh9h6shvqdGgKS1eeROAs6dP8un77ShQuCijfhrnsPkFHlXsTXPmLPZGFgy+9vmZNj4r2W0U4Pu4lgxv/xVYnd9f5JFZfaF8W1g3BMLPQPqUH/IiJUgh8FAb162l7cvNyJu/IONn/nFraOg9O7fy2QcdOHvyKA1efp3ajV/mx4G9OR22k4IVqhNcphJr50wkLiqcvFUbUKJxe9LlzH/btg3Dxrkdq9izaBqRJ3YBEBhcjoa9xwOwd84I/AIzULZOY8Z2aUWOQiWoVq8R3V5tRPbc+fj2h1EopbgZG8snnV7HZrMxdeY80qQx77pxOTOUcl61LqeNz0rGJDRmUEJLbFgZ7opFAPtgdLlVHtb4aYZ915ththbAPQbJc3NSCDxQWOhe2rZqTs48eRk3YyEZMwVhs9kYN2IQY4YOJHPW7Hw1egbHDuyl59sv4uefhnpv/o8dq//i6MShZClakXKvfELGfEVv266REM+pzUvZPW8sN/85g1/GHGSv2ZaIw1uIuXAEgPO71nAxdDON3vuc5ROGEHX9Kl+NmMwPPd4n6kYEY6f+RmDi0NMDen9C6J4dTJo+lwKFUmjykfuQGcpSRlau0c1nJmttpRiY0Bpw/ff9jM7KWqM0rXxWMsLWHMMDZ/iVQuBhzp87S8tmL5A6dQCjp8wnU+YsXLl0kS6dXmfv1g3Uer4FzV9/l+/7dON02E5K1HiWoNwF+HvyCHzTpKNKx/7krdbwtlM0cVERHF01jwNLpxMfcZnU2QsS3LI3GYrbe/1e3b2MNLmLY8THsWvGD6TNHkxgxiB2r1hA605dWbNkPqHbN/H10LEUKV4KgD/mzWDe9El89El3Gr7QxJT3KilfX8/743ZFH/vMJhUJ9Ep4C3coAv+abqvDGOtQalr2sMrwvEtJpRB4kMgbN2jVoimRNyKYPH8ZOXPnJXT3Dj5o/wo3rl/lw75DAMWn7ZpisVho8E53tixbSNjav8hTuT4VXutOqrQZiYuK4NrJA1w/fYgTOzdz49h2jLhYAgtUIE/jj0hXuMqtQnF9/zrirl+g4qsfc+DPyURePE3LnkNYOLwPuYqWIU/BIgzq9g6NWr9J4xZtADh2+AD9enxExSrV+fTzL018x0SKuhlJY+tG5tuqc1Lff0pSV7TCqMAVnY5W1pVSCJJLKeWrtY6/Y1mQTEPpPDabjXavv8Lh/fsYPmEWRYqX4u8lC/m081tkyBzEl6OnM23iWPatXky+0pUoVrU2yycOw+LjS9V3BxBUpDyH/prG8U3Lib188tZ2/TJkJ2OZegRVakJA9oK37VMbBhdWTcEvYw7S5czP5p8+J0/l+uz8ax4JcbG079Kd77p1pEip8vT7ejAAsTExdHuvHf6pU/PL5Kn4+LjGd5GEBHN6FiedYyNvXg+fY2P/QtKom8y11TQ7ySOLx4e5thq8ZV1CEOFmx3E4h/4VKqVqA1MAf6XUDqCj1vpE4sN/ARUcuT9hp7Xmow8/YM3yJfTs9z01aj/LlPEjGdy3B4VLladt588Y1KMz4ZfO80zbzhw5eICl474ja/FKlG/7GSfWL2TzuC/RRgKB+cqSo0w9AnIWIXX2AvikyUj0mf2E719H5PFdZCj+NH4ZsgFwLXQVMReOULlDX3ZM+RarbyqKFC/OiknDaf9pPyYN7Y+Prx8//jwNXz8/DMOgR5f2HD4Qyox5f5AjZy6T37n/2GzmjDWUdI6NkJAQzx7waPd0ThpZ2aqLPnxdFzTL9gzv+CyiuXUt8IrZcRzK0V/HvgOe01qHKqVewj7T2Gta60240wlBNzNs8LfMnDyOdp260PL19vzwdS8mjhlGtbqNKF25On06tyUwQxBNPurLsimjiP7nAqVf6kxA5hys+KY9CdHhZCxTjxy125Eqo/2Q3UiI49qeFZxdPQPb9TPY//s0Z5f/TKkuk7H6B3Ju2ThS5yiMLT6eywe28UzbzqyeNoaiVWtz+tghThwKY+SkObcuW/1xUD9W/LmAr77+jjr1nzPvDbsHsy5b9RrhZ+H4GubZXsRdPwqO6lzsMgrQ2LrR7CgO5+hC4Ke1DgXQWs9RSu0H5imlPsM+J7FwsJ/HjuKbvl/wfPNWdO7Wm64fdmTF7zN57uXXuBwRzdgBn1Oo4tPkK1WRBcO+xD9DEE//byh7l87l+r4fCchdnIJtBxCQ0z7mupEQx5Vtf3B+1TSMmGtYM+YjsHon/PKGcGPtSOLP7cXi58/FddOJD79ESNtP2PZLX4KKlCd0zZ/4B6bj2QYvMOKrrrTr1IUadewf+BPHDGP8j4N5sc0bvPvBR2a+ZfcUGxVtdgTPdnQFoPnTqHzPh+83l7Gr+cNWjV6+U+Gfo5C54MOf4CYcXQjilVLZtdYXABKPDOoCfwCe8665iF/GjaZH1y7UfvZ5Pv9mCO++2Zqta5bR7PVObN28nrMH91L9pbc4dvgQKyYNI1eF2gTXaMKmcX2Jj7xKjjpvke3p1iirFW3YuLp7GWeWTcCIuoJPtuIE1ngX3xylUUphxISTcGE/qYKrEh95jYvrZpKxdB2OrZ6HYUsgZ65c7Fm5kw/6/MDPg76kcKlyfPCpvSF4yviR/PB1L559oTmjxox10W/frpjJgxxdCYHZORTr3h2yFtuq2AtB6Hyo6fyZ81KKowtBd+yzjV34d4HW+oxSqhbQ2cH78mqjhg/hq88/5Zn6jeg9cDjtX32R/Ts307zdeyxbMJu4mGjqt/+E9fN+JTbiH8q2+ZibN66zfvjHpMqUk6LtRxCQy36uNvLkXo7NH4Lt2kl8ggoSWP0dfHOUuu0DO3rXbLQtjvyN3ub0ouEoHz9yFSnOvrkjCWnUkm2LZ9Hk1Q4snDoeq48vP46fhq+vL1N/Gc2gPt2p16gpv0z61WUngPFJ5bkDipnOMOD4aihUH664d8E9RxDbjcJUDP1NCsH9aK2XK6WsSqmpWutXkywPB1JulhEPZhgGfb/owajhP/DsC835uGc/2rV8nrMnjtKo9ZssmDqOtJmyUrZuU5ZPGEpApuw81XkQO+eOI+p0KJkrNCRXw/ex+qXGiL/JueXjubxpHpY0QaSt9SF+wdXu+sYedz6U2IPLyVL1RaJO7Cby2A5KNOnA/gXjyVK0AntWLiJ3sbJcPHeGU0cO8OPEOeTIlYefR37PsIFfUee5F5g4ZRp+fq77YWvIfATOc3EvRP8DBWvDFrPDPLnFtipUvPgrXDvhemMjPSaHfz3TWtuAfEop1/2rd1NRUVG82vplRg3/gdZvdOSdj7rzWovnuHj2FNWfbcyi6b+Qs3Ap/LPmY/3s8eQsV5Myrbqw8acviLl0nOCXPidv00+w+qUm+sJR9o3owOVN8/Av9hwZmgxE2+K5Ov8zovcuuLVPI/YGkWtHYkmXnUzlG3B26RgC85fnzPa/8fFPDTERWH18KFs+hM0r/+Tjz/tT/Zl6DP+2D8MGfkWjZi35dcZsly4CAKlSueYQBx7h6Er7vwWeMTOFw6wyEmfVPfq3uUEcyFkXcR8D1iulFgBR/y7UWv/gpP15vFMnT9C29UscCttLt94DKFGmAu1aNMBitZK7RAVWL55HsafqcupQGLHXLlP2lU+Iu3GNjT92wz9bfvK3+gr/zPbzs9f2reTEvG+x+AWSrn4PrGmzcW3hF+jI8wBE75yNf7H6KKsfN9b8iBEbQeG3fuDU74NRVl8yBGXmzLZd5C9TmRN7ttDktXf4ffIY6jd/hbbt3+f7fj2ZPO5HWrzSjh9Hjbk15LUrC/B3jf4MHun4ashSDNK6Vyey+zmqc0K63HBkBYS8ZXYch3DWb//RxB8LkPYh64qHWL70Tzq9/QYazYgJs4iJiaHjK03IlDU7KlUAR3esp8TT9TmwaRX+6TPz1AeD2fX7JCKP7yRzhYbkbtgZi58/AJc2zuXsklH4ZC1Kujpdib90iGu/dwelsOarhe3UelSaLGDxJWrrFOLP7SZP44+5tudvYs4dIn+t5hxfPZ8C5apybNcm6jZrw6JpP1Om8tN8M2g4X3/+MbN//ZlX3uzEkGHDXbRh+G5ySZuTGDY4s80+Gb3HUEy/Wpjnw1dQvvsCbNwxBLsbDkjnlEKgte4DoJQK0FrLdXmPKTo6mu6fdmPGJPsYPT/89CvLlyxg6De9yV+sFFev/kPUpQtkLVGFsHXLyF6qGgXrvMymn/thxEaRt+knZCrf4NaH8aUNszm7dAx++SqTtuYH3Dy+gch1Y1CBOfDJ+zTxhxaCbwAZG35B7L6FxO5fQpZqLVBKcWXLb+SqWIcTaxeQMbg4x3ZtokjlWmxYtpAc+fLz4/ipDPiiK/OmT+KD/3WjV5+v3aYIAFIJnOXyAbgZAXmqmJ3EodYapWnjs5Jy6gjb3bSDXFJOuYRDKVVNKRUGHEi8X1YpNcoZ+/JU+/bupm6NqsyYNJbX2r/PxDlLGT5sMEO/6U2pSk9x7vRJ4uPiSJMtHxdDN1H0+XYEFavI+hH2NoAiHUaQucJ/g8dd2bbIXgSCq5K2VhduHt9I5LrRWDLktxeBg7+hfPzJ2LgfsUfXEL1zJqkK1iBd4cqcXjSMNHlKcjF0MwFBOYg4e5ScRUrxz8nDpA5Iw7hf5zPiuz7Mmz6Jjz/t6X5FABmG2mlOJ7YO565kbg4HW2eUwqYVNa17zY7iEM46NTQUeA5YAKC13q2Ucr8BRkygtWbKhPH0/PR/pEufgdFT5lO6XEXefas1uzevpeLTddm5cTUZsuYkOiaGyIunqNyhL4c3r+banhVkKPkMeZt2xZoq4NY2r4et5fTCIfjmKkfaGp1JuHSQyPU/YckQjEqfh/iw2ajA7GRo2IvY/UuJ2bcAv/xPkbf2yxyd/Bl+GXJgu3EJq18qbNE3SJc5K5b4WKIjI5g4ZwlTfx7F7F9/oUvXz/is11duVwQAomISzI7gmU5vgYAgyFTA7CQOFUEgYTofIeqg2VEcwmktZFrr03d8IMgUUA8RFRXF+506svi3WTxVsy7fDB/HjYhwWr1QmwtnThJSsx7b1iwnR8HiXDp9HL/A9FT/4Hu2zRhB9LmD5KjzJtlqvnrbB/GNYzs4Prs/PlkKka72/9C2OML/HgLaho6LxDi5GkvWMmSo8yGRm34m7sRG/IvUI2+t5hz9tTs+AenwsWpuRkWROk0gtnhNUFAQxw7sY/TkeaxdsZQp40fS8b0P6PllP7csAiBHBE5zerP9tJAHvsHbjSK8bF2NFdtd7QTuxlmF4LRS6ilAK6V8gS7AfiftyyOcPHGcV15uztFD++ncrTftO3dly4Y1fPzOa6AU+cqEsG3NcvKUKMfp/bvJGFyc0i06s+GnL7DFRpK/dR8yFKt+2zYjT+3jyNReWNPlIF29z1A+qYg7uRXibgCg42MIfPpdfLIWI3zZ19j+OUHO+h1Jk7ckR6d8hiVVAP5p0hB56QwZgrITee0KxcpWZM/mtQwc8Qvnzp7ix8H9aPxSG/oOGOy2RQAgPl6+pzjKv8NFZCSCnf5HGXCxMj+5yRASj2KHUZh2Pn9RVJ0mTAebHeeJOKsQdAKGAbmAs9hHHn3PSftye5s2rOO1Vi9iaM2oyfOoVrMOU38ZzeB+PcmRJz/aNxXHdm4ic8HSnA7bRe6QeuSp8izrhnfFmjotRduPIPUdQ0RHntjD4SndsQZkIv2zPfl/e3cdFlX2BnD8e2YYSgE7QVGxC2vtXl27dXHtXNdYu3Yt7O7u1p8da3dhYReK2IUoKh0zc35/DOvqri3DHeB+nocHmLkz9517B965J96jsUkK8Pa7Xb462OWviz7Alzc7/gSjkay/jACh4fbyfuiSJMfe0Yk3j/1IldGVwCf3KVKmEmcO76H3oFEkS56CLq06UKr8j8ydv8hiZwx/KYNebRqKbYU0plXrzhuVXX3OXM5LU32uwhpfrhtclQ3mO5krEeR8d2YxgBCiNHDiUw8SQmgBb+CxlLKWmWKzKFs3radLxzakz+jCrKUbSJMuAz06t+XQXxtwL1meBw/u8ebRfZK75ual3xVyVm9J0jQunJw9ALv0bmRtOhxrx9TvPefr60e5u340WofUOP00GI198rf36dLlJlXrtUijkbBLGwm/tBFt8kzkaD6CoFsnebx3PrZpsmBro+PNY1/SZs6O/71blKlah2O7t9CyYzfKVqpK87qVyZYjNyvXrEOni/+TsaQ6szjWFdT4oZcarsbzf5LmGgAAIABJREFUT8sf80im4rlMRmGNLysNVZQO57uYKxHM4L9rD3zotn/7uwnJ0RxBWZrlixfQt0cX3IuWYNqiNURGRNKsQVV8r17kp4bNOb5/JwaDniRpM/Hqvg/uzfoRFfKac8tG4eBWjCw/D0Vrbff2+aSU+B9fy9P9i7BKkx3HSn3Q2P73UBojQwk+OoPoxxexcStP9vpdebRrNq+vHjKtPhb2kjePb5Mxe14e+VymUp0mHNy2jgq1GtGucy+a162Mja0tazduJalDwpgmotGqE8piWyFxm1vShXBslQ7FTISp7pC4pXQg3y22F6YpCZQCUgsher1zlyN8ujdFCOEM1MRUk6jXp7ZNCObPns6g/r0pU7Eqk+at4J6fL7+1akRYcBBNOvZg8/J52DskQ2iSEOL/kJKdx+J71osXZ7aSwv0nMtXphXjnn5chIgSfVSOJenAW6yylcCjdCWH137IOhqBnBO0fjyHYH+ea3bF3zoXv4h5EBj4lx0/NeHzhCBGvX+CcMz8Pr1+gSv2m7N+ylqJlKzN+yhx6tG/K0ycP2brrAM4uCWdFLY02fjdtWR5JQY0fOwwJa/7Av503Zqe67iwpecNLnJQO55vF9rvfGkiKKcE4vPMVBHxuauFUoB+Q4K/RF8yZwaD+valcvQ7TFq7hzIkjtKxfBY1GS/02XdiwcAbJ07kQbZREvAmkTI+p+Bzdy4szW0lTqgmZ6vV9LwmE3L/C1entiHp4jiTFWuBQrtsHk0D085u83jEYY2Qwbq0mIPVR+C7shjEqgkLN+3LfawfRYSFkyJaLh9cvUK1RCw5uX09u9x+YtWg186eNw+vIfsZOnEax4iXj8pCZnbV1/B71YWlcxTOcRBiXpJvSoZjVZaOpby6f5p6ygXyn2K4+egQ4IoRYKqW8/6Uzi4UQtYDnUspzQogKn9ju7fqu8fXT6IolC/mzXy8qV6/D+FlL2bZhFSMGdCdrrnwULl2JNbMn4JLbnYAnDzHq9ZTtPYPzGxby5qYX6X9sT7qyTd8+lzE6kqeHlvHcax2apKlxqu6JLs2HO+aiHp4n6PAUNPYpcfMYzLMjywm6dRqnnKVwLVSCS6snYZcyHcmSp+CRzyVqNW3H7g0ryJIzLwtXbcLr8H4WzpxIfY+WtGzbIa4OV5yR6sziWFVQ+AFwyZiwlyG5LjMDkFfc5QgFFY7m25mrYTSDEGIXpquDTEKIgsCvUsqPjRwqDdQRQtQAbAFHIcRKKWXzdzd6d31X98JF4t2f7rbNG+jTvTNlKlZl/MwlrFg4k6mjh1CoVAVcsuZg3YKpuBUry0OfqwiNlnJ9ZnF65RSC/c7hXKMbqYvXe/tcoY988PvfSAxBT7HJXokkP7RAo7P74H4j75wg+NgsrFK4kqlaO+6uHYI+LIiCHj1588iPS2snkzpnYQgP4pnfDeq1+o2/Vi8iU7acLFmzjUcP7jGwewfyuRdl2oxZcXW44pRGE3+Hvloid40fYdIGX2k561KbQzD23DemIa/mXryeKWWuhtG/Zxa/BNPMYuCjM4ullAOllM5SSlfAAzj47yQQ33kdP8pv7VvhXrQ4k+atYOGsSUwdPYQyP9VFlzID21bOJ1/56jy4cRmNzpqyvWdwatkEgu9cIFO9vm+TgDToeXpwCbcWdkUaonCs+icOpTtiDH1J2MUNBB+diYyOeLvfiFsHCT46E6s0OUlT9Cfurh2K0NlQotMo7h7bxr3j2yhcrSFhzx8Q9OIpDdt0YdvK+WR2y8mydX8RGhpC11aNcEqWnDXrN2FrmzA7/uLxFAiL5K7x44rMEu8nWn2Ja9KVvOK+0mF8F3VmcRzwvelDC4+GOGdyZfqi/7Fs3nTmTB5NpTpNCDZqObt9NYWqNuCa10G01raU6zWDEwtHEXL/CpkbDCBFgcoARLx8hO/q4ehf+GGTrRxJircGo4FXeyZgeHqevyun2biVwzpDAcJv7if05EJ0GQrglCEzT/bMwTH7D2R2L8mZ+YPR2SWlVMM2nNm2CoeUafip3s+sXziN3IWKs3DlRiIjIvi1WV3Cw8PYvvcQadOlV+4gmplQl6qMNdZEk0fcY4mhmtKhxIlrRldq6M7gQBjB2H/+ARbI4mYWSykPA4fNFFecC3z5Eo+GddHpdMxevomt61cxe9IoKtVpQrjWjrPbllG0pgdXT+xHY2VF2d4z8Vo8jpD7l8ncYODbJBB45SD3t0xEaKxwqNAD68zFibi5j1DvNaCPRJuuEIaAa6Cxwip5ZsJv7Cb09FJ0GQpia2/NC+/tZKvUhPBXz7myfhpp85YgTeqUeG1cQtZCpXB1cWbTklmU+rEmU2cvITQ0hPYetfB/+oR1W3aQJ29+hY+kmal5INbkEfexEXouGBN2R/HfrsXMk8gt7nNG5lY2mG9krqahTkAX/plZ7B7ze6ISHR1Ni6aN8X/2mGmL1nL+jBcTR/xB6aq1SeecmZObl1Gspgc+Z09gjI6mXO9ZnFkzi2A/b1MJ6QKVkUYjj/fM4/6GUVilcCVZ3fHoMhTg1c6RhJ5ajCZpOqwLtcMY6g9GPU4/9iPC76gpCWR0RyvDCPY7R66abXh66RhPLx+ndON2GIKec/XITmr90g5rGc3Bbeto27knsxet5lXgC1o3rMrjB/dYvWErJUqVUfpQmp1SeUAI0VEI4S2E8A4ICFAoithVSOMLwMXEkgiMrgCmfoJ4ylzrEbwAmn12wwSuV4/unD15jNHTFhAZEcGQPp3JX6w07iXKMWt4XwpUrI2fzzXCXz2nfL+5PDi1m9dXD5OhSkdSFqqGUR/NjRXDiLp3CtucVUhSvBXGkBem1cQiXmOVtSraDEWJurIaGfwUh4o9iX56hbCLG9A5F0KE+RMZ/JLsVTy4tWcVNo7JKVmvBae3rMDWwYmmnfuyfeUC9NFRjJ+1lGp1GnLz+hW6tGpEWGgI67buTBRJAMBgVGbswbsDIIoWLRrvBkB8SCHNbZ7IFPiTQulQ4kQAyXguk5mGkMbTBnCzJAIhRBagG+D67j6klHXMsT9LtGzxfP63fAGtO3Unf6GiNK1VkQyZs1KvZSdG92xL1sKleBNpJNDvCqW6TCAs8Bk+O5aQsmgt0pRuglEfxfUlfxD96AL2RZthl7cW+pd3eLNnNEiJtXsbhH1Koi4uQYb6k7RsZ6KfXSPixm50LkUwBt4Bo56Mhcrhu3c1qXIUwimpHV4bl5C9WDlcXZxZPWs8WXPlZ9r85WTO4saBXdv4o0dHHByd2L73EHnzFVD6MMYdtWko1riL24mmWehvN4yZyCkeKh3GNzNX09AW4B6mshKT3vlKFLzPnGJgnx6UrlCF9l370Ll1E4RGQ+dB45n05++kyOBCzuIVuO+1gzx1O+Dk4saZRZ4kccmLc/WuYDRyY+lgoh9dIEnJ9tjnq40x2J83u0citNZYF2oHWh2R5+YhwwJwqNCTqIfniLixG6c85dD730Cj0ZA8U3YendlH3nLViHz5mHtXztKwbTciXz1n36bVNG/XhXV/HSKjiytTxwyhZ8dmuOXMzf6jJxNXEkDtLI41Ic/JpAngQgItNPcxPtKF7OIx2nh6SWCuzuIIKeV0Mz23RXv+3J9WTRuTLr0zY6YtoG/3Tjy+f4c/py1n+siBGA16qrTrw9oR3UmXvxS5a7Zj17BWCK0O18aDEVorfFaPIeqhN0mKt8Yu54/I6Ahe7xwOCHR5f8bw/AqGh8dBlwTHH/sTdnED+uc3SV6gMq+uHcHGKS02dra89L1EvvI1uH58L8nSZqCmRxu2rphHEgdHZi3fSNmKVXn04B5/dG/PRe/TNG7elklTpiXYIaKfYm+T8Ic5xolHZwG4mMAnkv3bTaMLNlbRuIpnSofyTcyVCKYJIYZiKj8d+feNUsrzZtqfRdDr9bRt2YygN69ZtXIzG9cs5eSBHbTpPZTtWzfw7I4PHkNmsG32WGwcklO84wh8di0j7MlNXJsMwdopNf7H/0fErQPY5a+LXW7T8Luwq9uREYFoUuUh6vIKiA5FkzovSQvVJ+TEXIzhb0heoAqvruzHLm02iAgi9EUgWd1LcPXITtyKlMZWSLatmE/xitUYN2U2yVOkYtPaZUzwHIgQgrmLV9CgsYfCR1BBCaJ13gLc9yJS6rgiE9aKZJ/jI02VDnLF0+YhcyWC/EALoBL/1A6SMb8nWGNHDOXMiSOMmDyX58+eMn2cJ2Wr1cXKSsfFfZup1PJ3Tu7fQ+jzR5TvP4/I4Fdc37aAZPkqkjxved7cPMmTfQuwdi2BfeGf3z5vdNAbAIwvriMcM+FYdSCGwHsEHRiHxiYpTjlL8OryPpK6FiDy+V00WitSu7jid/4Elet6cO74AcJCQxgydhoNf2nDsyeP6NyyIScO76NoiTLMXbiETJldFTpqliFaLUMdO+57cVFmI5L/1rpKyG7LjOilhpyaB0qH8k3MlQgaA1mllFFmen6Ls3vHdqZPHk+jZm3I716EZnUr45ojD5VqN2FEt5bkKlmZVC5ZOLh8OnnqdCB1jkLs9GyDxtoO5+pdiAi4z931o7BKmQWHMr8hxD/dN06lmmPIVxkQCPsUhJ5aRNT901ilzY21jYY3N46RsXBFnlw6jn2KNOg08OK+H1UbNufA1rWkyeDCwjXbyZ4rD+tXLmbyqEFIKRk9YQptO3aO94vKxIYwdc3i7xcZDE8vcdpYW+lI4lwUOu7K9ORWrwjecxVIBjw30/NblFs+N/itfSvyFihMh259admwGlY6azoOGMnw39uQ0tmVnzr0Y063JqTImo88dTvgd3gjofevmCqJajTcXDYQtNY4VOqFsLJ57/mFzharlFmIeniO4P1jkZHBpCpWm9c3TxH+8jWZSlbnwandODm7oQ96SaTRQInK1dm7cSWFS1dk+rzlhIWG0KlZPU4eO0iJshWZOWd+or8KeJdUq859v4enQRo4bYyfk6q+103pQoGYYnvxjbkSQTLARwhxlvf7CBLc8NEXAQF4NKyLrZ0do6cvoEu7prx68ZxBM1YwxbMfIGk2fC7rp4/GEBXBDx2GExboz8W1U3HIWphk+SpxfUEvjKEvcao2FG2SVP/ZhzEiiNAzy4i8cwJtMhdSFKjIC+/t6BxSkqFoZR6c3EWqHIUIengL26QO5MyRm+O7t1KzaVtGjJ7E8UN7GdSzE9HRUYyfOpNWbTvG6/WFzUHNA7Hg3gnQWCXYpSk/54YxE7V0p0xXRjbxa8EmcyWCoWZ6XosSHh7OL03qE+D/lLmrtzDsj97c8bnKgIkLWTF/Oi8e3qXVmEU8vnmZx+cPUaBJd5KmcWaXZ1sQGlzq9ObmmjHo/W+QtFzX/5SQltJI5O0jhHqvRkaHkeqHeoQ9vUXA6c045SqFvY2GB6d2k969HM+vnSJZ2gykS5uO8ycO0fPPEbTq+DuzJo5kwYwJ5MpXkKUr1pDVLXH+kariwP0TkN6dcL/EN+oMTFcEADy/AS4/KBvMVzLXzOIj5nheS2IwGGjbshmXzp1h7MwlLJgzgwteh+nmOZn9B/bi632Mer1GkS5rTia17k6KrPnIUa05VzfOJvTBVTI3HMirS/uI9DuKXcGG2GZ9fwavIfg5IV7ziH56DavUOUjuVoAX3tvRaK0o+HNP7nnt4NnN2xT6qQGXD2wnTWY3kjk4cP38aTwnzKJWAw/+6N6BnVvWUd+jJdNmzEqUw0K/VBK7+L/usqLCX8EjbyjTA+Jn68h3+3vkEP7X4l0iMEsvoRCihBDirBAiRAgRJYQwCCGCzLEvJUgp6dq5Ewd2b6fvkDHs2bMTr/07aNfXk4iwMM78tYayP3ekaI0mrJrkiT48hGJth/Dk3GHT7OEiNUFKnh5aik3WMti7/7N4mzQaCLu6nVdb+qAP8CNNqcZoRTQBJzfgmLUIRVsO5MZfiwl78YRSDdtwcd8W0mfPSwonJ25e9mb0tAXUauBB704t2LllHX8OHcnc+QvVJPAZeoVKTCQYfgdBGiD7T0pHophHMhXB0s6UCOIZczUNzcS0rsB6oCjQEshhpn3FuTHDh7Bx9VLadu7FtVu3OLhtHb907otL1hx4dmlG7lI/UqVdb3zPHuPByV3kqdsBhODUgiHYO+fGKXcZ7qwehC59XpKW7vS2vV7/+hEhJ+ahD/BFl7Eg9k5OPPdaj84pDSV+G8PL25c5PX8QTs5uFKlYnYMrZuBa4Acc7Wy5cuYYo6bOp1qdRvT5rSWH9+1kzKRptOv4sbWAVO/S69Xho9/l1h6wSwHORYHdSkejEMFN6ULR59eVDuSrmXM9gttCCK2U0gAsEUJcAAaaa39xZda0yUydOJaGv7TGSmfFjjWLqdvyVyrV/ZnfG1chTebsNB44CX1UJBsmD8YhvSvZKjVhr2drNNa2ZPixA36rBqF1TI9DBdMC9FJKIn0PEnJ6KcLKhpRFavLq2hGCnkWQq1YbUmYrwKW1kwnxf0iJei2wc0jGwRUzyFmiIo7WVpw9uo9hE2ZSs/7PjPyjBwd2bWPE2IlqEvgKUp1R9u2MBvDdB9mrgCZxz9D2MbpQ1N/bNPogHg3IMNcA8jAhhDVwUQgxXgjR04z7ijOrli3Gc1B/fqrVgJx5CjB/2nh+rN+UNr2GMuaP7uijo/AYMh1rO3sOr5xFaMBjirQayNHZQ4l8/YxMdftyd9ME0FrhWLkfGpskGCOCCD44iRCvBVilzIJdmky8PLcDuzSulOg0mqBHfpyY1hMQtBqzGCEEh1bMoGDlOqR2cuTs0X0MGD6BBh6tWDBjIutXLub3Xv34tUt3pQ9X/KLmgW/3+ByEB0L2qkpHojgfmQki3kDQE6VD+SrmuiJogekff1egJ+ACNDTTvuLEts0b6NWtE6XK/0i1uo3o/WtzipWrQpfBE/Datx2/cyeo1W0oqV2y4n/3FsfWL8K1TG0C797gzU0vMvz0G4+ObcYQ/BynaoPQOqQh8v5ZQk8txhgZjFOu0gTd9ibSyoo8dToQeO8GJ2f1w8o2CVXb96FIjSZsnjAAn5MHqd2sA8GvAzm8YyM9BnryS5tO/LVpLTMnDKdWAw/+HDZS6cMV7xjVPoJvd3UTaK3BrbLSkSjOxxgzcsj/GjjFn/WaYz0RCCG0wGgpZTMgAvCM7X3EtUMH9sWsN1yCbv2H0LZxDbLmyke/CfPQaLWsmDuV1Jmy8kOtphgNBlaPHYDOLimZSlTn6ORuJMtTFo3OhqgHZ7Ev2hxt8swEH5tNpN9RtE4ZsUuRljc+J0iSKR+OyZJxfftCdHZJ+bFNT4rXbU7o60AW9WpGwAM/OvQfwa0rFziycxNd+w6hbedenDp+mCG9f6NYqXLMmb9QnSOgijv6KLiyDnJWB7vkSkejuJtvRw5dhRzx5wop1hOBlNIghMgshLBOCCUmLp73plXTRmR1y8mEWUtp41ELG1s7Bk5dgo2dPVe9vXjqd4P6vUej0Wrx3rWel35XKNp2CGeWjUWXNAUudXpzbdavWKXKhsbanlebeiIjg3DKVZrguxeIDHtJ6tzFCLjhTVRAEso37USZxu2wTerIxX1b+GumJxqtjj+nLmHvptWcObyH3/sPpX3XPly54E2P9k1xzZaDNes2YWNj8/kXpfoPdWbxN7q1G8JegntzpSOxCMHYg5NLvBs5ZK6moTvACSHENiD07xullJPNtD+zuHPbl5/r1yJFylTMWbGZRbMn8/COL8PnryN1OtNl3/r/rcTGPgn5K9YiIiSYXQsmkiq7O2EvnhIR8IBszceg0dliDA3EGOxPyAs/rFJmwzaDG298TmCT0hkZGcwLn3Nkq9SIn7v0xd4pOS8e3WPdqJ74eh/DtUAxfh84knlj/uDWlfP8MXIyHq06cP3KRX5r0YAUKVOzafsuHJ2cFD5i8ZdUm4a+zcVVkDQdZEvQ9SS/Ttp88OyK0lF8FXMlAr+YLw0Qv+Zax3gREECT+qbiWfNWbyU4+A1rls6jWuOWuJcoB0B0VCQ3ju8jT9mfsLa1Y8+CCUQGBVK0zSC8ZvUnef7KOGY3TSxJ8kML9AG+JM+cjYAz2wi5d4+kaZwJef6IFFnz4dF3JBmy58X/7i32Lp7E+d0b0dnY0r7fCHK5F2F0z7YEvQ5k8ryVVK5ehwtnT9K1dWMcHJ3YsnMv6dJnUOxYJQTqFcE3eO5jGjZathdozTYAMf7J4G66UooMAZukSkfzRcw1szhe9wtERETQtHE9/J8+ZsHa7WTO4sbvv7XBxsaWXzr3fbvd+ROHiQgNJl+56gS98Mdr0zIyl6rJ04vHAEGGqh3ebputUgOe7JvPs4NLsUqaAq2VjoigV9TqOoSMOfPjc/IgmyYO4JmfD1orHdWbtKRx++6cObyHga3r45QiFSs27yN3voLs2b6JQT1/JV2GjGz6aw8umTIrcJQSFo023g9qi3uHx4B1EijRRelILEt6d0Cargoyl1Q6mi9irjWLUwP9gLzA2ymtUkqLv36UUtL51w5cOneGiXNX4F60BC+e+3Ns9xZqerQlWcrUb7fdvH4lSZOnwq1IaXbOGY3RaCBHtRbsH9GKFAWrYO1o2vbNTS8e7ZxF1Gt/kqTOSGjAY1LnKEz+kmU5vmExr589QgiBS57CtO83gvI16qO1smKmZx+89v1FoVIVmTJ7EQ4OTkweNYilc6fhXrQ4q9dtJlXq1B97KaqvoNMl7vHvX+3ZFbi+Bcr1gyQplY7GsmRwN31/eilxJwJgFfA/oBbQCWgFBJhpX7Fq+qTx/LVpLV16D6JqzXoAHNi9HYNeT9UGv7zdLuh1IDdPHaZEvRaEBb3m7I51ZClTm/CXT5HRkSTLW56IgPs83juPoFun0TmmRmeXhPBXAeQp8xMPrp/n4LJpuOQpRJtu/SlUqsLbJHPu+EFmDuvN68AAegz0pHWnHty/e5uurRpz9dI5Gjdvx5Rp07G2TlyLf5iTRqOOtPpihmjY9juvZFLK781O0N4dSkdkWRzSmfpNnl5UOpIvZq5EkFJKuUgI0T2mAN2RmJLUFu3g/r2MHj6Y6nUb07F7v7e3b9+6kYyZs+GSLefb247v2YZBH417lXqc2rICoyGanNVbYWVrD8DdtUMwRkWgsbYjRZa8BN69hmPGbNjb2nD9+B5cC/zAgPFzyF+s9NvhnsFvXrF4kicHtqzFJVsOZi35Hzny5GfFgpnMnDACG1s7Fq38H7XrNojbA5MIqPMIvsLRifDkPH9EdyeIJEpHY5nSF4QnaiKIjvn+VAhRE3gCpDDTvmLFHb/bdGj1C9lz5WXouOlv/zk/f/aUq95eNOnQ473x+Ts2rSWNa3ZSOmfh5LY1ZHAvj0O6TEgpKf37ZK7u20QaZxcenz9M4L3rZHUvwb2r3kTbJaHn6JlUqNnw7fMZjUYObF3LsqkjCQl6Q9vOPfmt5x/4XLuER42y3LpxlQpVajBjzjzSpk2nyPFJ6DRaZa4IhBAdgY4AmTJlUiSGr+K7H46OhwI/s+tMcaWjsVwZ3OH2PogKNfWjWDhzJYKRQggnoDcwA3DENMPYIoWGhtLqlyYIoWH64v9hn+Sfnv5Na5dhNBqpWKfJ29tuXTnPwxsXqdH5T3zPHCEq5DVulUwVRIUQpCtQmsC71/D5awm2yVKRLmtO7lw8RZ4yVek/YhLJ3+lnuOrtxeJJnty+dok8hYrjOXYK6TO6MN6zP+tXLiZt+owsWbWeGrXrqhPFzEir0HKdUsr5wHyAokWLWuRliesAU9NPdvGITdZDeSBdaHwm8VYZ/SLp3UEaTX0pmUooHc1nxWoiEELYYuoTcAMyAouklBW/4rFHAZuYuDZIKc2+wI2Ukt86tMPX5xozl24gg/M/n8oiwsNZvXQ+RcpUIr2L69vbVy6Zj419EopUa8SOWSOxTuJEmjymYaIvfC/hvXQkQY/9SJevJEEPb/Dq6UO6j5hGpTpNEEJgNBo5d2w/GxfP4vqF06RMk57R0xZQo14T9u3YQucWDQh8GcCvXbrT/8+hJHWIlyNw4xVbnTpq6FOSE8Qi3QTCsaFdVB/CUMuaf5JzMdP3BycTXyIAlmFqFjoGVAfyAF9a/SwSqCSlDBFC6IDjQohdUspTsRzje2ZNm8zu7Rv5vf9QylSs8t59m9Yu4/XLABq27fb2tqDXgVw9spMiNZpgY5+UF0FhRIW+4fWDW9zas5IHp3ZjlzwthX9qyIV9m0nl7IrnjOU4Z3HjTeAL9mxcxcFt/+PJ/TukTp+RAcMnUN+jJW9eBdKlVSNOHN5HrnwFWb1hCwULFTHnS1e9w15NBB+lxcBs3XTSitc0iRrMM9RRQp+VNDWkzmVavrOMxTaGvBXbiSCPlDI/gBBiEXDmSx8oTTN6QmJ+1cV8mfVSef+eXYwYMpCqterTrkvv9+4LCwtl7rTx5CtakrxF/snou9YtQx8dxQ+1TSOIileswoOTu9jv2RyNlTVlPX4l8MkDzu/ZSN5y1Rg8biZGg4FFE4eya91yoiLCyVe0JN16/0nVWvWxsrJi4+olTB41GL1ez6jxk2nbsTNarTqcMS6FRqnrEXzMb9ptlNRep2fUb1ySbkqHE39kLg2X/wcGvcVPuIvt6P7uJEZKqf/aNu2YgnXnMDUtzZJSnv7X/W871pxdvq9j7cb1q3Ro3YycefIzfNKc/7S//2/5Al6/DGDglMX/LBwTHc22NUvI8UN50rqa1v4tWKk2VlY6Qt8EkilfEbZM+oPHN6/QrGv/txPCZnr2Jvj1KyrVacLvPfqSxc00+ujRg3uMHNgDr6MHKFayLDPnLiBL1mzf9bpU3+ZNSKTSIVimJxfpbrWJrYZSbDaWVTqa+MW1NHgvgmeXIKNlX93HdiIo+M6SlAKwi/ldYPrQ7/ipB8csYuMuhEgGbBZC5JNSXn3n/rcda+6Fi3zz1YK//zM8GtTB3j4J05esw97+/V59vV7P4jnTKFSqArndi7293fvQnomWAAAVw0lEQVT4AYJfPqduj+HvbZ+3XDUeXDvPkr6tiI6MYOCUxRQrX5UlkzzZumIebnkKsGD1NnLnKwiYRgmtXjKX6WOHodFqGTNpGm07/KZ2BitIPfYfYDTCXz0IxIEh0a2Vjib+yRyzDvm944krEUgpY6U9Q0r5WghxCKgGXP3c9l8jPDycXxrX51XgS5Zu2E269P+tGe7rc403gS+oVLvJe7dv27QOe6fkZP+h/LuxcnrrSnbNHYNTmvSMX7qZNBlcGNenA6cO7OSXNp3o9edIrGOqgt6+eYPhA7px0fs0ZStVZfqsuWR0donNl6j6BuqEsg+4uhGeXGBcdCfeED9q5lgUh7SQ0s2UCEpb9kJRFtNwFVOWIjomCdgBVYBxsbkPKSW/tm/L1YvnmDxvJXkKFPrgdvf8fAFwzZH7vdvvXDxJzhIV0ca094W+fsm26cO4dnQ3OYtXYOikueh01oz8vRWXTx+j37BxNG9nWi4yKjKSxXOmsGDGBJIkScqMeYtp0rS5+knUQmgVmkdgsaIj4IAnpCvA5ntllI4m/nL7EbyXmFYts7Xc6sAWkwiA9MCymH4CDbBOSvlXbO5gxpSJ7N62ge4DhlG5ep2Pbqez1gFgMBje3mY0GrGytsH/7i1ePrnP9WN7ObxqNtER4bTuOZj6rTsTFRHO8K4tuOrtxfBJc6jbuBkAl86dZnDv37jn50u12g2ZNG06qVOnic2XpvpO9jaW9KdgAS6uhDcPoc4M5IIwpaOJv/I1hNNzwWcHuP/y+e0VYjHvfinlZeDDH9FjwdHDBxntOYhqtRvStnOvT24bGWHqOLS2+WestEajIbVLVvzOezGl5Y8AZCtcit5Dx+GcJTtRkRGM6tGGq95ejJo6n1oNPIiOimL25FEsmTOVtOkzsnbzDir9GH9WLUpM1AoT7zBEw4lpprHwWSsAOxUOKB5zLgbJMsGVDWoiUJq//zM6tmlOFrccDJs467PNMa8CXwDgmPz9qhjj5q3mxoWzPLx7i4LFy+KSNQdgWpdgdI82XDx5hOETZ1OrgQcP7vrRr0sbrl+5QIOmrZgwcTIOjp/sK1cpKEqvDh996+pGeP0Aqo8Hteny+wgB+RqZEmvoC0iSSumIPijBz6IxGo10bNOKsJAQJsxe/p8RQh/y+OF97OyT4OD0/hqs1ja2FCxRllpN271NAlGREYzp1Y7zJw4xZNx06v3cggO7ttGkehkePbjH0tUbmDt/oZoELJ26MI2JlKZ/WmnyQHa1jESsyN8YpAHOLlQ6ko9K8Ilg9vQpnDx2kH7DxuKWM/fnHwAE+D8lRZr0n71yiAwPY+TvrfA+up/BY6bRsGlr5k4dS8+OzciaPReHT3pTo3bd2HgZKjNT00AMv4Pw/DqU6gYK1V9KcNLmgTx1TQk26KnS0XxQgj7T169dYfTwwVSuXoeGv7T54sdFRIRjpdN9cpvXLwP4s11DLp06yvCJs6nXpDmDe3Vi9qRR1G7UlJ37Dn33pDdV3ImONnx+o8Tg5CxImtbUyamKPT8OA6Me9g+1yKvPBNtHoNfr6dS+DY5OyRgydtpXDdN0yZyVU8ePEBL0hqSO/x3y5XvtIuN6t+d14EumLljND6XL07V1Y04eO0j/QcPo1e8PdVhoPJPY1yNwHbCDHOIhe20OMD66CbMH7Vc6pIQlRVYo9TscmwjJMkOlP5WO6D0JNhEsmjcLn6uXmDh3BclTfF0HTe0GHqxZMpdFE4fSffjUt7cb9Hq2LJ/DqlkTSJ4qNUvX7yJ9RhfaNqnBretXmDZ7AU1btI7lV6KKCxq1GYQO2h2ESRtWGyorHUq89nfZ7n+7N/pPCPE3recQ9ASqjQFby+g7TJCJ4FVgIONHj6BMxapUqfH1bfR5ChSiXZfeLJgxAa1GSw2PNjzwu8nGRTO4f9uHkpVrMm7KLEKCgmjVoCrPnz1h+dpNVKlWwwyvRhUXjBZ4uR6X0vCKutoTrDZU5jVq2XOz0Gig9nRImgaOT4G7R6HxUnBWvvxEgkwEc2dOJSQ4iB4Dh7/XRBMZEcH1KxdI6uBE9lx5PvkcnXoOJDo6iuXzZ7B30yoAnLNkZ9K8lVSpUZfrVy7SuWUDDHo9G//aQ7Hi8WORatWH6RJ5Geo2VrvRYmSRobrSoSRsGg1UHgI5qsGGdrD4J6g3Bwo0VjSsBJcIIiMjmTNjKu5Fi5Mjd14MBgNeRw+wbd0qDu/bSWRkBAA/lC7PhNlLP9pspNPp6PXnSGo18ODu7VukSZeegkWKo9FoOLJ/F/26tCFZ8hRs2L2T7DlzxeVLVJmBIBH36YQF0ly7n13G4jyUaZWOJsH6d5ORE4OYZz2FIht/RWef3FSOQiEJ7mOQtbU16TI6c+HsKTz7d6N6qXx0admQM15H+KVla5au3kCPPgM4c+IIxw/t++zz5cidj59qN6BQsZIIIVi9ZC492jclS7Yc7Dl0XE0CCUSirjl3ag4OIpwZ+npKR5KovCEpHaJ64yudYV0reHVfsVgSXCIQQrB4xRqy5cjNrq0byJknP4tWrOWK7wPGTZ5Bjdp16dDZtOJYSHDQZ57tH1GRkXj278bYIX0pU7Eqf+09SLr0Gcz1MlRxTKtNcH8KXyb8FZyeyy5DMW5KdbhzXAvGng5RvUxDSv/qqdjQ0gTXNASQL39BvLwvYTQaP7jSV1hoKAC2tnZf9HxPHj2gz2+tuHrRmx59BjBgsKc6yiTBSaSdxcenQGQw0/UNlI4k0XpMavhxKOzqB5fXQcGf4zyGBJkIwHRl8LHlHp/7PwMg5RdUAD28byeDenbCaDSweOU6atWtH6txqiyDMTGWGnp1D07NgYJNuXE6s9LRJGpZNmdgi3VWUm0aSKU11kRiDcC9sTXjZP+J8mPtwwemtrgMzh9/8wcHvWFon8783vZn0md05sDxM2oSSMCsEuN6BPuHgdBC5cFKR5LoSTSM03uQUbykuTbuJ/MlzkRwPyYRfKAEhNFoZPvGNdStWIQt61bSo88A9h89qa4lnMDpFOojEEJ0FEJ4CyG8AwIC4m7Hvvvh2mYo0wMc1b4uS+BlzMcxQz46W20lCeFxuu9EmQhevAjAzj7Je5VIpZScOn6Y5nUr82ePjqTL4MLeIyf5Y+gIbGKWmVQlXEpNKJNSzpdSFpVSFk2dOnXc7DQqFHb0hFQ5oEzPuNmn6otM1DchpQimhfbzIxpjU4LtI/gUrVZLeFgod3x9SOrgxPHDe9m0ZhmXz58lTboMzJi3mMYezdQO4UREn5hqDR0YblpvoM0usFI/5FiSS9KNI4YCtLfayTJD3C1ilSgTwU/VazF/9nTqVSr29rYsbjkYM3EqzVq1w9bW9hOPViVE0YlkYZpf/hjHauu5LNH/hOecV8CH6+KolDNdX5+NNp400x4A4qYKbKJMBCXLlOXM5Zvs2bmdqKgoSpctT/6ChdSKoYmYPjEkgvDXTNDNw8+YnnF6D6WjUX3EOZmT44a8/Gq1HaImgPXnF9P6XokyEQA4u2Si3a9dlA5DZSEMhkSQCHb2IS2vaBDtSQRqk5Alm6JvxEYbT9OqZqW7m31/aiO4SgWIhF5j4soGuLKeqfqGXJbqCDhLd07m5IihAByfCpHBZt+fmghUKsDOOgFfHAc9gR29wLkYcwx1lI5G9YUm6RtDeKBp9reZJeB3v0r15XRWCesz0T+VLiXLdOMopomghp8HBj48215leS7LbFDgZ/CaCYVbQXLzzf5OWO9+leobJdRxAj9rD1Nee5kx+qbck+mVDkf1tSoPBaGBPX+YtSCdmghUKsCQAOcRpOclf1qtxMuQh5UG5Wrdq76DU0aoMAB8/jIVpDMTNRGoVIDBkNASgWSMbiFWGOmv74BU/9Tjr1LdwKU47OxrtjUL1HeHSkXCm1ncWHuECtpLjNV7qKuOxWOuA3bg+sduyt324E1ENLemVKfAgNi/MrCIRCCEcBFCHBJCXBdCXBNCmH/grEqVUL15zGCrlZw25mKFoYrS0ahiwQOZlk7RPXEVz1hgPQkivnxRrS9hEYkA0AO9pZR5gBJAFyHEp1eXV6liUYKZWWw0wtbOaDHQL7qj2iSUgJw05qVXdGcKC19YVguCnsbac1vEu0RK+VRKeT7m52DgBpBR2ahUiUsCaRo6Mx/uHGaUvjn3ZTqlo1HFsr+MJekQ3Rte+MLcMuAbO1VKLW4egRDCFSgEnP7AfR2BjmAqEaFSxZYE0Vn8yBv2DoIc1Vh9uZLS0ajM5LDRncohnszUTSf3qkas05dnlL4Zb0gKfNuqZhZxRfA3IURSYCPQQ0r5n0awd2u3p0yVKu4DVCVYBr1B6RC+T7A/rGsFjumh3hwggU6MUAHgJzNSL2oEs/R1aKA9xgGbPtTXHONbr2wtJhEIIXSYksAqKeUmpeNRJS5GfbTSIXy78NewsiGEv4Imy8E+hdIRqeJAJNZM0HtQO2oUD2QapljPYbVuFATc+urnsohEIEz1nxcBN6SUk5WOR5X46OLrGhTB/rCiPgT4wM8rIEMhpSNSxbEbMjMNo4YxMLodeTX3YE4p03rUkSFf/BwWkQiA0kALoJIQ4mLMVw2lg1IlHlqF1iz+LveOw8IfTUmgyXJwq6x0RCqFSDSsMVSmUuQkKNDEVKhuRhG4sBKMn2/2tIjOYinlcdRGTZWC9PGlj0BKeHQWTs02LT6fLDO02aleCagAeIkTrqdqUkjkYKhxOe5bu+C7eTQz9PU++TghFVq0+3u5Fy4i9x39z8AileqbpHfNgf7FHUU/jCRLn0k2atOepIRjLaLRYcAKA57Vs0DYSwi8Cw/PQOhzsHFkZmhFZurrqYvMqD5CUk1zlp5WG8ipeYTwDDonpSz6oS0t4opApVKKlJJJ40Zha6tTOhTcxGMWWk/67x37Aa0NJHeFLOUgWyXIU5eJQ4/EdYiqeEWw2/gDe6KKUlVzDvD86JZqIlAlanNmTGX8KE8cM+VSOhTuy3TUiexPMPZESh3RaDGgJQwbIrCGUAGPAG8ANQmovoxEwx5jsU9uE2+bhoQQAYB5SvF9nVTAC6WD+Ag1ti+XWUqZOq53+u4kSSAncPMzD7G04wZqTF/CEuL56Hs83iYCSyGE8P5Yu5vS1NgSHks8bmpMn2dp8fxbPBwzp1KpVKrYpCYClUqlSuTURPD95isdwCeosSU8lnjc1Jg+z9LieY/aR6BSqVSJnHpFoFKpVImcmghUKpUqkVMTgUqlSlBiqhmrvoKaCL6REEKrdAwfIoRwE0IUFUJYXAEaIUReIUR5IURKpWOJLyzxfFrieRRClBFCtACQUkpLSAZCiNpCiO5Kx/El1BITX0kIkUNKeUtKaRBCaKWUFlO2UghRCxgNvASeCSGGSim/fpUKMxBCVAfGAXcAnRCinZTymcJhWTRLPJ+Wdh6FEBrAHphn+lUkkVLOjUkGGimlUaG4qgIjgL5K7P9rqVcEXyHmD/OiEGI1wN/JQOGwABBClAImAK2klBWBV8AAZaMyEUJUAKYB7aWU9YAoIJ+iQVk4SzyflngepZRGKWUIsAzT4lalhBA9/75PiZhizt0KoKOUcp8QwkkIkVkIYa9EPF9CTQRfSAiRBOgK9ACihBArwbKSATBOSnkh5uehQAoLaVLwB36VUp4RQqQDigNdhRDzhBCNLOEy3kJZ2vm05POoB1wwJYQfhBCThRBjhElc/597CUQD6WOaz7YAc4ClFnCcPkhNBF9IShkKtAVWA30A23eTgZKxxTgNbIK3/Rc2QGbAMeY2xdpzpZQ3pJSHYn5tB8yO+UR5EmiEqSCX6n0Wdz4t/DxuBZ5JKQ9gqs/aCXCUJnF6ZSClvAnUBKYAlzD9z6gF7AYaAsnjMp4voSaCryClfCKlDJFSvgB+Bez+TgZCiMJCCMVqGUspDVLKoJhfBfAaCJRSBgghmgEjhRB2SsX3NynlKCnlyJifl2L6x+aiaFAWyNLPpwWex3AgpxCiA6YkMBbIJIT4VYlgpJSXMP3zHyulXBDThLUYUxLIpERMn6J2Fn8jKeXLmDfZBCGED6AFKiocFgBSSj0QIoR4KIQYA1QFWkspw5WMSwgh5DtT2YUQDYG0wBPlorJ8lnY+LfE8SimfCCEeAoOBLlLK7UKIisBtBWO6Dlz/+/eY45QaeKpUTB+jlpj4TjEdU/2BKlLKK0rHA2/HUeuAGzHfK0spfZWN6h8x7dzNgV7Az1LKqwqHZNEs9Xxa2nkUQrgAaaSU52J+V2zU0Ltizl8bTE3KjaWU1xQO6T/URPAdhBDJgXVAbynlZaXj+TchRGvgrKW98YQQOqAK4BfTnqr6ApZ2Pi31PP77ikVpMYmgPKY+DB+l4/kQNRF8JyGErZQyQuk4PsTS/iBU30c9nypzUROBSqVSJXLqqCGVSqVK5NREoFKpVImcmghUKpUqkVMTQRwTQhiEEBeFEFeFEOstof6IEKJCTH2Ur31cSiHEISFEiBBipjliU8UfCey9XUUIcU4IcSXmeyVzxGcp1EQQ98KllO5SynyYinZ1+pIHCSHMOfmvAvBVfywx8URgmsDTxwwxqeKfhPTefgHUllLmB1phKiKXYKkzi5V1DCgghKgNDAKsMRWsaial9BdCDAOyAVmBB0KIgZjekEliHt9VSukVUxXSE1MZgvyY5jZcAboDdkA9KaWfECI1MJd/prj3AB5j+oM1CCGaA90An39vJ6U88e94pJRNgeNCCLdYPzKq+C4hvLf/dg1TORkbKWVkbB0giyKlVL/i8AsIifluhalQ1m+Y6o/8PZS3PTAp5udhwDnALuZ3e8A25ufsgHfMzxUw/aGkx1Sc7DHgGXNfd2BqzM+rgTIxP2cCbryznz7vxPip7d7G8872rYGZSh9b9UvZr4T43o65rxGwX+nja84v9Yog7tkJIS7G/HwMUw31nMD/hBDpMX1yuvvO9tvkPzVldMBMIYQ7YAByvLPdWSnlUwAhhB+wN+b2K/xTA+lHIM87VXAdhRBJPxDjp7Z7Nx6V6l0J7r0thMiLaSGeqp978fGZmgjiXriU0v3dG4QQM4DJUsptMZfCw965O/Sdn3tiqglfEFP/zrszmt+9ZDW+87uRf86zBigh/zUT+gPl0T+1Xei/N1apYiSo97YQwhnYDLSUUvr9+4kSErWz2DI4YbrkBVPH1Ke2eypNhbRaYKp4+jX2YmonBSDm0xdAMODwBdupVF8rXr63hRDJgB3AACnlia+MJd5RE4FlGAasF0KcwzRa4WNmA62EEJeAXHz9p/PfgaJCiMtCiOv8M6pjO1A/Zuhf2U9s9x9CiHvAZKC1EOKRECLPV8akStiGET/f210BN2BIzGMvCiHSfGVM8YZaa0ilUqkSOfWKQKVSqRI5NRGoVCpVIqcmApVKpUrk1ESgUqlUiZyaCFQqlSqRUxOBSqVSJXJqIlCpVKpETk0EKpVKlcj9H06mGc/3iyKdAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "# Discard warm up\n", + "chains = full_chains[:, 200:]\n", + "\n", + "# Check convergence using rhat criterion\n", + "print('R-hat:')\n", + "print(pints.rhat_all_params(chains))\n", + "\n", + "# Check Kullback-Leibler divergence of chains\n", + "print(log_pdf.kl_divergence(chains[0]))\n", + "print(log_pdf.kl_divergence(chains[1]))\n", + "print(log_pdf.kl_divergence(chains[2]))\n", + "\n", + "# Look at distribution in chain 0\n", + "pints.plot.pairwise(chains[0], kde=True)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The chains seem to have converged much better! The persistance of the momentum helps to explore the narrow peak of the pdf." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The novelty of the Neal Langevin sampler is also a clustering of the rejections by slowly updated the required acceptance ratio u. By setting the mean update to zero and the variance to a large number, we effectively recover a unform sample of u in [0, 1]. As a result the rejections will no longer be clustered. Let us explore how this will effect the convergence behaviour of the sampler for otherwise fixed parameters." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": "Running...\nUsing Neal Langevin MCMC\nGenerating 3 chains.\nRunning in sequential mode.\nIter. Eval. Accept. Accept. Accept. Time m:s\n0 3 0 0 0 0:00.0\n1 6 0.333 0.333 0.333 0:00.0\n2 9 0.5 0.5 0.5 0:00.0\n3 12 0.6 0.6 0.6 0:00.0\n100 303 0.98 0.98 0.98 0:00.1\n200 603 0.990099 0.990099 0.990099 0:00.2\n300 903 0.993 0.993 0.993 0:00.3\n400 1203 0.995 0.995 0.995 0:00.3\n500 1503 0.996 0.996 0.996 0:00.4\n600 1803 0.997 0.997 0.997 0:00.5\n700 2103 0.997151 0.997151 0.997151 0:00.6\n800 2403 0.998 0.998 0.998 0:00.6\n900 2703 0.998 0.998 0.997 0:00.7\n1000 3003 0.997006 0.998004 0.997006 0:00.8\n1100 3303 0.997 0.998 0.997 0:00.9\n1200 3603 0.998 0.998 0.998 0:00.9\n1300 3903 0.998 0.998 0.998 0:01.0\n1400 4203 0.998 0.999 0.997 0:01.1\n1500 4503 0.998 0.999 0.997 0:01.2\n1600 4803 0.998 0.999 0.998 0:01.2\n1700 5103 0.998 0.999 0.998 0:01.3\n1800 5403 0.998 0.999 0.998 0:01.4\n1900 5703 0.998 0.999 0.997897 0:01.4\n2000 6003 0.999 0.999001 0.998002 0:01.5\n2100 6303 0.999 0.999 0.998 0:01.6\n2200 6603 0.999 0.999 0.998 0:01.7\n2300 6903 0.999 0.999 0.998 0:01.7\n2400 7203 0.998751 0.999 0.998 0:01.8\n2500 7503 0.998801 0.999 0.998 0:01.9\n2600 7803 0.998847 0.999 0.998 0:02.0\n2700 8103 0.999 0.999 0.999 0:02.0\n2800 8403 0.999 0.999 0.999 0:02.1\n2900 8703 0.999 0.999 0.999 0:02.2\n3000 9003 0.999 0.999 0.999 0:02.3\n3100 9303 0.999 0.999 0.999 0:02.3\n3200 9603 0.999 0.999 0.999 0:02.4\n3300 9903 0.999 0.999 0.999 0:02.5\n3400 10203 0.999 0.999 0.999 0:02.6\n3500 10503 0.999 0.999 0.999 0:02.6\n3600 10803 0.999 0.999 0.999 0:02.7\n3700 11103 0.999 0.999 0.999 0:02.8\n3800 11403 0.999 0.999474 0.999 0:02.9\n3900 11703 0.999 0.999 0.999 0:02.9\n4000 12003 0.999 1 0.999 0:03.0\n4100 12303 0.999 1 0.999 0:03.1\n4200 12603 0.999 0.999524 0.999 0:03.2\n4300 12903 0.999 1 0.999 0:03.2\n4400 13203 0.999 1 0.999 0:03.3\n4500 13503 0.999 1 0.999 0:03.4\n4600 13803 0.999 1 0.999 0:03.4\n4700 14103 0.999362 1 0.999 0:03.5\n4800 14403 0.999 1 0.999167 0:03.6\n4900 14703 0.999388 0.999592 0.999184 0:03.6\n5000 15000 0.999 1 0.999 0:03.7\nHalting: Maximum number of iterations (5000) reached.\nDone!\n" + } + ], + "source": [ + "# Choose starting points for 3 mcmc chains\n", + "xs = [\n", + " [2, 1],\n", + " [3, 3],\n", + " [5, 4],\n", + "]\n", + "\n", + "# Set a standard deviation, to give the method a sense of scale\n", + "#sigma = [1, 1]\n", + "\n", + "# Create mcmc routine\n", + "mcmc = pints.MCMCController(log_pdf, 3, xs, method=pints.NealLangevinMCMC)\n", + "\n", + "# Add stopping criterion\n", + "mcmc.set_max_iterations(5000)\n", + "\n", + "# Set up modest logging\n", + "mcmc.set_log_to_screen(True)\n", + "mcmc.set_log_interval(100)\n", + "\n", + "# # Update step sizes used by individual samplers\n", + "for sampler in mcmc.samplers():\n", + " sampler.set_leapfrog_step_size(0.5)\n", + " sampler.set_alpha(0.95)\n", + " sampler.set_delta(mean=0, sigma=10)\n", + "\n", + "# Run!\n", + "print('Running...')\n", + "full_chains = mcmc.run()\n", + "print('Done!')" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAEYCAYAAABBWFftAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOy9e5QdZZ3v/Xmqal96775fcr8nkJAQCJCYmCBGEQYZNerBiRydd5YgvBp1fJ1xnaNn6YzDCsvleXlB50gcskQDCg4aQDGKgxhALgm5kfv90unudKfvve97166q5/2jat+6O0kn6U6a8HzW6pW9d1U99ezauzvPt36/3/cnpJQoFAqFQqFQKBQKheLi0S73BBQKhUKhUCgUCoXiSkEJLIVCoVAoFAqFQqEYJpTAUigUCoVCoVAoFIphQgkshUKhUCgUCoVCoRgmlMBSKBQKhUKhUCgUimHCuNwTuBjq6+vltGnTLvc0FAqFQnGJ2L59e5eUsuFyz6M/w/H/UVeqi6ARpNxXPjyTUigUCsWIcqb/k0ZcYAkhdGAbcEpK+TEhxHTgP4E6YDvw91JKUwgRAJ4EbgK6gZVSysazjT1t2jS2bds2ovNXKBQKxehBCHHycs9hMIbj/6Mn9j3B5IrJfHjKh4dpVgqFQqEYSc70f9KlSBH8OnCg6PkPgEeklLOAXuBe7/V7gV7v9Ue8/RQKhUKheE8Q0AOYtnm5p6FQKBSKi2REBZYQYhLwt8BPvecC+DCw3tvlCeCT3uMV3nO87bd6+ysUCoVCccWjazq2tC/3NBQKhUJxkYx0BOuHwP8AHO95HdAnpbS85y3ARO/xRKAZwNse8fZXKBQKheKKRxc6jnTOvaNCoVAoRjUjVoMlhPgY0CGl3C6EWD6M494P3A8wZcqU4RpWobgieeTPh8+47Ru3XX0JZ3Jlks1maWlpIZ1OX+6pXHEEg0EmTZqEz+e73FO5ZGhCUxEshUKhuAIYSZOLZcAnhBB3AkGgEvgRUC2EMLwo1STglLf/KWAy0CKEMIAqXLOLEqSUa4G1AAsXLpQjOH+F4pKgRNC7l5aWFioqKpg2bRoqo3n4kFLS3d1NS0sL06dPv9zTuWToQifrZC/3NBQKhUJxkYxYiqCU8ttSyklSymnAZ4GNUsrPAa8Ad3m7/QPwO+/xC95zvO0bpZRKQCkUilFLOp2mrq5OiathRghBXV3dey4yqCJYCoVCcWVwOfpg/U/gP4UQq4F3gMe91x8HfiGEOAr04IoyhWLUc7YIFKgo1JWOElcjw3vxuupCx3FUDZZCUUxLrIXqQDXlftUfTvHu4ZIILCnlq8Cr3uPjwPsG2ScNfOZSzEehuJScS4ApFAoFuKJSRbAUigK2Y/PCsReoClTxuWs+d7mno1AMmcsRwVIoFIorkuEW00OJfj744IM8/fTT6LqOpmk89thjLF68eFjnUczy5ct56KGHWLhw4QWPcfDgQb7whS+wY8cOHnzwQb75zW8O4wzfvSgXQYWilHg2DkAkE7nMM1Eozg8lsBSKUYxKP1ScjU2bNrFhwwZ27NhBIBCgq6sL0xz9jWpra2v593//d377299e7qmMKlQNlkJRStSM5h8f7T1Ka6KVWybdchlnpFAMjZHug6VQKBSKEaKtrY36+noCgQAA9fX1TJgwAYAHHniARYsWce2113L//feT8wxavnw53/jGN1i4cCHXXHMNW7du5dOf/jRXXXUV3/nOdwBobGxkzpw5fO5zn+Oaa67hrrvuIplMDjj/Sy+9xPvf/35uvPFGPvOZzxCPu3ebv/WtbzF37lyuu+66QaNTY8aMYdGiRe8pC/ahoCJYikuOlQFn9Ir64sjVSydfYm/XXjJ25jLOSKEYGkpgKRSjgB3RZ876o1AMxu23305zczNXX301q1at4rXXXstv++pXv8rWrVvZu3cvqVSKDRs25Lf5/X62bdvGl770JVasWMGjjz7K3r17WbduHd3dbneMQ4cOsWrVKg4cOEBlZSVr1qwpOXdXVxerV6/m5ZdfZseOHSxcuJCHH36Y7u5unn/+efbt28fu3bvzou3dihBCF0K8I4TYcO69L47hjmA1dSeJppXtu+IMmAl4/WE4+pfLPZMz0p0a0K2HuBm/DDNRKM4PJbAUCoXiXUp5eTnbt29n7dq1NDQ0sHLlStatWwfAK6+8wuLFi5k/fz4bN25k3759+eM+8YlPADB//nzmzZvH+PHjCQQCzJgxg+bmZgAmT57MsmXLAPj85z/PG2+8UXLuzZs3s3//fpYtW8aCBQt44oknOHnyJFVVVQSDQe69916ee+45QqHQJbgSI8rXgQOX4kTDGcHKWDbP7mjht++cOvfOivcmvY3uv6e2X9ZpnI1YNjbgNdMe/WnQCoWqwVIoFIp3Mbqus3z5cpYvX878+fN54okn+OxnP8uqVavYtm0bkydP5nvf+15JT6lcSqGmafnHueeWZQEDbdL7P5dSctttt/GrX/1qwJy2bNnCX/7yF9avX8+Pf/xjNm7cOGzv91IihJgE/C3wIPBPI30+TdOGTWBFUm7kqjuuFqOKQTi2EbqOFp7bFuijb0mYzCYZHx5PW6It/1rafm/1x1O8O1ERLIXiXcCZUgfX7Fxz7oMVVyyHDh3iyJEj+ec7d+5k6tSpeTFVX19PPB5n/fr15z12U1MTmzZtAuDpp5/m5ptvLtm+ZMkS3nzzTY4edRdpiUSCw4cPE4/HiUQi3HnnnTzyyCPs2rXrQt/eaOCHwP8ABlU9Qoj7hRDbhBDbOjs7L/pkuQhWrl7uYjAtVct1pRI1o+zp3HPh3xPHhqa3IVmUfjdK0+4S2QQ1wRrGhsbmX1MRLMW7gdF3u0KhUCjepVxqV8d4PM7XvvY1+vr6MAyDWbNmsXbtWqqrq7nvvvu49tprGTduHIsWLTrvsWfPns2jjz7KPffcw9y5c/nyl79csr2hoYF169Zx9913k8m4ReerV6+moqKCFStWkE6nkVLy8MMPDxj79OnTLFy4kGg0iqZp/PCHP2T//v1UVlZe2IUYAYQQHwM6pJTbhRDLB9tHSrkWWAuwcOHCi1ZFmnDveTrSQRf6RY2lBNaVy28O/YaMnWFK5RSqAlXnP8BgYioTg7Lqi5/cMOJIh7SVpswo45OzPsmerj281fqWimAp3hUogaVQKBTvUm666SbeeuutQbetXr2a1atXD3j91VdfzT/OpRb239bY2IhhGPzyl7886/Ef/vCH2bp164B9tmzZctZ5jxs3jpaWlrPuMwpYBnxCCHEnEAQqhRC/lFJ+fqROmBNVjnTQuUiBZSuBdSUipcy76LUn2y9MYFmDRIBGYQQrY2eQSIJGEF3Tua7hOt5qfeu9E8GyLdj7LEx9P1RPudyzUZwnKkVQoVAoFIp+SCm/LaWcJKWcBnwW2DiS4goKEazhcBLMZJXAuhIptijvSnVd2CCDCZTmty9wRiNH2nIjVUE9CLi/Hz7N994RWJFm6DkOR1++3DNRXAAqgqVQDIFzNfxVKK4kpk2bxt69ey/3NN5zFEewLpZMUYqglHKASclI0ZswqQn7L8m53ouYTkFcpKzUhQ0ymECJtrmugjXTLmzMESAnJsuMsvxrft0/9D5Y7fth/+/ghs+NyghQd6qbykAlPu0M/QBTve6/Re9f8e5BRbAUCoVCoTgLUspXpZQfG+nzDGsEyyqMYTkXb5oxFJp7kqx7q5H9rdFLcr73Ilm70NcsF+E5b3JjjL8ervs7KKtxnyf79ZxqfQc6DkLbLmjbfWHnughyAjJoBPOvBfTA0CNY+3/n/jsKI0BZO8szh55hY9NZHFYznkW9aj7+rkRFsBQKhUKhGAUUm1xcLOmiFMGM5eDTR/5+akfMXfC3x9LMZfQYllxJZJ2BAutPe08za0w5s8aUD22QnECZsgRCtVAzHf76v93GwzkcBw79qfS42ukQqLiY6Z8XJ6MnASj3Fd5XQA8MLYKVLYru6YEz73eZiJgRAI71HTvzTrm6uOLPRfGuQQkshWKUMyl6tiaQt1+yeSgUVxJCiDlSyoOXex7FXGgEK22l2di0kSUTllAbrAXgePQgp9LtTAwucB0Fh2mNmTJtAoaGpg1MOUya7rx9mkqOGSlyEaywL0zGzpDO2hxoi3KgLTp0F9OcwNK91DRNA18IMkVGF9lBFvXp6MgLLCnBNpG6n/3d+4HSFEGf7htaamTCa5tg+EelgUcs1edGCCsmEDWjVPoHuSGRi1Amu8FMgv9d37T9PYUSWArFJWBH9JlRd+41O+sAWLVg1QWPfa4+XBcztkIxwrwEjKrCjAutwWpLtNEYbUQIwUenfxSAPT2biJjZgsAaBqSUPP7GcSbXhlixYOKA7TmBVZyeONpwHMm2k73MnVBJeeDdtwTKRbBCvhA9yRhPvd10/oPkBVaR6vaHSyMlg0VNssnzP9f50rQZGl+n47q7AFgyfklJ/aBf8xOxI+ceZ89v3H9rZ0D3UVe4XaI6xHMRyUR48eCvXEFrNfLL/b8c/P9KqyhS1/w2zPzQpZuk4qIZ0l8XIcR8KeWekZ6MQqFQvKt55fvDO96Hvn3OXR588EGefvppdF1H0zQee+wxFi9ePLzzKGL58uU89NBDLFy48ILHeOqpp/jBD36AlJKKigp+8pOfcP311w/jLF2EEP9+pk3A6Gr6Q1EEyzk/gWLaJpbj0Jss1ORYjoOuCdfWe5gET8ZyyNqS452DpyxFU+7iP5W9/AIr7c0h6Cu1uz/Vl+LNo13EM1k+PGfsYIeOSiKpLGU+PS+wyn3lHIy3UZ4qpAzajkQfJLI4gP4RLHAjU2as8HwwgXUpUtVO7wbHJhpxhePUyqklmwN6ADPVC4dfglm3gjZIOwPHLljRV0xw68isDPiCA/e9BGTsDC81vsTNE2+mJljDkd4jbkQKQJwl2mulXdOR3saB9XGKUc9Qb9+sEUIEgHXAU1LKIdw+UCgUCsVIsmnTJjZs2MCOHTsIBAJ0dXVhmqPfwnj69Om89tpr1NTU8OKLL3L//ffz9tsjYhP9BeCfgcGKNu4eiRNeDBcSwTqdOE1Xqoum7iQHk52UW60c64iTyNiEAjoO1rBFsHIRqv70JkyeevskWds100iPAov4p95uIp62+PpHrip5vSfh/n5EU9blmNYF4TiSn71xAoCPLHDnH/aFSWRMKoXk5qvG8NfDnZiWQ5n/LP3THAdatkA64oqr4oiOvxz6mtzaJV/Z4Gl1lyKC5ZHI9AFQ7i+tK/PpPsyeYxCJQcNsqJpUKrIcG97x+vc1zC6kNJrxyyawWmItNMea2dy2mY9O/yiRTAS8NMelvhresrMks0lCvn4pgFYGQvWuyLqE114xPAxJYEkpPyCEuAq4B9guhNgC/FxK+ecRnZ1CoTgnZ0vT2xG9+Lte50oDVFw+2traqK+vJxBwU33q6+vz2x544AF+//vfk0qlWLp0KY899hhCCJYvX84NN9zA66+/TiKR4Mknn+T73/8+e/bsYeXKlaxevZrGxkbuuOMObrrpJnbs2MG8efN48sknCYVKFwAvvfQS//qv/0omk2HmzJn8/Oc/p7y8nG9961u88MILGIbB7bffzkMPPVRy3NKlS/OPlyxZMpJNh7cCe6WUA7oxCyG+N1InvVA07fxqsGzH5rkjzwFuhMOQFofbe9GFG5kIGjq2NEss28+bVC+c3gvTbh5UqHXE0jy1uTRNbTREsHLRtP4W9d0JV2vbl8hZcThIFl3P3pS7MA8ZITKWTSgEZV6ULmPZZxdYzW/D8Vfdx/5w6bZAhesu+MYP3ch5pp/A0o1LE8GS7ueSyETwaT78Wqnlv1/zY1tpkiJL6OAf3Fqxpf8Ihpfu2HEAoq3u42s+DrE293EmCuF6Lgc5U45c9DGWjYGZYFnZBGr1IMRO053uHkRgpcEIgrQhHus/rGKUM+RKVCnlEeA7wP8EPgj8uxDioBDi0yM1OYVCoVCcmdtvv53m5mauvvpqVq1axWuvvZbf9tWvfpWtW7eyd+9eUqkUGzZsyG/z+/1s27aNL33pS6xYsYJHH32UvXv3sm7dOrq7XVF+6NAhVq1axYEDB6isrGTNmlKh3dXVxerVq3n55ZfZsWMHCxcu5OGHH6a7u5vnn3+effv2sXv3br7zne+c9T08/vjjfPSjHx3Gq1LCXcDOwTZIKaeP1EkvlPONYDXHmvOPJRC3u9kVe46Y1QFA0KeRlWlePdTBzua+oU9EFomPQy9C4xsQO10isKS3z67m0oSWunI/meEWWLH2Qk+gIWDZhXm2RUqtzHsToyeNcajE0oU0wFgmjUBQZpTRFTeRWAR87lLunEI63l54rPfrVVYsuGzLFVNGwBUp168Ef8UlcrNzv1fxTJSQLzSgf1vAqxtbFz1APNnlzjVR1HA56T2e/D43SpeLYGUun0CJmTHoPERL42u81vwaqWyKGQS4fsbfUBOoBCvjRrWKkdKNYBkBV2RdaM+zy4Vjw5710LrTTXF8DzIkgSWEuE4I8QhwAPgw8HEp5TXe40dGcH4KhUKhOAPl5eVs376dtWvX0tDQwMqVK1m3bh0Ar7zyCosXL2b+/Pls3LiRffv25Y/7xCc+AcD8+fOZN28e48ePJxAIMGPGDJqb3UX75MmTWbZsGQCf//zneeONN0rOvXnzZvbv38+yZctYsGABTzzxBCdPnqSqqopgMMi9997Lc889NyDqVcwrr7zC448/zg9+8IPhvCx5pJQ9QEYI8dSInGCYOV8XwZ50T/6x7Uhqwm7kqit7FICKoI+m9Fa29z3PxgPtg44xKHufhR2/cBdJ0VPua91HMYuESy4dsH/Jz/iqsouLmPXHcWDbz2Dr40M+pDji0xErzQ7NiZX0KBdYMTPG8chxAOLpQjpj0jTx6T4iSff6dyWSBAxPYJ0rNbNEYPVrblsxvvC4+W13X18Ixl3rGkX4Q5cmTc2rD0uY0RJ79hx+3Z/v49Vre+K5WDxFTrmRqlm3us8DVW4K4WWsYYplIhDvgGgr+zreoTfWQgigrIZwaAw+26Qj2VF6kG26IssIegJriM2Vh4NEN8Q7L26MeDt0HXFv0Oz8FRkzzobjG+hJ9yCldEXnFc5Qa7D+D/BT4H9JKfMyWkrZKoQ4++1JheI9wOV0CVS8t9F1neXLl7N8+XLmz5/PE088wWc/+1lWrVrFtm3bmDx5Mt/73vdIpwt38nMphZqm5R/nnluWu5jrf+e4/3MpJbfddhu/+tWvBsxpy5Yt/OUvf2H9+vX8+Mc/ZuPGgc00d+/ezRe/+EVefPFF6urqLvwCnAMppS2EmCqE8EspR2+BmpToZhIsc8gRrJZ4i3eoxHYkIb/BxOoyQpqPtkQZNSEfh2xXhGWc2IB0uUHJxN2FEbjua7a3uI+eIhssGJGkLRu/odGXzBLy63zyhomkszanI2lMy8GyHYzh6L2V9iJvRQ12z0UiUxAkvcnCRy6lJOaJlWEVgSPA6y2v0xht5L/N+jwbdp/Ov57MZvD5fOxqcheoH18whoBRSBE8I5ZZGgUsimBFzShasILyD/wzvP7/uSl2kRYobyjs7w9DsocRRUrIun+nYmaMSf6BAqs6UJ0XYVHH+2zj7bDveZhzp1tHphUtbTXN7fVVHOW6xPQ2FWUodxyAdBTHXwvBKoTQmGlJjpzazC2TbsHIzT1n0W4EwMm6Nzsce3BTj2Em+cYaN+30Q98+99+LM5EujchtP/UmTdEmYmaMeXXzeOPUG9w9525qgjXDMOPRyVD/+v0t8HROXAkhNCFECEBK+YuRmpxCoTg7m451n/VHcWVz6NAhjhw5kn++c+dOpk6dmhdT9fX1xONx1q9ff95jNzU1sWnTJgCefvppbr755pLtS5Ys4c033+ToUTdakkgkOHz4MPF4nEgkwp133skjjzzCrl27Bh3705/+NL/4xS+4+uoh9u65OI4DbwohviuE+Kfcz6U48fmg7/gFRE9hOec2YDjSe4SWWAt+3c+kiilU6uPRhaAi6KMilGVSjZte5feiG3G7Ix+Bak+0s/7wepKDRST6iuqpeo57EzMg1Uu2KIKViwD1Jk2m1oUYWxlkal0479qXztqcjJ48b0fEAZxHaiC4hhAv7ikIkuJ0xVTWxnIkIb+OaTmjog5LysHn0BhtBOCdU/3r20w0dLpi7mdRFRIlKYJHO2LsaRnEhyzSXJr6aRRurPz60K95cv+Tbs+oUG3hc59SqJXEFy6JYL3T1Dv4eS4GKwPSwZYOiWycSuEbsMvY0BjuKHNbBERyAuukJ2AO/tH9d/Ki0oPCDcMmsNribazZuYa+9BlSbtMRV0QVkew9TlXOEj8dBWC6rxKCVTBhAdN8FdjxdrpSRXPMRayMIGjedRjC34WL5WR3gl0tEY7EoqzdvZbTidPnPmgw+qWTJr3r1ZvuzUdmiyPwVyJDjWC9DHwEyFU9hnB7iCw94xEKhULxXmMIturDSTwe52tf+xp9fX0YhsGsWbNYu3Yt1dXV3HfffVx77bWMGzeORYsWnXuwfsyePZtHH32Ue+65h7lz5/LlL3+5ZHtDQwPr1q3j7rvvJpNxFwOrV6+moqKCFStWkE6nkVLy8MMPDxj7gQceoLu7m1Wr3N4vhmGwbdu2C7gCQ+aY96MBI9wp9QIRAi1QCYnOs0awktkkh3sPcyrupu4tHreYmVXXsPvIZrLaFncfy10IjwuP47pJDp2xDKd7D7KzfSJ+n8OmVlc4v37qdf5m2t+UniC3uAZXbAkNJt4EzVswzUIUKW06pEybWNqivrywWM8JrKO9J3ir/WWWTljKgjELzv96ZGKus13RnXBpmRzsTDOjIZyP2vTnVF+KiGdwUV/uL4lU5aJXdeUBkj1JsraDfgkiAmfirVNvcbj3MHdfc3e+tggKNXim5fDU3ue5sXIlt80v40ebf8OUQDknehyqhI/JtWVknWwhRdCy+fN+Nw1w/qSq0pP1nXQjO7XT3QhlUYqg6UWEbMdGD1QWIlU10wrH+0Ouw6DjgKbxysEOhBADz3O+SAnNW6BuZj46k5QWJLoJ7f89jFvkuhrmsDLMMCqprplOtPZq6G4bOOb4fi0fAl792AX0wmqJtXAyepJlE9106f09bvPjlngL1cFBOj3sWe+mA9ZMA18ZjnRIGn5u0sp5X8VYnoodwpIOU3MCq2IsVcc3QuI4MTPGuPA4730WRbB0b6luZ0uE8UjQFXWX+YdSvdjWBF488SI+zcfKOSvxaQMF7xnp50KZKkrjbI27JiSJwZpZX0EMVWAFpZT5qyWljOciWAqFQqG4PNx000289dYAgzzAFTurV68e8Pqrr76af5xLLey/rbGxEcMw+OUvf3nW4z/84Q+zdevWAfts2bLlrPP+6U9/yk9/+tOz7jOcSCn/DUAIEZJSjlq/Y91XBo51VoH1dtvbHOhx75BPqZzC/Ib59CVNfFoZTr+CqGtqr+F04jQN4WpOdrfySvOrVAYLi6RjfcewHKuQluQ4cLqo5WWyx41ohBtASpyiu/bJrEV71I2IjK0s2F8HvWhKj3envi3RxgLOIbCkLJxLCOg5Abv+E+b8bUl9TWdPD3/aG+Wa8ZXcce24QYeKejVWS2fW0dybKqlLytVf1YZ9NPeAaTsD+mRdKqSU7Ox0/Vc6k51MqpiU35a7s58wXUFoOgmidheOSNKXschmq6jx+WioCGDaJn5dQxOixB5/QE+sdNQVGrm0Oy9FMOdwB9CX6aMuWOk+0fRSYeMLeyl8SXqkya74s0wvWwpcZAQ60QXHNkLrDpj7SQCSXqQmJAzoa4aGonN4Zg+VlZOIBkKumGrrFyXvL3x8ITf6Y5vnLVBeOPYCAIvGLcKv+8l6qapn/B3N/Y7EO6BmKql0HzKbJNwwB8wsf1c+i2wukujZxofCY6BvX/7GiPs+M5zIRunuO8zCMq8+zhl6muyF8KcTf+LUqRhzgZjMgm2SslKkSNGd6i6Iv7OQNC1CfqPQ50szwLFImVHG10ynLVEQxPHsIK0AriCGmiKYEELcmHsihLgJeJdZmigUCoXivYgQ4v1CiP3AQe/59UKIUdd/QDMCIO2zmly0Jlrzj2uDtYAb6fCLcqZVzsi/BjChfAKrFqziI1M+AkC2KJrzwUkfBNxFdZ5c4fmkoibSwWoo8+okkoV9ExkrX99UV16o58kJlp6UG3kaUg1H5yHYsrYg7uJewX/nwRKBFY2654+mzrzQjKYshICF02oJ+jTSlk08Y/G7nac40eUu+mrD7iI7exnqsFJWijU71/DCodfzKZclnwFuTRTAnCr3c1g2212IG5qGZUs0dBZMriNg6JiOiRBummBxDVbexKPpbXjjEbeezh8qCAxPPBWbDXSluiDgCSwjSE+mlzU71/D7Y7+HgCfMMjFaYi040qY3e/LCLoKUrnHJnvWQ8qJlqb68eErOcNORQ8KAeL8UNa9GqzJQQ9SMIicWfVcX/9+w/FsDo1SGdwPAKnWUPB96026qak6Qps7k6pdrHOxFXhORFpCSUI1rWuoTOiGtNLYRLKtH2Bkylhv1/8nOn/B84594MdHIlu69hWijPXIpgpFMhOOR4xzoeQcHSZMdgyLxPcDlcBBOR9I89tpxDre7NvSUj4Fl/whA0oxTE6xxTUo8VATL5f8BfiOEaAUEMA5YOWKzUigUlwzV50rRn2nTprF3797LPY3h5IfA3wAvAEgpdwkhbrm8UxqIoQVAOmeNYBVvqwu65iAZy0EIwYcm3Uavc4Q3T70JkE/pmVbt1qzknP/8up/6Mrcn0Ostr/Opqz7lDpir+6iaDK3vuEX1waq8wKpoe4tw1cfI2q5ZRCJj49NFvg8TuL23AF47epLZkyTH+46zZucavnDtFygziiIixSQ8QRU9BeOvKwg9M+EV9rt3waORCFCTrzkajKRpUebT0TVBwNDJZB1a+1Ic73QXcz5dUBk0Sq7H+fB229uEfWGurb/2vI8FNz0qZdqsP/YaYyoCzBxTPmCxnquNC1KHEFAdduhOZzF0QdK0CKIztjzM8Z5Cel/Q0EiZpTVyYQM3OpTDFyqYJHiL/OI6vO50N+QiWEgOdLuR0uZYMzR4QiYTozftfqURlN4AACAASURBVD62tC7MzCTV61rvx9pLxVDWvQ5xfwimf4DySBROboLpRb+qXm1PZaieeHc3WzuzLEIiEG4EdDByAiubdr/P54OXVtiX6WNseGxekJ5RYOWiU14kK+EJs3DFBGg/XNiv6H2LUC0+R5LJxIhlY0gkbUnP8VEzyCLwwYhGsHJRU8tM0UqSlGNTWeRc+Jemv9AQaii5gdOfE13uZ3OyO8nV2YRrjKL7ySBJmjHKfWGCejD/nY0P1sz6CmKojYa3CiHmALO9lw5JKUc2VqlQKEaUc5lgvH/myDm7KRSXGillc79oyqjz6dYMPzhnjmDZjl2yKMktdnKREL+hUeYURIzPu/Nd5tOZV/5R5teHmT85TNgXzjc1bUu0cbDnILOqZ2F4C1x8wcICMFiZ75FkJNvx12r4deiKmzT3uIvz4uuaEz+mkyBpSsqDBql0mqNvrGH+zV8dPEUrVxDvpRXmm9yaCbfupGIcRFpIJ6JAzVkdAJOmTchrthsw3KhOsSV7OGDg8wRBsWlHMRnLZuOBDj5wdQPlgcIyyZEO29u3A1ywwIqa0XwPrlzKYnGa3tbTW9nfvR8hBJqsxK/rJKw4KTuFoWlEsxZhn0FDRRn0uGmei8YtIuDTSxwT05YDiX4mAr5QkdGF+5nlogg+zecaN1Tn0tGskqiF4w+7KU+ZGG1ehDFitbLh2B/55NUfO7+LkC0SJ8V24DkHQSeLJjRCdbPdKGY2nU+ny4nvyvBYjh/aTryriUnTbmXCpBlnPl/u2KH2kvJElTy917Wsn3ADfZk+HOm4TYJhoEHM/hegvdAKg6bNMP0WIp5xRUXl5MK2GcvdWrgcZdX4hY6Z6nEFXOx0wZRDM0hKiyoAO0tfuo9dnbtYOnHp+dVEnYOoGSVrO1iZJDu0dnRHEEajOMb05qk3+fjMj59xjLaIe301gfu7G6oDIThBBiItNJzcwoGKysL+iTYaI41Mq5o2bO9jNDHUCBbAImCad8yNQgiklE+OyKwUikvMI38+fO6dFArFu5VmIcRSQAohfMDXcfs6jio03Q/SHjyCJSXR/c8jT/wVyqph7LX5InvzTALLW4BpmqC2rIaAKGdK5dj89hvG3MA7He+wsWkjaSvNAuEda5QV0pFCbqTLnHAjVscb+HSB39A51esupnJiJkfOcMF0UqSyPrriafTmt9jvjGG++BF88H8MfG95QeVFrjJFESzdhOopEGmhrvUVpmpXEy9fDrhiZFx4HJMrCovXlGlT5neXNkGfTtaWxIts2x1ZNMczCKyDbTEOno4R9Ol8aM4YAPrSfWxsLkSDhmR5PwjRTBTTckWOoWuEfWEyXqRASsnW025NY5lRRjorKfeHiZtxUtkUhldTpQkjbyySizwEfRotPQUBkc7aIL3Uw8oJrvW6r8xN2wKoGE93qptXml8BXEOUiBlxv1sAtpVPVQSIC0ml0MCM0V7kyHe07zi2Y3O49zAODvPq5rmfW9dhGL9gcFOJ4lS9YpfIjHu+lLQJ+8KIsde5AivWBrXTaelN0pCIEQAqw+NwHDBJ8EzzFL48s5YgZyAXOR1KL6l0FLY8BnM+RrbxdVfgW2maY83MqZ2Td30cEMEqFlfgRl6zaXpSXYQ0H2WhOpj+AZAOTH1/6b5ltQSEjhlpIh6oLbRJEBoIQdLJugLLsdjRsYODPQeZVjWNqZVTz/1+hkhXIsK2xl7qnAzCFyJrmUzUQxwG5tXNY1/3vjNHoD26467AT5u2W4Pl3ZiJGG5a4OREhJhPgqZRE6yhN93LH0/8kfuvu79QB3oFMdRGw78AHgJuxhVai4CFZz1IoXiPMym6fdAfhUJxyfkS8BVgInAKWACsuqwzGgSh+9EkA23a9/2Wjpf/hV8deRaAq2y4yledF1CmVSSwzrAIKvMbedOEHDeOzZdWk3WyhciCr2ipGqqjuSfJb/Zn6IunCDtxygMGjrfQvOumScVDIoRgycxqLJmhK54h2un26kpjuZEBa5BWZMUpgZBfaCMdd1HsLdRsRzI+tpdE2sJ2bLae3urWBxXhFtkXIlhQWrO1eHrtOSNYqUGaEG/v2F5iWd1/gT3UxsURM0ImHabcaEAThiukvIa52aIUsLSVJp6xqQxU0pXqIpKJYOiuWKkMBgj6dBaNW5TfN2joWEW285ms49Y1AVS6KaIIDRrmwPvug/pZvNn6Zn7/umAd0UwU6a90G/XOvoOklcw3+01aKQhW4sTaiZuF6I1lS9bvPMzTe//Ia82vcbwzzqbfPEJyzwbkidcGvwjZM0SS2t205ISdImSEoGqSm9LY+g62I/nNthbe2H8C/CGqvP5JGSdOwu7miT3P0Jvu5a1Tb+WNKPLkoqZnOm8xiU735kLzFsxcBM+x6Ep15QVn2BfOf/4xM8aB9p2lY0y4wf033k5vuoca3WsWPO3m0nTHHKFa/EIj03mI+KE/FM3b/T18vvllLOmAnc03JE579VrDxelYhDB+/E6ScDhMjdbAQqOeW6fcyi2TbqEuWEfSSrJm5xre6XhnwPF9SZOOZCdpJ4aZSbmmIj739zYx/jrC4QY0IZicjsHpvcyoLETwcvVtVxpDTZxdCCyTUq6SUn7N+/nHkZyYQqFQKBTDxGwp5eeklGOllGOklJ8HrrnckxqApqNLWRrBkhI6DvB6umBu8cGyidxWX7Cizgksny6oDdYyu3Y2K2atKBk67NdJmqUiIKAH+LvZfwd4KU95a+iygsgK1dLYnSDp8+qw7F6qygqpSTUhP/25ZoIfTUA8Y1GTdvs4dftrcBzbNS3ovzDMRbCyKVdkpaNu1CWHLwTVU3ByAiLVQzQzuBlkwrQpywksL12xL5mlImjw5eUzuXZiFT5PeGWtwReoOZv34lTE/ovAYnOIox1xfvLqMU5Hzm2i0JeOkMoEuKpsOddXfIqgEcynCBanClYHaumKZagrq6I73U3SSmJo7rwbyt2Fa0OZ2wi4L9NHOFAaAfivfaddoeoLQsgzKRHC/Qm7UUlNFJaAVYEqbGmTsFPwvvuwx15LxspQW+amoR7rO8aazs3sb9uKlYpR759BUKuguTfJvtOnaPQMRDYd64J0H7taInQe3TH4RcgJnVC/NHTve5DIJgj7wq4wqpwA3cdIptzxrVgnBCrw6T6k46emwqI328iJvlZ+f+z37Ozcyb7uftGknBvi0Zfh8EvQ7lqtDyr4cym4VoasN8+x/ioc6eQF9tjQ2LzAeubQM7xy4k+YxWm9dTPd4VN99KZ7qfFVnN0eXgg3RVDarkU9uFHbcV4aqtBos5M4VorejPs97Ex18tM9P+Vo79Ezj1tEImPxyJ8P84fdbfzXvtMDesDFzCQzI+8wsVxD95UxxZiBL51idu1shBCEfCFaYu7Nkk2tm0rE3ebj3fzsjRMcTLzEseRrWLnfZ+/GSEJAqH4OAHekHf67MYY6T3zBQJMXwP1cjrxcYnLzbmOoMbm9uMYWgzQcUCgUVyK5Gq3Bom6Tq8vcdIdzcLEGGqsWjLogw1kZbsOQobz/Bx98kKeffhpd19E0jccee4zFixcP6zyKWb58OQ899BALF154EsPvfvc7vvvd76JpGoZh8MMf/nBAI+Nh5v8ANw7htcuL7kNDljbntdI4UtLjLb5nTL0FfzRScF/DFVhCgF/XEEJw65RbBwwd8hv0JAaKkvqyeurL6j3LZOlGOXQfLLzHjR559t9Jn7vQntr6Ivb48fnjNW3gwjFhJVwRYxeiaa3hyVhOAv/eZ12r8EVfdN0DO/a5osofctOKek64B9TNdNPawF0gL/jvHO59i/EnnidoReiIRwecN56xMC0nLwBzhhuRVJZwwMg7HPq8SFBJimCq1xV2NVPzAitZFPGLmlHm1M5hRtUM/njijyWW2lsb3c+iqSfJuKozJqohpaQrEcWvjSHgM8hkJQEtQG+6lyO9R6jxojKTKyYzzj+f05hMramjNe0u7G9q+CBNPS8yrXIWANUBN52vL9NHeXBsybki1in+4+SfuLd8Fr5x17viZXLp34WcSLiu4TqqAq75w6n4KWbXziZtp5FI6oJ1NEWb2NW5C6qm8Nfuo+AIKvXxTAhcx+7Yb/H53KWh40iCRuFziaayjBnsQlgpT+jVQbK0FliG60lkE0ws96Ju0z4AO5/GbD/EhOgxKjOnOZ2ooTprY1l+DCOLBE71pqgN95XUzOXR/SA0pG0iTm2HU9uhYbbbf+v4q3DzN4pqvLwoqpPF9G501Bsh2jFpjbcihKC+rJ7jkeNk7axr2JBNkpI6/vl/B50HoHoKUkre6XwH00pTF6gf7CqU4K+ZTm/XATLSJqgZpMMNYAS4fertvHT8D3TbKdLRk3lh0xhpJOtk2d6+nVk1s845/qk+97M+3O4KlhumVDOmovBdTaaiGGh8LDyZo5UzSST9WOn2/PaQUdqZKWNnCGo+OPFX2vb14QSvRpMW9c5xnOSN4CcvsFJWivJgDUQi+IRGtR6gzKhkRtUMjkeOl9xYyNN7Alq2umYh8+865/sbjQw1glUP7BdC/JcQ4oXcz0hOTKFQnBuVhvjeZtOmTWzYsIEdO3awe/duXn75ZSZPnnzuAy8zt956K7t27WLnzp387Gc/44tf/OKInMezZ/9noEEI8U9FP98DLl+H2TOhGRgIHC9VzHIsnju8np2ZTrLS5tZJt3DHjV92Xf1yVua4QsHniaszEQ64EazB0orCvrBrdpAzExDCdVvz6nWiqSyOl46oa4K6+NlrVhPZBAFDY5r/BuY6dejBuSSEcFPysmm3gD+bhP2/g05vrCrve9vb6P5b3OTWVwZCEBMVlAcMAlactmhhIZ97T/tb3dfGVLgpYbkIVtK0S/pd+bTSFMFENsHmt/5frHd+6da65QWWnR8/Y2UI+8LUlblRl5w4MS0nH7lKmme30e5IdpDMmvhFiOn1YbK2xLQMYmacP5/8cz5CsGDMAnTpCp4p1a6wXTRuEYsnzePGypVc5wncCn8FwnO4qygSFnfdNInWzB5iqSR7zF63Ue2MD+ZT5SzHIm7GSWaTzKmdw80Tb2ZC+QT8uj/fwDpn4lDiGlcxDoTAyWbwa2EMEcCnBUlI95hU1sbMuIIpY1Rgp6MDo5XgfgeMQMES3l9YvMdm3Yppm4XzVk8Bfxin8yhT+t4G4I+R6RzrjGOIAGUBi8l17nez0XOxy/Z32xMCx7HZ2dRHq2fEQLwd2rzUvlghOpyPpqajmLjfjxotANkUrZ17qfBVUO71Esv3ccomyQDUzYK5K8AI0GtobO7cBY5Fpa+S7Sd78pHmwQhMXYo59f2kpUWF5s/3KZtUMYmQv4JuO01HsgNd6FT4K/Lpimdr6VBM/3P3JkqvkZlyxc+M8Tdy49X/DUsLYptpSHRDqhfHuxYTyt3IcspKwZE/Q9NmZkQ2M7FWY3FDlsrMaaq6vT6I3nVKZBOEy0rdBwM7n+YjJ7aDlKQHs8/P3Vzpn+75LmKoEazvjeQkFIr3EmcSQC2VN13imRS4IFF24vXBXx9CZEsxPLS1tVFfX08g4C6c6usLd0ofeOABfv/735NKpVi6dCmPPfYYQgiWL1/ODTfcwOuvv04ikeDJJ5/k+9//Pnv27GHlypWsXr2axsZG7rjjDm666SZ27NjBvHnzePLJJwmFSu9ivvTSS/zrv/4rmUyGmTNn8vOf/5zy8nK+9a1v8cILL2AYBrfffjsPPfRQyXHl5eX5x4lE4oLMAoaIHyjH/b+uouj1KDD6botqPjQEtp3h5WMbqA6P5XS8ldPp0zBmLnVzvSlXTXabq7btgvHXk846+XqjMxHyG9iOJGMNbK5b7iunPdkOwlcwBMCNSAhRaHi7e9ynmZh+kXDZ2Zu1JrIJKoM+apMaV1FDeMZMNpzqISuL5piOujVWOSYvdiNap/eA4YfyoqamnuNhkjLCAYOZfW9yrDEFXoZZxs4QNIK0enfpx3mNjwNGkX18kbW7pgl8usgLrAPdB9gRPYHtjGHbn3aT1Q0kkqSp58eXSIJGkKBXF5MTWMXOfbG0xcHTUQ60RVlx/cQB0b03W98kadr4tTATq8s4dDrGG4eiiFCKKbWhvGtfUA+SzNjomuC6hmvwG4LZNbPx6T6+8qFZ+L3PWtd0pJTsaN/BJ6cVUkarQz5CWg2WlaWLgQvUTa2b2NPl9hzL1VhpQmN8eLz7PYB8hC4X2QJckWtpJLNJJlTXkjQlVcYEAsZhRM8u0qnFxKweqsp8pCvGkuw97qad+vrVBWaT7vfMi3BQVgtj5kG6j16vPi7XggDh2q/L08cBkEIjUjaJnoSJIYLoepZZY6tpivmJpd3v6dbTWzE0gxvG3JA/ZTSrkbYcTnYnmVBV5hpn5PpLJbqh1nMhLHLpzHripUbzQ/s+ZDZFVe0cKv2uMGyNeyLAypAuGwNa4TuWNsogmQFpkzXL+OvhLrrjJrfPG7xZb8gIkcYh5mQp13xcO+Z6jkaOEdAD1IUa6JEmdrSb8JhphHyBfIrqgHrNM5DwjF4saaKhD6gzzJhx6jQdMfND+PVKsnoZCdOicvN/YGgaZVfdnP9cWuOtJK0kNcluJN7fFC0O0kETIJLNOHI8WrAK27FJWSlCg9i7G0LDcKy8bXvphKKl/w4ziYyFrokRbTQ+VJv214QQU4GrpJQvCyFCjMa7fwrFCLIj+syIjq8iT4rz5fbbb+eBBx7g6quv5iMf+QgrV67kgx90G8h+9atf5V/+5V8A+Pu//3s2bNjAxz/uWuz6/X62bdvGj370I1asWMH27dupra1l5syZfOMb3wDg0KFDPP744yxbtox77rmHNWvW8M1vfjN/7q6uLlavXs3LL79MOBzmBz/4AQ8//DBf+cpXeP755zl48KB7d71vkPx64Pnnn+fb3/42HR0d/OEPfxh0n4tFSvka8JoQYp2U8qQQIiSlHLx4ZzSg6WhCkEj10HL4D1A9uXCXX/dRmevhM2WJK66a3vYEln3OhULO+KF/NAfcCFbaSpOVCXxeqpTjSJ7e0kRlmS/vwpf01yOoJGgnmD2ugnkTKhmMRDbB2Mow5dEEEqisGEtWthInQHXOHb/3ROlBxTVXZTVu1CWHF+HIOiD8YUJ+C/+pV6FugTsvK0nQCJLK2kyqKcv3ZSp2OAwape/Zp2v5u/puOhwc74sT9x3lYHI/Pl0wNnsdjjMjf4c9qAfxaT78up+m3j6S0c68mAsHdOIZi40HO8hkHSKpLDXh0vo0y7HI2g6TgpOoDrmLe0OU0R7LMKU2lK+v8et+4pkUIb+OoRsllvD+fkJaFzq2tAkHCu8v7DewMXGsLJ32wOhATlyB+9nnqA5U0xJrQUqZt2/P2fnn6EjCXNFAIOAnaWYIaXVUyQh9gBXtICYa8OkCraqe3o6jbDnSwvvmXlU6gZzo8iIcOBZc5TbD7vEMFHLpku6bDmN5NXdd1/xfEIeehIlPBLBkgqgZJRQw6Iqb+b5cm1o3lQisU+M+zMl4E9011/N+7bduI+Ccq2BxBMUsGJNHMlniGYtKYeTrxsb5yvOic2fnzvz8u7CYUvQW04EwTibO1c4kDvRZUA/7WqNnFFi5vnS9/iB1IsAHJt3Csok3I4Sg0l9Jm21x/FQb1do0rpvkfudMy+HtU228rzbKnPGVvH28m9qwn6vGVgwYP9fzbXfseQCWZUvTzzNmgqCmg7+coKZhaUFaulK0eG6hN940k4ARZFrlNPZ07SGVTSEDFVi2xHYkAceNXGpCkMbG8lfgN/wkPSEY9ocZjICVzZu8lJBr2XARzaHPRCSZ5WdvnmBybWiASc9wMlQXwfuA9cBj3ksTgd+O1KQUisvBjugzZ/1RKEYb5eXlbN++nbVr19LQ0MDKlStZt24dAK+88gqLFy9m/vz5bNy4kX37CoXfn/jEJwCYP38+8+bNY/z48QQCAWbMmEFzczMAkydPZtmyZQB8/vOf54033ig59+bNm9m/fz/Lli1jwYIFPPHEE5w8eZKqqiqCwSD33nsvzz333ICoV45PfepTHDx4kN/+9rd897vfHe5L058JQoj9wEEAIcT1QoizFswJISYLIV4RQuwXQuwTQnx9pCeJ7kNHEMs33m3NL/j8vhB+L22IUK1bQ5LsxrEd2iLpfFrcmQh71uWJzMA73hX+Cm9bJB/BOtIRozOW4VhH3HWkyxGoQJhx7pw/nql1gy+aMnaG2rIwSycIZo+rJFzuLh43phoLO/U1Fx7Pv8uNVIyb7z7v3wzWX45lO9iORNd1ygMG7XZBJ6etNCnT5nQkzcTqQrQk6NPzaYJlg9jJ50wsdKFj2Q4ZYdNnusJvTEWQDvMIacvOLwB9WoB01qbMKOPVwy1sa+yly7OmHl8VpC+Vyl+r7sTAu/KJbIIxgVmEAwYh7/PwacG8/0Gf15w2oAeIpbMDjCsG45ZJriudJeOE/DrLZtWjaQJdz2LbFhHHLEnBaoo2lRxfLLAq/ZXY0iZpJYmaUYQQhA13e9K0mFt1M2VaNVMcX168BrUKAj4dny4wTYe0Gcena5TXuAYcu46fHuiwmE25AitQJLBwUzE3t20uiRS6FymMZUscLcAHr7vavVbJLLoIILGJZCL5+STMwVPm+sIzaKu8DtOWOIEKSPYU0gH7CSxZPoZU1uZAR4TelEUmFmG8dx1urJhKyAhhaEahT5idZXOyNV9LdKovRadRRWtPFKMnSUYv51zkzEQYM5fyuZ9GCIHuNYWu8FcQdxxSMk5vXM+bk2iygmja5MV9TXTGMrx1rJsNuwe3Ssg6DobhcO3ESnRNlHwmUkrSZoKg7gdfGX5dI6uV1hImO9tZNG4RfXENKSV72zr4r3eOE7e8ukb6wLEQQpDGwtQ9gwtPqBd/z4rx2ybmkZeg+1jphlzkysoMnmY6FKwMHNhQ2goAeKfZfd7ckyRjjVw7xKHWYH0FWIabVoGU8ggMXruoUCgUikuHrussX76cf/u3f+PHP/4xzz77LOl0mlWrVrF+/Xr27NnDfffdRzpdWETkUgo1Tcs/zj23LHex0z9tr/9zKSW33XYbO3fuZOfOnezfv5/HH38cwzDYsmULd911Fxs2bOCOO+446/xvueUWjh8/TldX11n3u0h+CPwN0O3NfRcwiF9yCRbwz1LKucAS4CtCiLkjOUk0Aw1BLOUV/jt2viapNlxqYpATISeOHyKdtZlSN7iQzREKFCJYJUhJ2CtgP5Jsw9F9RM0oTx36Gd3ZxvxutV40JlBZ7y5Oz4JpmwT0ALPKTWpr65lVPxMhoMMqalsa8Rb6y74O9V6EI1eLk4vaTVkCdbM4FUnT5tU56Vj4dEGvzFDuc4Vh2k7no2wN/YSm34tm9Tc/CPr0/CIzm02TtSUpLOaMd5ushwM6WZmiN5nMp8vtaEzwk1ePUWaUkZXuYrqpJ0HIr9Oc2cpbXb/O14P19BNYUkrSdhrb8lEeMKgsc+fjFyE073crd56OqEVLb6pELJ6JhpArZLrSndx/ywzeN72WSCaC1JL4bQmawcamQv+uXApgjhKB5V33mBmjL9NHpb8SXdNZOmEpjZ02248Y3BBYTNhOoyGZ0RBmQlUtBha6EFhpE8tOEfTpjBnjfl+vbf8diZZ+rn5W2rUg94R9LnqZi54NqMnxh9wmuGX1hIJG/voG9AC5LMyZNa4pRvENhOJmwMWCwjLK3V5TuRTV3PmkBDNGk1XNzuY+LCRZLUis5TgfD0/ni1Xz0M1kPqoEMCY0hgqhg2bw+J7HefvULn69tZk/Ho8jAR8aaaOK8Z75yZkW9LlUTTSdiuLoHVAdrMaSGkI6BLQQ1zdcT9gXpt7nxsxSVqrEwXKwOsus5aBpWSqCPgxNEC9y4UxmM9jZNOWhchACIQSmXvz3RBDrPkXHid288vZeDrXH2XWqA5+d5GjavQ66HQHHQhNuS4asd3zuMxggsHQDhEYg3oGZ7Ibdvy5sk9IVv0Jz/wYOMQ1yAO173ZTjzf9R8nI8YxHwadz7geklacTDzVAFVkZKmf9rIYQwgOEz4FcoLjWvfL/kZ0nTWpWip3jXcejQIY4cOZJ/vnPnTqZOnZoXU/X19cTjcdavX3/eYzc1NbFp0yYAnn766QEuf0uWLOHNN9/k6FHXJjiRSHD48GHi8TiRSIQ777yTRx55hF27dg0Y++jRo/lFwI4dO8hkMtTV1Q3YbziRUjb3e+msty6llG1Syh3e4xhuY+KJIzQ9AHa0uNEiJzswi3Fi/6aiXq+dbQfd2pRJNWcXWPkIVn8jhu0/p3zL4+DYbI2dZF+mi950LxkrS3e2cFd56cw6PrNwEg1jxrvWyWdp2pqxM260LdkNoToaQg1MC88nZVukc4sl23JrrYrrc8q8haVnI87MD8F1n+HXW5tZv901gNB8QXQdkmSp1OswLQfTNvML6P7pjzkb+coia/ncfmkv2pQxI9iOJEqGZLabReMWsWjcYqSUPLH/Z/zpxJ8AONHhNQgWQbIyRbt5kOPdHTRU+GlPu5+DJd3fvb5kqcDK2BmklGQtg/KgQcDQWTy9lpBezZTA+/PRyROdaZ7d7tb2XDN+8BTMYmqDtRiaQUeyAyEEyWySpw48hRAZxjhB0Awao4353lBZO4sudD4161Nc33B93rQDoMrvivYjvUc43nc8vzheMGYBM3x3ogmDjF5OQIPFk4J84voJfGHJbIJSsrxiIlVmFz6rjzKfjr+8nvkT3fHk4ZdKJ51NunV15Q1u9PKq2wHXehzgU7M+Vbq/0MnaDrKsBp+u5dMkxwan5G/8LJu4hKX1n8K2Ct+nfISJ0t5mGX916fi577Jtgm3R5Y1hCQep+dCkxBAafqHna7Sq/JUQO01Y+JljV5HwvtavNb0FQFIPoktBma6TDo3lWu9aRFKDmzYUW+bnIso5qvxVZKVAkzYBPcT48vH8w7x/wMCNelkyTVNP4W/GgD5uO5+mKwuQzAAAIABJREFUvHMHePV4uiaIeZ9tzIzRGYkQyvYQLit832678Wqm1IZYPL0W0whjtLxNesdvuKbrJeIpjZ5UDJ+dojXjJ2OU42R7CKMR0g3SwiKteQLLu2kQMkJw9e3uzZQlX4L3fw0C5fjMJBmc0qh1NumK37D33RxK/7LBKI6KFYnOpGnTUB6gMugb5KDhY6gmF68JIf4XUCaEuA23QePvz3GMQqG4TIxGI433ApfaVj4ej/O1r32Nvr4+DMNg1qxZrF27lurqau677z6uvfZaxo0bx6JFi8577NmzZ/Poo49yzz33MHfuXL785S+XbG9oaGDdunXcfffdZDLuAmX16tVUVFSwYsUK0mm3EebDDz88YOxnn32WJ598Ep/PR1lZGc8888xIGl0ANAshlgJSCOEDvo4rmIaEEGIacAPwdr/X7wfuB5gyZcqA486XfacTWFk5aN3BpMp+7pCBSkxbomWijB8bHNyeuoigT0MTgmSmaPElJcTaCWs+11HNseh1THxWiqzt4MiCGAsFDCZUBfnJvpeh7yD3JroIVA2uN03bdKNiyR4Y7867NlhPn+PQ55iMqxjnOgkGq0v7A41fABUT8u6F7hRL7+Wmrl6Bs+9nSAGHT2bZE+9l6fg4De/8/+y9aZQk13me+dxYM3Ktfeuq6n1vdDdWglgIECTFTeCiXaRkghItybJnbHnOmPL8sDzn0LLGo5Et2ZI9lCiKFDkiaYkSKYmiTNAgAQoE0QABEOhu9L5VL7VX5Z6x3flxI3Kprau7q7qbZD7n5KmqzIzIm5ERWfe93/e933+gt7qdr55/jrfpb2JTbhMAD2/v4ZWxeYY7W6NBCVNjpuQyWagxMzuOH0rKmk9n5GA35HQDX6/XrgAYIkrRDG2qQZ6LwStMaacozoNjRc6EsoKJw9yCiXTcGNbzdTJRFOaBKJ3v26cgZ00zWZlgtghDaRjtSqpoXK2gapWWuT40odHr9NbFSSwqbBFiBzpv2/Am/rp0hlPzp9jVtYtqUMUxHAbTgwymB1v2lbNzzBZMvjr3PBs6HEzZyZNHxnnL7r769enpDtv702SdsB7t+HDHHWjmFM/OTGDXLpNw9oGZrBuvuLUSzF9UzoFOp+pxFNui9zTqs6YqU6TMNAOpRp1SEErO1nK4fkilWwWQU5aO64dkEkliS4qsnWVjl0Ew/RD3DtQ4dOVQi5V+c5prxRkgQ1SH1jHamMBH6bglkpiAT4iGqXpGJbvVdRmlFebCEKZO4IQakxNlzjohewdVP6lOKXl4Vw9nXnK4q7eTex65l4lIgc2XvRZ79GYGUgNcKV1ZJLDSVhov1BAywBSNhRTXU+eRJ6ucmWqYc5RqQT0FlcCD2XN0XXkVueF9CEATkuLJb/CN5CmO1C7Qe/p7AGSCRs+p7QM5uPvd4HQgJv+WmjfNfMXFCCVeWGU2PI0b5ikLi6qRoFw4R8pMoWsWY1So6uo9xGYwCSMBG+5WtxgrjS108qGrGkrXP6xoHMkeKE6uuJizIk1Oq7ilekqq64eLFlzWg9UKrF8HfhF4Ffhl4CvAH620gRBiBPg00I+Kdn1cSvm7Qogu4PPAJuAs8FNSylmhrt7fBd4FlIEn4tXDNm3atGmzmLvvvptnn312ycc+9rGP8bGPfWzR/d/4xjfqvz/66KM8+uijix47e/YshmHwmc98ZsXtH3vsMQ4dOrToOc8///yK4/7oRz/KRz/60RWfs8b8Cur/ywbgIvA/UKnvV0UIkQb+AvgXUsoWSysp5ceBjwPcc889N5zVYZgmSK0usJKaySPOBvRUd6MvUIxucHxOYvsFdm3sXGJvTRQnEMkekpbeaiUeTVzMOBUHKAtJ2SvjBRK7aQ6SsnRlI24okXFs8nvsX0FgdemOmtxFtSVdiU4uGzlerk1Sqpk8LjUse0GERgjI9DNTcnnq9QnevX9w0b61zADTm94Ik4cxXBtNaFw4/CQbA8l8/qt4lTv4ypmv1Bc7+rIJ3rYnweGpwyptMeoZZJvqWHzmuXNMTZ3EkhKMJHgVUmaKTjvDnZmfojt1itLUk6S6thJP8zTZSEMM8UiYZl1MeLJKT9paFMGqBlXcIETHJtN0YOPaIY0EfnGaVGDwUG6SeweTMC/gu5+Gne+EoYNLHmtQwuhCQQVo4wmtqYUYoU6PMwClM/VamFpQw9aXr9e7NCPJ+2WKVZ/tiTfxqjfP/uFGdMHTHExdU9bm1Tno2YFWK8DgATovHaHieVj4YCQwdIEuwHU99T4AHvxf1U+jVfD+1cm/YqxwkSPnBanqxbr5wJFLeZ48Z6D1/SMO9Kp0yKRtMFv2SJg6j275UY7PHidjZRjIhRy7kmBjehOHONSSIljzw+j8D3i+0EXHhMkD7/w53FPPcO7iBTbtD7ALqn5pPkzg7/oQXeljOK9/Ez+UyqK+PFWPYHUH6nrpq5SYwiIUXiSgJflwDNsK6dn3drTRd4BukHWUQF0ovJt568a3cj5/vtUaH1WT50kDHR8ChzCUaJqgVjPJJAx8qVJcMwmDQtWn0pwGHImVUMLGsc9zITuHLGToKl/gqZeeoX/Pw5ysTSGAdN/O1gGNqr5pufCzuDIkkEpg91rbmKke4evaOeaCkKEMdLsFBow0Jw3BuGHzD2GFzSiHzpofcHG2ykjXgii704EdNVh+av44R1/+A57Y+wTJ1/9GPZ7qBY5en9GF76r3nhuG+TF1rkYCywtCLH1dF/SA1bsIhsAfRrfVEuevf1cIkQFeFEJ8DXgC+LqU8reEEL+OEm8fBd4JbI9ubwD+a/SzTZs2bdq0uW6klFPAB691uyja9RfAZ6WUX1zzgS3ANC0INfDK5JwuPnjvv1TpctrS/6pnC2V6w+Nsza0wWShOwKFPQMcISfvh1hosr4yUEmml6EVnEqjIkLJfxgtCEmaFvH+ZrDFI0jI4VZgA3UIIwUzpCmWvjGM4i6KPtaCGFVsvOyodq8vJMZsY5nS/A9V5JoOADctEZQ6dneH8TJlj47OMdrau5tumRkULEBLS0sAUDi9cfJpUaohZqnROHsbe3FpeF4QB3xz7JkBdYCUMvR6d0vx5CqGF7STBr5I0k1i6hqlrbAk7KFRL3EOWz0b7C8OGO2AgPVK2w76efXxv7Ft4YYXBnMOrF+dx/bCeznZ0+ihlN8AQdt1BEBoC67kTNazJFxkmx6YrNSjZsPGN6kn5iysKrJSZouyXCWVYF1iWkCQx8IWDqZn1uqaqX8U2Fgss1w/xwxBDqOjKTMmlpuloAsbmGilavp7A0AQcU2mTDB1UQj3dx4acQzn0EV1bQNMQmoFl6HUzEaARVTATdfdLL/S4VLxEzQvRSHKhKd1tJhKqoWbSk7ZbjlnaNhjNDjKaVdHjuM5ppigRiPqxAFX7lHNMym7AiWkfut5DNp9ATHvMTM8zfXaWB2rHmagZnNJyDKXSpDIOSU0Q+BK6NquJvluCiaPsuHiYZHoLRklnnjKhUG0Q3CAkkBdwg25sMwUZVYuWMHUSpk6hurzAylrZFsfImGdOTLKP+0n6hziHOp6OpVNxBV3JNJPzZwhlyL4N9/PaxfnWNOC6wJJIWQGvQp87S41ufE/H8wN8qeFbORLbHltyXEFuI8HkMabsUXaa4wxZ+5irqKhXNp2iO2fA9BR+bZ4HB+/jkDfF8YJKzyt6RY5dKfDns2P8k0e3tqbwdm3BPKvhypCjlXFgK3/y2idh7Fu8JTlC2rI5Uj7PQ7U8V69GXEBst18XWHmI1gm8qG/gerNaF8EzQojTC28rbbNC/vp7gU9FT/sU8L7o9/cCn5aK54AOIcTi5as2bdq0abOubNq0iddee+1WD2PNEEJsFkL8jhDii0KIL8e3q2wjgE8AR6WUi/Mc12OcpoNB7HqXge6tqjZhCYtjKSWu3Ul/xkYvTyx6vE6cbjN3gbSxoAbLLXF8osi3pjO8L7WFzWaWMmqS7gUSXYMJ+Syvlv47hh41ELazdGsJpsvj/MnhP+H5K8+3NHaVUuKGLpYfCywVXUvZFpboQhoJjs5ITs8WoXfXkkPWhCCQHv/fsU/y3OXWaKht6Lh6QAKDhPQIAjWR+ppXYd60EYGLO3Ucf7oxRak3hKWRctjcF4uwhKFnEKYDfhVHUyIyaRvo5RLvSm0i3VTX4roNgRVK1YPsjh71XjxZZbBDTfTnKsrBb646x9GZo9S8EEPYLfbtcSpXSmQIgZos150P62Yi7sqdBVJmCiklFb9ST4vblOqngwRlaZAwEvUUxZfHJqnWWqd+VS/g9586ydPHpzCEEjGGsNGEmgyfHG/qDaU5GM2r/5ciq3KnEzM9gE8I296m7rvrH1Hr3dfqInhWuZG+OhnwX79xilLNr4s/W0szmrhHHddQRse3ERiODUxi45KuBTb48d/FqnJ6bEkR9MMWYQtwfLzI8RkfI6zxwrlZLh1/iSNXSkihs28oR8kroaU3qQhWblhdh24Jxl5ACMGIkebstHqNzdadvHHwMTrNYVw5hxu4DdfPiHQUYbpWXjg7i6457M10smXmGWp+QM0P8ALJYGoA0ypzqfY90lHmYUuUOhIaYSjxNfU59KRtasInkBVqc+OEgY9vd2GaS9dxlja/g2/3/QzziQ2kLJ1//shmsqakN22zsTenDEuAhxKD3DX6KJ12Lwmto96jK8tuYAlnzf592NvfRpAdQshQpSyXldnR11MpvnTxm5xw5xg7/STMrCg5FhN/72WjKHtTPy3XDwmp1Zs1rxerlXD3APdGt4eB3wMW544sw4L89X4pZewjeQWVQghKfDUXIY+xREGxEOKXhBAvCCFemJycXO0Q2rRZF4bzLy57a/PDwVKOTW1unDU+rn+FSkn/z8D/03RbiQeBnwceE0K8HN3etZaDWoSVxIya8WoLm7MuIF/1OdbxiLLyrhWWf2JTgXhHONNSgyXdEjMll7GgCyEhpZlUNZ2SV0KXKUxdY9dAloMjOaYr01T9KgkzScpKM15SbnQvjr/IH37vDylGEzk/9JFSYodR1CJ6H46ps8l+hG5rlDnf4u+dR2Fg8Wp9TDXMU/NDXppo/S5NmBo1TcNCx/YLPBTVeBX0TuadYTaaWeTceaovf6Ze2J5vmlyVvBLfvPBNvnzuT/ClS9m7ggwqmHoPmuWAlJiRoMlXPC5fuUwoZUsUpho1IO7L2GzvTyOEIJfIYQgbT1bojSIt82WPL538En/y2me4PF+h6gUkjSSpJsv4XFQL0oMS0X0kG72u5seiF1y6l1xM7NBWdIuUvBKO4fDu/vsw0CgFJrZuUwkqFGs+F+byPH+69XyZLKjkx6OX83WBpYuGGLmSr6JHdn2+ZiMWCAcAkl2YWx7F2/xIw5wgM0B55BEupPfDQ78WfQBqMeC1SDvOV7y6vfnuzrsxNXW+xEYNza6AsYCKj1n3AoFl6RqGJii7AbMlOD6hJutSSmpeSNpuFVj5ikeg2WjSR3cLnJspUzOzdCZNdg9myLt5jOxmXtj4EbVQEAusppS1ODW0y9pKn70RXWaQWpWiV1wksDK2UXe7XC3jefVapa59dKcsNOlR9cL6dTyY7mfXYIbNPSl2DFiYuqDUXGcZ1YyFUuIRYgmdjGGS27EdTQb0T40RSsBSkc6lSKWSuEYaT0vQl7Exgxq/dd9P8p7sJtAtMBL8fHYXnXoC0v2kzBRFt0TRLap0PE2dn1OFBbVUQmB1bALdRErJge69Dev8VHc9cj81dxpe+fy12bXHEaxkl/oOqqhrKAwlXiB5evwv+cyRVcuY62K1KYLTC+76T0KIF4F/c7VtF+avN6cSSCmlEOKa/ouudc57mzbNtM0h1oAzzyx9/+aHb+44bgKJRILp6Wm6u7vX26ThhwopJdPT0yQSSxeDXwdVKeXvXeMYvgXc1A/VMCxM1KRMrlAnAzBbcnGNFAlhNJpyLkWTwMppVUpuCi8IEcAXvvU6m4GC3c9c+WUcw2Da9Tl78RS21kXGqqJrEhDMVGeoBlUSeoKU3QG11gXOS6VL7LB21CfLVvzfWW+kdenCJD+9C3gZb4UjW/ECqmGeahjgh5IrtcN0mhuxtTS2oVOVAUJPk65N8G6nh6fCDfylZuMJhw2GyzkvT00GpAuXITvUslI9W53l8PRhDF1wuvw0VF6n3wDTGsKzpkj5puqbY2e5v3Oe2qXTFKoaFXceIl3kumoi2p9rmIs4hsPugR5ShkEuipTMVTymq9Ocmy4xVXTZm343HVm75bsiZRu89+AQ8+dnmb+yCRMdO05fipveVufU5HKZ7xgnqmeq+BVKXomUmcLR1ES+5Os4hkPVr1J2AwLpotE68W+2Do9TBEXTqR+Eqr7nZ+4bVfU9x3sgf1kZVXiR2Eh0YOs2NalqkeL3aDtJXsncS6jbaKkeZW4iBBWRBEIqXoA01DkTBo0paanmk7INilHEZ+dApp7Wdc+mLrpSFtv6WvtLCSFwLGW/f+JKDSnLcDf4oSSUEtvUCGXAlHeKDcltzFc8EppNZ9Jky4z6v3Ups5+RziTfvvxt3MAladhU3ehYWGnlbleaouoH2KP3EJz9Oh1JE1+3mS17VL0AU9coeSUsbYHAShhcya9cT1SoeliGhm3onJwo8NevqHjEu+/Zhjy8BWvmIlUvIIjExsbsCFemXmMgl+BK+RI1MUfZbTou0eJCKKGCT1IzMHp2ciV0sXSNkSDLSTkPdrZ+Hi0kPscz6bRqKeBXSAQem8wsWzp3MJrbQub4kypV1OkkbaYYr05Q9IqUaj6WUPudLi02q7B0q25wsTOzkTkjzTkzAULDMEzSus1cUOVT+aPs+uq/4A1v/51WQ4zliIWalQY7UxdcXrTwI/EBs+VcXWtWJbCEEHc1/amhIlpX3XaZ/PVxIcSglPJylAIY5zZcBJptkoaj+9q0adPmtmR4eJixsTHa0fS1J5FIMDw8vFa7+10hxG+gzC3q/+VvNyMlQ9expZo8dEf9jZZjpuwihYGTSsPY87DpoaUn4E2F/p16DSlVk9bpUg0jVOKrYnbwPX83fRs1jh4/hh9Ieq0hfmzrj7GtL8kfvvqHPHXhKboSXaTMFKlkDxTOtbxMHCWKBZYtQ9BN0NSkOO43U6pJZUktWq2kL89X0ISgP5ug4vqUgxlKUfPgQu01ZsMj7HZ+El1TtTWDXX3sLF8iPV/gQEcXryQexUzP0R0ehsplXBmoVevsELO1RqPRUtSLywxdPPcKne44piFwzX4eG36Uey99UfVI+t4XuNMLeMkvUvNTVLx5rE6BpmmUqoIN9gHeODjIqzOHwC0jXvwkB3o6mfRL2IZOytaZjVKi3EBN6mwtvaR72ZbeNOPjZaoYaGJxzzkCX01ezaUXHOKJcTWoUvbLJM0kCTwEUAx1soksh6cP8w9jzxLKAE3oLRPLapPDXuyUGKcH6pogCCVJyyBtqxupXiWwtjyq3PXMJAhBh63Sws7lz1HxK+zu3k3SMpASqn5A0s4ogQVUo4+/6gUIU1nYB00Cq1jz6QMKVZ89Q1nevrfhLKhrgu39rbV5MbapU/ECdGFRlcp+P44+2obGrH+esepLjHbbeIWNeLpDZ9JidkolUO3ZvoW7d/TyR6/9JQC9Th8XCqE6XlGqbsUL+MviPrZ4W5Hhk6QsA09zeOr1CdJsxtNV64rkgpS7rGNScQMqbrCo8XXMHz1zhrRt8I/ftIWXzjcil33ZBPlUNwnvCFXPxw/VdTWSGySTeitPnnuSb459k3O1PNnZpp55hctgWLhhwEWK3L3vF9A1g6nxlzA0jY7A5lJ6H92GvqzAiiOGO0f64BJq0cYtYRgW79j6o+p7pydqESgEaSvFmUKVK8V5Kl6AI9RCxFLpkVkrC0J97l1minelt/AtqRz1dnXvZv7Ci5zx1HfLi9UJ3vC9L8DcOXjTv6p/tyyJW1C9tgy7EXkEvEAipUTXBEkjiUS2LCasJat1EWxOpfCJ3P9W2mCF/PUvAx8Cfiv6+aWm+/+ZEOJzKHOL+aZUwjZt2txGXJhbuS/FyCoaZP4gYJommzdvvtXDaHN17iBK9wPi2aSM/r5tMHRBLrR5a3KUkb67lnyOH4QIIZivqJVuM6gAAr7z32DPe+tNWxsbVFWKTOiR09V1O1t2eeb4FD1BlT2jfTyHzivmneyzyvjB6wBIJCnLxNTV5CqUIVOVKbqdblLpfrjkKpfA6PF5V9mDx/VYlgzrtRkAG5saIWuYeKGHH4R4gSRhanzueTXB/bW37aDsBky6apIaT8ru2djPP9qztV5rtGtkB9tmrwAwunEzH9n+IJmEQbF4Bxz7ArViqb56f27iVTJWmoJXrNuYJ+eO01uawtOSZLIpUv0beMPWXSQmHbj0EqAm5JqAKdcAt0yPA+VQY84L6Ld3cWf/KJfKp3nQ7IOJE/RZFqfCPBW/Qk/aZmy2iExJZfMdEfflakFKusef5YqlL7KTr08O3dJVBVbFr1D2yvQketC8KrphMO8K+juUK90rU6peyhRJ/tOTJ/j5N25U9ThNEayErpwA9nTtJ62ZZBMGY7MVUnaTIBi5X0XU+vbWXSVBNcQF+MqZrwDQn+rHMaP+a7WAZNzrScq6wUjVCzl8fpznTs+Q2RASV66U3YAglJRcv25rvxocU6+biQTSxfVDalG6oW3oOLYLFUgnK1QLKnrba9mEUtKbsTF2bQYhyFgZkkaSUWsr58cnqfkhiUgwlV2fqpHhOxdd7kOdJ2GUXmdqDvf2P8gV76V6X7GYOMVxqlhb7KhHIy06TiOMG1D/9L0q9mCmu9Clh3HhWaqRZX3SMkglGtU0mYTJRGkK19+CpQHFcRg4wLdOHkID9Oh6xUwRmgmOWg+zM7mRBzb2LRvJ6c8m+IWHNpOj2BBYXhnMVGNRp2nbrJWi6oV87oUj1AyPHtuhK2W11uJF5OxcPSKlhT64RZyoJ5YudFKbHoYL/6DqUS9+FzlzRo1z/gJ0bly0v5iXTlxgyDDpF0ItAFTUIstkaRpfVtGE4EDfgZb+Y2vNalME33wd+47z118VQkRVkPwfKGH1BSHELwLnaAi1r6As2k+ibNo/fB2v2abNutCuqWrT5vuanwS2SCndqz7zFmLqghCdHVambm/ejJSSz37nPFnHwNA0MgkDkdkFk8dUtObFT8Gjv94ayYqbuiJJUwEp+c7paVK2QVZ3yWU72J/N8b2xeWZLjUiGjlFfZX9ow0N866IyJzA1k1Q6iib41brAytfyzFRnmKmq4ho7DNXqcUTC1HnL7j6ePTVNV8rBr/mcmynz5Zcv8cDWRrPbMJSU3YDBbIb5kkE5UBMj2zBVc2C/ihd6ZAbvgT071HsLAwb0uCdQHyS7qFVqUJnFy19k/uzTbB2+n4JpMldTUQEttjMPyxhWF2/dtYGEZbTUeQghMHWN07n7Gb78JJ1GjVDagIcQkLJsfnrXT9cd9XqNFLh5pspTbO/L8neHpxFmgN/US2upiTWv/QWGpnFguGPxY+l+VeDvFhq1TQswNRNNaJS9MmWvTMpw4NRTCDtNyQsYSivR7QUhmtDpNjcBcHaqpARWUwQroWX45Pv/NYZmIKXk84eU8B3MNQm/VDfs/tFF4+i0W9sFfO71z7Ejcy+QU6mFGx+E6VOEO99FeFgdk5MTBV4aVxkAE/mArqTNfMXja0fGGelKIiUttvZXI2FqjOerGMLCly41L+DQ2VmmvbN88fTfkcrp7ElmQVcpY9lcB9reJxh88VMwcEf92qn4FUYzo9jRBLzmhyQslXrnB5KqmW2IKl3jnXcM8HevKsG/t3sv96c30p/sbxlbLBT//MUxfu1tOxaNvcXhEyXktvalGYoWLM1s5Eg49izazGnQ34Zj6gjR+GxsQ6MWFjk+XmBfhweBT83p4rKm0+F08ODQg7iBy4nZE/Rs/gkm5ndhAv2Z1nTLheQcE7zodUqTcOW1ZQV/LhH1wArnyJc97KRF0tK5kl/soJg0kzy24UGGKkHUZ6xAf88m8KYYSg8xqZngFyBK7avKAEcYUJlpEVi1oIYhDHRNRY4npqeZAN4OYCXBLeGFHn9+/HOcrmgMp1UEaz1ZbYrgv1zp8aUclq6Sv/6WJZ4vWWVfkjZtrof/+LXj9d/vP7+wrLBNmzY/wLwGdNBISb8tMTSNSWczMFV332umWPOZKbnMlFx0TaiJ1573wTf/r8aTZk6r1d4Yr6IiWELDmDrGvRcPcWjDEzi2wQEnACvLY7v6uJKvUitbbE0+jBdW6DRH67UX2zu31wWWYzhkI+t1/KqqbwDGy+N87vXP1V82KWWLwALYP9zB/uEO/suhHMcue3z55UsAvHpxvv6c+YpH1fMwrZCcMcS25CP09p2l7I8hpaTgKoOGjJ1tuCvqjalMIoqaVe0UFCeYmT6h3kOgcdoS9QhWxkrTnfKUnjLsRm+one+E6ZOw+73wzG/Tk7Z5uWbR6wdkRBU/0c2V+WpUEhVNccrq/0lPNAmcrEwykusjwMf3AizRycOj97G1o4uNSwmsKTVGdj8OR/+69bFE1CusVmQ5hBA4hsNMdQaJJFlUaXgpWaJY8+l2urmv8/1MXD7G/nQ/IhINcaSk5ofomuCO4Rx3jXRiROYCQghiabi1d7GT5UIWpsQBTNbGgBxlz4fuDfDmf03V9QHlCndpropPDU1oaBikEwbzUa+okxPqPV9LBCuTMHH9EFM4SCmZrxX5xvlnuFh5nbv7OrEMDcvQqAYl3rGvXzX9TVlKMHarpsdSSrzAw9ZtElHd19PHJ5mey/MhJF4QUnPU5/J67zvYcscIuwaydDgW3zkzzUhXkqSVXTS23FWa2zYbYATRQsNQRyNyaOQG0YWqKZOlSRLdemQ+0phqW4ZGKSzxtSPj7LtDrSflEzkm0ru4f9tjJM0kSTPJE3ufQMfkD75xBljsyLgkhg1Cg4kj6u++vUs+LZdQYq0SzqEMjsJBAAAgAElEQVQLk10DHUgWC8iYXV17QHsOqvMQBoxkN/OhgXfX2w8A9XTAivRxMOoRKVBR808f/jQ7OnfwyMgjXJyr4PjzzCWiqiMrDYFH+enfxph8mUwZzPQ2kmeeho5tq6vpug5We9bGLoKxre3jwPPAifUYVJs2bdaHdiSuzQ8pHcDrQohDtNZgvefWDWkxhi440fEg8q4cItE6QQtCyatj8y1/pyxdTTwyA1BQq+fMnl0gsMqQ6FBuX8DWTpOXwioV1yFFFaxBhBB0pyyOXi6QM1S0oydt1SNYjuHwob0fYqwwxtaOrWiBrybfTQYaoWzqdQQ4oQR76RXupGURyEaxf3Ntxl98dwxXljE1ePu+LWzv3MaEG/IPFy9QC2p1gZVdYgILqmheIKiZCchf4tS4+s7rNpJYGnXDiz5hUYh78hg2nYlI0A7coW4Ab/gV/MkC1VcvEUpIyyLlyDWuLxsJsjBQfaqARK1A0k5yZPoIOzv2E0qPihfQZ+7mjv6t3DW6REPoIFrVz21oTXnq3grTp2DwoLJCX8opMvBVxEXTcQO33mw4GTWNNlOdzBRdglDyzPHGZxszV1avXfMD0rbBm3f2LXqJH9nTz4mJ4uom4MDjWx7nq2e/Wk8VLXjTSBmSr1YJwhS6prc2wgUCqgzlOhChIGnp/Ox9o/zZ8+d5+riKbF1NmDQTOwvamprkT5ZnmfbO0JuxG+6MqEl5MjVHdzo65vFnHj0mkVi6Va8dPDlRBCkoR8YrcaRrzhkl0avSxAdyCd57cOnm26BSFO/e2MnLF+aWNFdovg6KNZ+KF9Rt/AEwExi6RhBK/NAlpy82jcjYBufDC+xNH4DKOAhBPjLb6Ghq7B2L4d6MzWShRsdSqasLEUIt1tSKSmhte+uST+tPq9fxwiq2lmLnQIbz02XVay0IMRb2oIrTTGPRZKXqzpgpo0nYZwephL4aw6WX1XfapoeYrkzjhR6Hpw/z8IY38fXXxrgvqFAxO1QvuijlsOaVCaXECF2M2ixOIbVu4gpWL7CGgbuiflYIIf4t8LdSyp9br4G1adOmTZs2a8Rv3OoBrAZT15DCwE8PsnBK+blD55nIt06oYvMEDvys6h9z/O/r0ZQ6XgUyQ/WJhG1oGGENX3dwRFWt7qJW/mPec3CIrb2tKUMpM8XOrp3qD83gA733kney/DU1epwepi6/pJoK2xks3cIoV1R62xKkrARhZE5saEJNWCMKVR8/rGAZGpu7uhnMOhRmGzVGsUDKWEubHGhCw9AMjtQuc7e0eTlyO8xKga1bavvAo1+YnNJNDlhd3HPgVxoRrGYSWTq7Eni6Erajk08znVW1LweHcyotU4ZKZOkGlGcoazYIwd+d/RLlMEHZDXAwSVnLTLdi4TR4MErljNj2VtgfVVAYdksfH0ClMj79f6uau7s/RGeik4moH1oy6kHmHvwQ/rF5vnOm9Zz4xYc38z+PTjBVVOeTG0hMY+lalO60TXd6ZUfLZkayI3x434f5zJHP0Jvs5ez8WSrhLH95+m+5EmznPVvfU7dgzzkm8xUPXa/Rk8xCUZ0PA7kEw50OY7OV+vNWS39WifpYYE1VZvED2NG5E0OfxDEcHhl+hC+f+jJ/e/pveXzL4yBgJNPwWHOjJtmmbjZ6kgEIQSGziSkz0ajkBJL26ifpOcckCCXFmt9yzQHkm5oQX5ytICV0plqfM9+5l1T5GF4QcvDCn4L8TRACTWiEUrmDDla+w+sXxnledHOPmWKmqo5j2l4chfype0bIV726Df9VidLtsDPLmkxs7u4gZRvkHIOhdB+DOafeCqDiBWQWCqzYzj6yUsdqXAcdtoqWD2eGGQt9KgP3w8QptZB05hkYuIPJcsNk6vClecywgi5Uz7bpUo3BKN26JoN6RNaoTJNZps51rVitwOoHmnPXXRr9q9q0adNmXfiDl/9g2cd+9eCv3sSRtPl+Rkr5zVs9htVgxL2GAonZNGebKFTr4urBbT38w0mVAlav2TETqhGqnVXpbbGlt5Rqtdl0VJTr4nexDB3Dr2EEFRL49TS7bNNkL2FefcKYSw+RdUv82M4fI4nG3xz7CnNz52HTgyR0G9xpsJeu60hZFgFqtb4jZS3qjzPSo1MyzPoqe7ya/cUTX2RTdhMJI7G0IIrwQg8PyUs1dZxGzAyiOI5lKWdGLXDp1hLQvZ3U5h/B7hhd/n06JqFmUDa7yDrwhj6JEJ3slGfgua8q90aA7m0w8ToP9L2RZydfYqJ8hSu1adB0em1zUZPbOrHAsjOtq+nNzaWdjsbkMya2cM+rNMs3Dr2RL51UnmGOW4F0Hz0dOWCeI5eUOHtkZy+9aZtswmS40+HMVImqF+D5IZa+ygn2KjA0gyf2PUHVr/LHr/0xp2v/kw7NZKyg+nrFroXZSGDNVQvsdXqZK0JvRgmk9x7cwF98d4yBXAJttZN/VERm10CGo5eVGcy5uUv4skZPspP37noXQoh6CiTAX59WKZnN/0/qrQY0a5EpycTGx7k4VSJXdOupjOZCwbACcSRwtuQtEljHrjSilH9/WEWkexeI26mhx8hX9zN66s9U6mStAIksH973YV6feZ2EFPzVsW9QLr/K35zrwHbu4UvzZwHIWovNpyxDo+caBLRakJlU7pHLkLRM7tvUT9WvsqNzILpPndsVL1j0vuNWDkweUz/Nxrnfkejgx7f/OI7p8JnCZ6iYTosAozTFpZK6BpCS40e/gxk47BrM8pqX5Onjk/z0XYOAqt+qNxrXDOxkz+rf93Ww2rPi08DzQoh/G0WvvgN8at1G1aZNmzZt2qwRQoj7hRCHhBBFIYQrhAiEECs0j7o1xBO1uFcLwCsX5vjsc+cBuHdTF/dt7uLgSAd7h7ItznwApKIJw+xZ9XNepYwhQ+jbDbvehWVo6KHLPRf/VKVMRZPN5joXe5loRguJHKKWZyDZT3b8KB/I7ORRZwjGXlBpbzKsR8cWkjQShFJNTuOeTz95zzCPHxjiDZu7OLjRQQhRF1ixeUItqHFi7gTdiZX7zu3s3AnpPo539MPGB3novn+hhnz+O+CWcAKfTj2BZqXoTA8sux+gPrk/3vNWBALn5T/mkR29GDPK5ZAr31NidmA/ADuMjErXPPstNuRfgloeXVjLR2Hihqj2gohcc/2a09lScwKoiGWMX2tJmUy6JXA66Ywm84WqT84xuWu0s26yEY8nX/Xww/CaRMJqSRgJDM3A1AVeGFL1Al48N1tPETw40oGUkg1dgu09PTx+YJA7R9SigWVo/Ox9o0umLV6Nt+3p52fuU33Tjs0eBaAn2YGpm3Vx9b5t72vZJk5pbP7d1u1Fx6XiBtT8kHTC4KHtPbzzjpXPn4XEn8lTx1rLQWu+akmwZUGt20KBl7INZkQHh7vfpsYWRaxt3eZA7wF2Ov040QJJtVrmXFHHD1V8JJtY2chiVUT2/aywKBGPBxqLI04UwV2YHgq01FACrYsLKDfKtJlGoFo0tNR+1QpcKV1R3wdz5+kY+1v26+fIJAx83eHSXGTE07cLN9VNHCy3Nb1R37hOrOqKklL+O5Sr32x0+7CU8jfXc2Bt2rRp06bNGvFfgJ9F1Q07wEeA37+lI1oCQ29EsGp+wH/82nH+5+uNidiD29Sq8Zt39fEjewcWi4zhe9XPUpQyE5snxPUl2Q2YusAKVOG4ZWgq8gIt/ZlWE8EikVPph9On4NyzAKSEoe6Lhd0yAsvUTXYPpfiFhzbz8I4e7trYyYYOh219aR7Y1kPFr6AJjYSuohmO4dQFRChD0svsN+YtG99C0sow52TRdINc7y4AbM2Ai9/FmTxBWjP50P6PMJpZeaII8MH7R/mph/c37mhyGqSaVxPC3AgIQbIyV5/0hlLieHMYwlr+mDZHsADe+E/h7idan+N0qWbDYdPktLm5dHmGtJmuj82sFcDpbBEHC0+VdCSoi1UfN5CL62LWiCf2PkHKTOL6Iednyjx17BLnZ9T5t7E7yT95bJT+nEXGTrOtL3NN0arlMHSN3oxNVh+k4qrFit5kq2X6whTTotswEYlTBK0ode2tu/vZPZjFMjTKXoDrh9iGxr2butg1cG2T9FQUyZkptRqaxg2VR5tMULb3pxcdj5RtMFf2mNe7VVpnZab1BWoFfrXzDu6yezClS9GwIltynaS5ujq6FYlPpOzgqp5eF1hmI4K1JJlIqOpGa4QqQhMaCSOhBFZ2qC7KgjNPU54+zlBqCOkWKYU+nVoZgWDrBiXO81WP6o738GLyXma7DhJoFhvNjIr4ryOrt2aBJJCXUn5SCNErhNgspTyzXgNr0+ZaaXYJbNOmTZtmpJQnhRC6lDIAPimEeAn417d6XM3EE2I/CLk4u9hRfqWoDaAm+kJrNBeOBVacCmMkEAjSrhJg+t73QVLVJ1xzBCsWBFNRWs/QQdJ2El76bwzNT0ByeNFKdH2YukXKhmzCIOeYrRbgQNkrkzSS9fcrhOB9297Hp498GoCB5NWjBl1OF+VCmYyVUb1u3vDLJL7xbwBwNAPsDM4qJ1h9Udoa238ETvwPKM+AV2o9FoalaqiqeZLCIG7vnAjKPLpjmcloGEJxQq2wxxGrRHbxynqyS4m6ylzDqr3JYITKLCI7SI/TQy0WYpELZZwp+viBVoOL2CGyWPPXPEWwGUu3+NFNH+Bb5w5z2XuOml7k+LiJqSsL/PmKOo51gbhGGJoga/YxXVHzgr5Uq8FIymw9N4tusW50EqcImpEN+x3DOe4YzvGJb52h5oXU/JAe4/rMEYQQ3L+lm+dOT5OvevXU3HwksJrT9ZYyRclG16mrpzBMW52LzdTyGEJj2Ezz3doUBc3AkzUMYS/b3Pia2PigSjnOrtwEPk7Fi49znCK4nJMg93wYpk6qdNhlcAxHCSwrCW/63yk8+3tMFi8hS+fo3/IuzoeSKj5OoBYtdgz3873Jy8wUXSaLNV69NMO4K3mvsZ+HHLHsAtBasVqb9t9AOQnuBD4JmMBnUL2u2rRp0+bGOPPM0vdvfvjmjqPNDyplIYQFvCyE+A/AZVafIn/TMLU4RVByZb7a8tgdG3JLbdJK7PLlRtN7MwHO5kYxemRhvsHMo+lCRaHi126KYBiriSLE4il/Sb3OznfSDbz1wnOMupE4XKYGy9RMJBJf+phicepcyS8tmgA3W4Bv79x+1eHFzXfrqXNOJ7adgdo0SbH0KvlViYXP8x9v7QEUi007A7UC70yO8lXdpDsZYBQmuWd0mc/u5Ndg/HC9l9jyb6ar8bqb3wSbHmyIaKiLrce3Po4+ex5mvlgXWE88sInL89VFdTYpy0AIFTnxgvVJEYzpcEy0MEkgJbWwSFLvrEf04sjRws/7RhFC0ON0c7KkLovuZOu5uLDBbMFr1D+5UUrdwjq/hKlR8wNqftBqfnGNDOTUufOn3z7HP32ziiDHEa3mz2mpur0tvWm+cWwShMBIdy8WWNHx7DDVfkqaIIgF1moi01cjOwjZd1/1aYFUQiruNaWadoslUwTrjoo921bcZ11gRXxu6kW8KNo4IHSCUPKymOBN3iBkO+nrUK/9ly9djMbkoWEwl70fs/Piio2K14LVniHvB94DlACklJeApS182rRp06ZNm9uLn0f9v/tnqP9jI8CP39IRLUEjRTBkLiqg39Dh8MuPbOEtu1dZi2IlG5PvyqyyaI/RDdBNDnbWODDSsShS8qYdPbzrjsGrR8qgsfpbmmpZCd6x8z0kYhOBZZz+4tQrL1jceBSiCNaCnkrNE+J4+5XYkN7Q8hMhcPb/DPTvRUOAv9ji+qo0R7y8JgFsNQusPP1hyP09d2CnchhGuNigIiaOMC5zHOqk+xoRrjNPq5BU3N8MIJp0OoaD9doX1X2RwOpIWuweXByp0zRByjIoucG6C6xMwsDSkpRrAZ5U56YWnWNFL+p1tcy5ciN0JXJ0mMNszdyJtozjXUxs/w+N83LheZYwlMV8nCJ4vcS90Fw/RErJRKHKXNnFsXQcS2eoI0qNXUIQNdfymemexa6hkflJZySwzgfn8WQVUyRWd12vEfH1Gl/HQggcS1sksF4dm+c/PXmCS3OVRftYiGM49b5YM9UZvKYFnF63RhAGSAFTogxWCtvQ65FagFB66MIknxiCOz/YuH7WidWmCLpSSimEkABCiLVdamjT5kZ46t8D7ebBtz3LRamud1+z84vvf/NtlfHV5jZACKEDvyml/CBQBf7PWzykZYkFlhdI8hWP0a4kP373yqk4izCTavLtlpUIWNiw2ExiBvNgmItSZO7e2LX612lO/2s2aGi2Zl9YvB4PIUq9ajYWiCl7ZWaqM42+VE18cPcH6/UxV2NP9x62dWxrmSRnzAzYGdLaVEvfo1WzMH3JsMB3G5E6O1sXTb3pYahcVqlSldlGal8zVkrVYO19/8qvq5vwwP8CT/+2+tstKRFtpyH0VcPnhSw0zViClG1QrHl4gayfe+tBwtTRsdCEjhRqrH5k5JKv5dGFXo90rCXphMkW58G6dftC3jzyZo7OHGWmOsOL4y9S9as8MvIIbuAiEPXzNCZp6ZydriEl9f5Y14OmqTTB75yZ5ujlQt0xcDCKbD1+YIiqFy4riO7d1MXRy3mSnf1w/qQ6H+Lr0S1BIkfOUymHeVliKNvJG0ZHltzXevHoyKO8Ovlqi3B2LINyUw3WRL7Kk0fHATg3XVaN01fAFEnOzU7ylVNfVxHJ3p3q+hs/TLI4Reir7xNPhA13VMeoN3Ae7jYJ6eDtm6/NmOR6Wa0E/4IQ4v8FOoQQ/xh4EvjD9RtWmzZt2rRpc+NENVcboxTB25o4RdAPQ/JVr6UuavU7cZTAil3nkl2LHwclBm5kRdt0VL0XtAq1ZJcyzujdufymUUrcUmLp8PRhoJHi10zOztGb7F31EBdGIDblNvHAyCPsf/Q3VC3JtWLY8Oivq4Wcu35e9a6ChvlEk+jsTA9hJXLss3ugeGXp/VXnYOhO6Nt19dfWzYYQc0tRBCup0j7jaFrgqc9000Or+mzTCYPZUhytWb8IVtIyEEJgiSRpR012K27AeGmcvJsna2fXJboSG3ksl/G6u3s3P7b9x/BDNab43KsFNUzdXDSmdMKgGgmEG4lggYrqSQmvX8k33aeui6RlrNjY+aHtPXzk4c3o3VtUNPPV/954MHKQtA2dHbKTUBjkUgHdyZubdDaSGeFdW97VEnlO2zqFpl5fF2Ybaa7PnZ7GD1qblS/ktQseRy8X+LOXn+XbF1+gw+nh0a3v4rGBexGlCR4yVbTaE0H9Wowjfj0Zmy29Cbb1dbJnaH3NLWKu+u0t1Bn2eWAXkEfVYf0bKeXX1nlsbdq0sJyJRTty1aZNm6twGvgHIcSXiVLdAaSUv3PrhrSYOIrw9PFJSrWgxdlv1ZhJZcAQN6ZN5BY/DosjW9dKvd6rtDhacsdPrDjBtzQ1eYxrXZqJU7Ue2vDQjY1vCTShcbDv4I3tJH5fuWF1LCeOKAt8aKk5E8lOntj/j9G9T8HsuUa/rBivGkUYly/qX0Q9SlFUAivdq2rB4ghWaUpNuFOrE6HZhMGpCZWit54pgrHBgaklSCYCKELJeIm/OKH+d49mr+7keD3Ek+vL80tE+Jp4y+hb+Nq5r9VFvRu6i6JXQEu6WeIGarCa93Ul3xjb9v7Vmy4IIRrOe/nLjd53bglynWhC0CeThJqBqWtUl4py3mS6UzZnp2a5MFNmpCtJsRYoC/9AGWKcmykvanDejPQb10rF8+lKdLGnew/MXYGxFxgJbTQpcEVQ76WVjOzhi9orFMqXGM5cY0bADXBVgRWlBn5FSnkH0BZVbW5bvqydXPHx94QrF1C2uQ1Zy7TCNj/MnIpuGrdx/XA8yS3V1Cr5NTUAre8kqeqLYvvvhU5Z9QjWGhyGOMVvoZnFVaIR9RTBJWqPil6R/mT/IhOC25Jkl0rdi2mu0Ur1Ymg6ZDfA5FE1CT7/bdj2Vvj278PgAfW8xPUIrChF0EyCVWv00qpGadOrFM/NAn49BVYc7dGFjaH73LuryouTU4A6TzLm+lyS+zfkuDhb4aFtKzeU3d65ndnqLC+Mv0AoQ7zQW7LOr1lg3UiKIDRcO2teyI7+DO/cN3DtFvWa3nC2rBXUNe010gUz2Eg0TF2wr2ffDY13LYi/z/78xTE+9MAmilWftG3w43cP80fPnGGuvHL6b9bswNFzVIJ5zkyV6LMkn504x/t7kyTDgNBzsdFxaUSwUrGQrZ6k30rQk1jf5sLNrDb/4LtCiHullIfWdTRt2qwjVxNgbdaOC1cpWB25Sq51mzZriZTytq27aqbZvW9rX5qtvddR7mwm1Wr2+OHo7wXXWuyet4yF+jXhRxOiq1g2LySevC4VwSp7ZXL2KhwTb0eyTVboWjQBtzMqUnX8q6oBcfx5XH5F/UwuUZu1HLFYdosqamU6ELgwE3XMWdhT62rDTTQLrPWrwYpT7QxhIbUyL01/q0VMXEva57Vg6Noie/rliKNXVb+KF3hLR7CaUnZzSzj8XQvN++rP2tff/yuOgFbnVApr4Ktre9NDbLAm+EDuft6xd+imGlwsR0+mIVpLNZ9SzSdlG2QSJklLZ7q4ssAqewHv2fwTfP7kJ6i4ASevBPRZNS4kNXYCXhDiaDpVGdS/5w6OdJAw4RvjNpuym3jD4BvW8y22sFqB9Qbg54QQZ1HpFQIV3Nq/4lZt2rRp06bNLUYI0Qv8K2AvUK94l1I+dssGtQR60yRrtCt5fZOieAJfiOp+Fu4jrm2Sy/SjuRaygyoyk16lw2HESiYXFb/CYGp1TUxvOwwbRu5rTdGLP4/I3Y25C63bXEuKoGGpWqziuBLRVrrhhli4Am4BNGPV7mjNNX7rGcGKMYRNIGcw0dmQ3kC30825/Dl2d+1e99e+Gnbk0lgNqstGsFJNEay0dR31kS2v14iAda5Qb3VV4mhlZa4hwK0UDNzB1s2w9QbGuNZ0JRvvs+YHFGo+GyLHxK6UxewKEawglNS8kO6mqL4llIgqhyZeEDJRqGEbBhXp1xcZdE2wqddCTAg2Zjeia2tgVb9KVjxDhBCjUsrzwNtv0nja/JDTbhbcZrX8wdz3Ft/58h/Uf/3Vg796E0fT5jbns6ha4h8FfgX4EDB5S0e0BM2CKnW9TUGb+zt1LOEcNnQQ8hdh+N7r238z+38Ggto1m2XEk9fpyjRXSlcYSKlaklCGVP3qkgYX3zdse0vr33HNWyywmm217fTVe2AtxErD/Jj6PZGDrs0w9gK88ElI9ah9rvLzaBYMN9LXabUYwsaK0gUfGHqA3mQvDw49eFtEVxy9NYK11DmYahJV1x1xWoLc9dRaxiRyymymMtMQW2sRnV4HDF3jp+4d4QuHLlD1wnoEC9QxOHwpz6nJ4pJ1WJXIXCRl69hamlpYJGUlQUIpNOrirKL1MCtnVWpuvG3UxiBhLO0muV5c7Yr6KwAp5Tngd6SU55pv6z+8Nm3atGnT5obpllJ+AvCklN+UUv4CcFtFrxaStK9zhTwdFb4bNtz5c4sft1Kw/6fWpgbLTCw20VjNZlEE67Wp1/jiiS8qK3PUREgiF/XA+r4mjibJJRzSriU9MMZKQS2quUr1tNZblaYa/bJWQbKpz1JzuuB68OZdfewd7Kn3v4rTAm8HcQWNyXccwVoqRVDXBJmEwb7VNP1eBZt6kmhCtER2rhlNV7WAxcmGiF/jps1rSU9avdfZsksQynpd20jUG+y752aX3K7sKqdHx9TZ4jxEj7WFX3zjAXozNjM1HT9U3yFTHR24o/dzqjhW37bS1CfuZnI1gdV85m9Zz4G0adOmTZs260Sci3ZZCPFuIcSdwDU0fbr5LNVkdFWYCSWg9v/02g5oDRGitcfQbE1NqibLKqi4Hj2RbhnLiUU7c31W8c3pf7Gpxt1PNO4bWH3lRnMUJnm9EdNVcnCkgwe3KvF/O6aA1gWWX8UN3WWbWX/4wc28Zde1pcQux/vvHOafv3X7jUfDshtg/kLD7OQ2jWCBagega4LJgkptjdNUdw9m2TOUZaJQI4zEUjNVVy1QOJaOo+cYTdxLxrYZ6khwdj7k3LSyfP/Ine8G4PT86fq2t0pgXW2JTC7ze5s268J385+/5m0m2uYVbZr49imVglObXJxu+mtv23Gzh9Pm9uBjQogc8L8B/xnIAr92a4e0Mjc04e2+nSovlsbUzHoN1nxtnq5EF1858xUA0gudD7+fWaoeqn8v7HnP9e0vjlKkehqpgNlBuPcjytUxuzpTh5iEqeOY2k2JJKWiyMqOrtvve7hZYHmBh6EtPT3W1zA1cM3o3KRMU2ZOR+0Tbt8FCiEEjqkzNqtET85pCNnRriRHLuWZKtXoy7Sm881VVApg0jLIOib5ioepCzqTFoFoLNbs7NnFkcpF8rVGf7G56hwCQdq8ud8rVxNYB4QQeVQky4l+h4bJxc3p1tWmTZsfGm7IgfDMMwzn1fb3z823PPTc6C/d8NjafH8hhEigaq62ARuAT0gp33wN278D+F1AB/5ISvlb6zLQJbjRRqa3O6Zugsr6oegWqQW1+mO9zvq4yt0SmgXWzneAbjf6Zl0PA/sgfwkOfqD1/vT1HbMnHthEKG/O+nlfso8P7PrAbekSaWomutApuAUCGZDQb269zg2RiqzH8xfV+abd3t8djqVTrPkIQUtD5aHof/uluWqLwJJS1lMHMwmD99+5gXzFQwihtokWBxxTAyNBt9PN8dnGAutkZZLORGe9wfnNYkWBJaW8eXYbbdq0abMKribA2rRp4lOo9MBngHcCe4B/vpoNhRA68PvA24Ax4JAQ4stSyiPrNFYA3r53ACFun9qUm0HBKzBTmQHgHZvf8YP13ptdy9L91xxhWsSGu1Ua4BpNFp11Tg1cSMe19P26ySSMBJdLl4Hbe5yLiCO+XvW6hfbNJI7OpyyjJZNxJ6sAACAASURBVCKYTRgYmiBfaXUXPTZeYLas7jN1ja6UVRdm/dkEP3H3MIlKWlnf6yYZK4MbuLiBahg9WZ5kJLOE4c86c2M+k23atGnTps3tyx4p5R0AQohPAM9fw7b3ASellKej7T8HvBdYV4G1Z+iHIzHED/3670W3yExNCawe5+Y1Ar3pXIchyJLc5JX4HxYcw2GqMgVAp726Zs23Baaj7PlDv7XZ9W1KLLCae4FBlD5o6VS91hYSl+erAGzvXzrFb6QrCXc9rtoXiEYqYMEtYOs2Zb+8br3WVqItsNq0aXPTaUeh2twk6kuhUkr/GiMjG4DmpkVjqJ6QdYQQvwT8EsDo6Oj1j/KHkOYeWEWvyExlBlMzyZhr4G54u3Ib18a0adRhaUK7LdMYl0UIZc9fmVsbd9B1JnasXMrIxzZ1qn6r42a5pgTXO/YOLL/T4bvrv2YsdQxKXomCq5pv34q047bAanNreOrfL3n3cP5FxrJ3L/tYmzZt2lwDBxbUDjtNdcU3XEcspfw48HGAe+65p20EdQ0EoZo09Tg9FNwChmbQmej8wUoPjOnfoya/P4jv7QeIuO6qK9GFJm7vOqZFxKYcN7nX0/UQN1b2gsWtCxKGRtVtjWDNlF229KYwVtkMO2upr/XZ2my9BURn4uZHJNsCq836skBIffv09DJPjNDaQqpNmzZrww3WEV8EmhP3h6P72qwBIWpy1ev0cnTmKCWvxK6uXbd4VOvEnvfe6hG0WQWxjXdfcm1s2G8qlTn1c63SUNeR/qwSgTv6F0fbHEtnpuS23JeveIx0rt5i3TEcTM0kX8tzYu4Etm7f9CbD0BZYba6D//i1xfbXy3H/+asIqjZtbiJXO3fbNu5tmjgEbBdCbEYJq58BPrDyJm1Wy7s3v5tXJl+hL9nH0ZmjAGxIb7jFo2rzw0ycWnY79um6KkN3wtihG3OovEl0pSx++ZEtJK3FEiRh6FSaIlheEOL64ZLPXQ4hBGkrzatTr67JeK+XtsBqsybcf/7jt3oIbdq0abNmRDVb/z977x0dyXne6T5vVVcn5MmRnGFOYpZERVOUaMuSV2EtreWr3et4LFvrXVu+Pl7p7t099p6z92qjnJa7q1XWisqSRdE2JcoiJQYxDTkznOHMcHLADAaDAdAAOlX67h9fdQIaE0gADWDe5xwcVFdVV7/1dajvV2/6feAH2DLtnzPG7O6wWcuGy3ov47Leyzg2cay+7poBvcGhdI4bV95IT7qHrX1bO23KxbP1rVZkteu7tgiZTTDZIhcxxhhEhHJS8OJi+wL2pfsYq9jS7tcOXPvqjH2FqMBSFOWSYLabANofS5kNY8zfAX/XaTuWMyuyKwC457J7lmf+lbJk8FyPK/sXf5PutqTSkFrZaSteNVnPITaGahiT9RrerGybghjnYkP3Bo5MHAHg7Ze/fa7NvCBUYCmKoiiK0hG609185OaP4DradlNRLnVqQqoatAqsi/Vg1cKNO5F7VUMFlqIolyQPOAcAODHx9fq6+7Y37gB+9NaPLrhNinIpouJKURRoCKxyENGHR+kVCqzV+dV88JoP1j3knUAFlqIolzQtVSsPN8WvzyawZmkxAMDbPjE3RimKoijKJUZXkps1VQ2ALCXfNiTPXaTAAjrSXLgZFVjLkPu233fO7fN5Z77mFVCUTqOfRUVRFEVZOqxIemQdPFNkdXeWI2dLpFMOmdTS83KrwFIumuebQqpqDOtkVlEURVEURXmFpFO2mfBLJyc4MlKshwguRVRgKYqitONcoYCKoiiKosw5V6zu4tCZpS2uQAXWJcn5QggV5VLl+Hi5vvyJ8adnbN/cb3O0Ptp/84LZpCiKoiiXChv6cxw6UwTgPbduYH1f5yoBvhpUYC1RVCQpytKlk3mSiqIoirJYySRhggAb+3MX3QNrsaACax751MMvn3P7x+5dnF3rf3bwbNv1tWprmxbSGEVZSswWVqjVBRVFURTlvDQXtGgWW0sNFVgdZKkKMEVR5pdX46FW75eiKIqyVMk1eaxEpIOWvDoWlcASkXcCfwG4wGeMMZ/ssEnLktk8VDVa+gIpijKD+8Z3XtwTLlYwHX5s9m1b33Jxx1IURVGUJUI2vXS9Vs0sGoElIi7w34B7gRPAsyLygDHmpc5atjRpFlHTBZOG+CnKK6O5CMZ0agUw2nIuwTTHaH6XoiiKslTJLdGcq+ksGoEFvA44YIw5BCAiXwPeC8yrwHq1YXrne/6r4VzHfn7i3F4oRVEWF+cSZ+fjnOJNURRFUZYJy0VgiTGm0zYAICIfAN5pjPnt5PE/A15vjPn9afv9DvA7ycNrgX0LaiisAkYW+DUXEj2/pY2e39JGz+/8XG6MWT0XxswlInIGODoHh1run4FXgo5Je3RcZqJj0h4dl5nM1Zi0vSYtJg/WBWGM+TTw6U69vog8Z4y5s1OvP9/o+S1t9PyWNnp+S5e5En3LeYxeKTom7dFxmYmOSXt0XGYy32OymDLJBoHNTY83JesURVEURVEURVGWBItJYD0LXC0iW0UkDXwIeKDDNimKoiiKoiiKolwwiyZE0BgTisjvAz/Almn/nDFmd4fNakfHwhMXCD2/pY2e39JGz0/RMZqJjkl7dFxmomPSHh2XmczrmCyaIheKoiiKoiiKoihLncUUIqgoiqIoiqIoirKkUYGlKIqiKIqiKIoyR6jAegWIyAdFZLeIxCKyLMpeisg7RWSfiBwQkY932p65RkQ+JyLDIrKr07bMNSKyWUQeEZGXks/lH3TaprlERLIi8oyI7EjO7886bdN8ICKuiLwgIg922pb5QESOiMiLIrJdRJ7rtD2LjeX+Gzyddr/JIrJCRB4Wkf3J/4FkvYjIXyZjs1NEbm96zq8l++8XkV/rxLnMFbP9luu4tL8GJEXRnk7O/+tJgTREJJM8PpBs39J0rE8k6/eJyC905ozmjunXDR2T9teajnyHjDH6d5F/wPXYJsePAnd22p45OB8XOAhcAaSBHcANnbZrjs/xrcDtwK5O2zIP57YeuD1Z7gFeXk7vHyBAd7LsAU8Dd3Xarnk4zz8C7gce7LQt83R+R4BVnbZjMf5dCr/Bbc55xm8y8B+BjyfLHwf+Q7L8LuDvk9+Cu4Cnk/UrgEPJ/4FkeaDT5/YqxqTtb7mOS/trAPAN4EPJ+v8B/F6y/FHgfyTLHwK+nizfkHy3MsDW5Dvndvr8XuXYtFw3dEzaX2s68R1SD9YrwBizxxizr9N2zCGvAw4YYw4ZY3zga8B7O2zTnGKM+Skw2mk75gNjzCljzPPJ8iSwB9jYWavmDmOZSh56yd+yqs4jIpuAdwOf6bQtSkdY9r/B05nlN/m9wBeT5S8C72ta/6Xkt+ApoF9E1gO/ADxsjBk1xowBDwPvnH/r54dz/JZf6uMy2zXgHuBbyfrp41Ibr28BbxcRSdZ/zRhTNcYcBg5gv3tLkunXjeQcL+kxOQcL/h1SgaWA/QE/3vT4BMtogn4pkbj9b8Pe4Vs2JGEQ24Fh7I/esjo/4M+BPwHiThsyjxjghyKyTUR+p9PGLDL0N9iy1hhzKlkeAtYmy7ONz7Idt2m/5Zf8uEy/BmA9LePGmDDZpfkc6+efbC8AK1l+4zL9urESHRNof61Z8O/QoumDtdgQkR8B69ps+tfGmO8ttD2Kcj5EpBv4NvCHxpiJTtszlxhjIuBWEekHvisiNxljlkU+nYj8EjBsjNkmInd32p555M3GmEERWQM8LCJ7Ey+GoszAGGNEZFl5qi+U6b/l1tFguVTHZfo1ALiuwyZ1lEvouvFKmHGtad64UN8h9WDNgjHmHcaYm9r8LUdxNQhsbnq8KVmnLBFExMNekL9ijPlOp+2ZL4wx48AjLOFwlza8CXiPiBzBhobdIyL/u7MmzT3GmMHk/zB2grQcw1BeKfobbDmdhOeQ/B9O1s82Pstu3Gb5Lb/kx6VG0zXgDdhwrpqjoPkc6+efbO8DzrK8xmXGdQP4Cy7tMQFmvdYs+HdIBZYC8CxwdVJ9Jo1NgHygwzYpF0gSR/1ZYI8x5r922p65RkRWJ3ctEZEccC+w99zPWjoYYz5hjNlkjNmC/e792BjzTzts1pwiIl0i0lNbBn4eWBYeyDlCf4MtDwC1al2/Bnyvaf3/mVT8ugsoJOE+PwB+XkQGkqpgP5+sW5Kc47f8Uh+XdteAPVih9YFkt+njUhuvD2B/U02y/kNJRb2twNXAMwtzFnPLLNeND3MJjwmc81qz8N+hi6mIoX/1aiTvx8ZjVoHTwA86bdMcnNO7sBWLDmLDIDtu0xyf31eBU0CQvHe/1Wmb5vDc3oyNOd4JbE/+3tVpu+bw/G4GXkjObxfwbztt0zye690swyqC2Op4O5K/3cvxN2YOxmhZ/wa3Od8Zv8nYnJB/APYDPwJWJPsK8N+SsXmRpuq9wG9iE/MPAL/R6fN6lWPS9rdcx6X9NSD5XXkmOcdvAplkfTZ5fCDZfkXTsf51Ml77gF/s9LnN0fjUrxuX+pjMdq3pxHdIkoMoiqIoiqIoiqIorxINEVQURVEURVEURZkjVGApiqIoiqIoiqLMESqwFEVRFEVRFEVR5ggVWIqiKIqiKIqiKHOECixFURRFURRFUZQ5QgWWoswBIhKJyHYR2SUi3xSR/CKw6W4ReeMreN5KEXlERKZE5K/nwzZFURSlM4jIVPJ/i4j8H3N87P972uMn5/L4irJUUIGlKHND2RhzqzHmJsAHfvdCntTUcX0+uBu4KIGV2FMB/g3wx/Ngk6IoirI42AJclMC6gGtWi8Ayxlz0TT5FWQ6owFKUuecx4CoR+Uci8rSIvCAiPxKRtQAi8qci8mUReQL4cnIX8TEReT75e2Oy390i8hMR+Z6IHBKRT4rIh0XkGRF5UUSuTPZbLSLfFpFnk783icgWrMj7WOJZe0u7/drZY4wpGmMexwotRVEUZXnySeAtyTXiYyLiish/Sq4PO0XkI1C/Fj0mIg8ALyXr/kZEtonIbhH5nWTdJ4FccryvJOtq3jJJjr0ruX79StOxHxWRb4nIXhH5iohIB8ZCUeaU+bx7riiXHMndvV8EHgIeB+4yxhgR+W3gT4D/K9n1BuDNxphyEk54rzGmIiJXA18F7kz2uwW4HhgFDgGfMca8TkT+APgXwB8CfwF8yhjzuIhcBvzAGHO9iPwPYMoY858T2+6fvl9y7BZ75m1wFEVRlMXEx4E/Nsb8EkAilArGmNeKSAZ4QkR+mOx7O3CTMeZw8vg3jTGjIpIDnhWRbxtjPi4iv2+MubXNa/1j4FbsNW1V8pyfJttuA24ETgJPAG/CXj8VZcmiAktR5oaciGxPlh8DPgtcC3xdRNYDaeBw0/4PNIkZD/hrEbkViIBrmvZ71hhzCkBEDgK1i92LwNuS5XcANzTd9OsVke42Np5rvwdUXCmKolzS/Dxws4h8IHncB1yNDXt/pklcAfxLEXl/srw52e/sOY79ZuCrxpgIOC0iPwFeC0wkxz4BkFxHt6ACS1niqMBSlLmhPP2unYj8FfBfjTEPiMjdwJ82bS42LX8MOI29s+fQGppXbVqOmx7HNL6/DtZT1hLS1ybK4lz7FafvrCiKolxSCPAvjDE/aFlpr1/FaY/fAbzBGFMSkUeB7Kt43ebrXITOTZVlgOZgKcr80QcMJsu/dp79ThljYuCfAe5Fvs4PseGCACSeMIBJoOcC9lMURVEuPaZfI34A/J6IeAAico2IdLV5Xh8wloir64C7mrYFtedP4zHgV5I8r9XAW4Fn5uQsFGURogJLUeaPPwW+KSLbgJFz7Hcf8GsisgO4jov3Jv1L4M4kKfklGhUMvw+8v1bk4hz7zUBEjgD/Ffh1ETkhIjdcpE2KoijK4mYnEInIDhH5GPAZbBGL50VkF/A/ae9NeghIicgebKGMp5q2fRrYWSty0cR3k9fbAfwY+BNjzNCcno2iLCLEGNNpGxRFURRFURRFUZYF6sFSFEVRFEVRFEWZI1RgKYqiKIqiKIqizBEqsBRFURRFURRFUeYIFViKoiiKoiiKoihzhAosRVEURVEURVGUOUIFlqIoiqIoiqIoyhyhAktRFEVRFEVRFGWOUIGlKIqiKIqiKIoyR6jAUhRFURRFURRFmSNUYCmKoiiKoiiKoswRKrAURVEURVEURVHmiFSnDXg1rFq1ymzZsqXTZiiKoigLxLZt20aMMas7bcd09HqkLDkmhxrLbhryKzpni6IsUWa7Ji1pgbVlyxaee+65TpuhKIqiLBAicrTTNrRDr0fKkiL04bH/0rrubZ/ojC2KsoSZ7ZqkIYKKoiiKoiiXEkGp0xYoyrJGBZaiKIqiKMqlRFCeuS6sLrwdirJMUYGlKIqiKIpyKdHOg1WZWHg7FGWZsqRzsBRFac+nHn75nNs/du81C2SJoixdRKQf+AxwE2CA3zTG/KyzVinKHNDOg1WdgO7FUz/GGMPJ4kk2dG1ARDptjqJcFCqwFEVRFKU9fwE8ZIz5gIikgXynDVKUOaFtiGBl4e04By8Mv8BTp54il8rxGzf9RqfNUZSLQkMEFUVRFGUaItIHvBX4LIAxxjfGjHfWKkWZI8LFL7DOVs4CUA7LDBWHqEaaI6YsHeZdYImIKyIviMiDyeOtIvK0iBwQka8ndwURkUzy+ECyfct826YoiqIos7AVOAN8PrmGfUZEupp3EJHfEZHnROS5M2fOdMZKRXkltCtosciKXERxVF/+zv7v8NkXP9uyTlEWMwvhwfoDYE/T4/8AfMoYcxUwBvxWsv63gLFk/aeS/RRFURSlE6SA24H/boy5DSgCH2/ewRjzaWPMncaYO1evXjy5K4pyXtqFCLZb10HKbbxshwqHOmCJolw88yqwRGQT8G5skjBisxTvAb6V7PJF4H3J8nuTxyTb3y6a1agoiqJ0hhPACWPM08njb2EFl6IsfaaHA6a7ZvFq+TBxEuJ4YexqohyWWZld2bKuFGr/LmVpMN8erD8H/gSofTNXAuPGmDB5fALYmCxvBI4DJNsLyf4taEiGoiiKMt8YY4aA4yJybbLq7cBLHTRJUeaOoAypTONxKts+B2v/D2HbF+HQjxfOtoRyWGZ993oA+jJ9pJwUU/7UhR9geA888v/B2JH5MVBRzsG8CSwR+SVg2BizbS6PqyEZiqIoygLxL4CviMhO4Fbg/+2wPW0Zr4xTWWQFCpRFjj8FPesbj1OZ9h6skX32//jxhbErIYgCqlGVLq+LX7/x13n/Ve+n2+tm0p+8sAMcfAR2/41dHj08f4YqyizMZ5n2NwHvEZF3AVmgF1vytl9EUomXahMwmOw/CGwGTohICugDzs6jfYqiKIoyK8aY7cCdnbbjfHzj5W8wkB3gg9d8sKN2DBUq9Oc9sp7bUTuWM+OVcSb9STb3bn7lBzEG/CKsuaHh3Ull2zcfJsnU8Ba2Q8FkYIVUT7qHfPLaPeme+vrzcuypxvIiyy27YIwBE4Oj36elyLwJLGPMJ4BPAIjI3cAfG2M+LCLfBD4AfA34NeB7yVMeSB7/LNn+Y2OMmS/7FGWpc75mwq/mudqIWFGWBkEUEMYhZ0ozQ+ZPTAzyzOmnuffye+lJ98yrHQeGp/j+jpPctLGPe29YO6+vdSnzyPFHOFU8xe/d8nuICEEUM1kJWdGVvvCDBCWII8j0wC2/Apk+OPIYlMda94vjhlersrAdCmoe2VwqV1/X5XUxWhnl2MQx1nevx3O82Q+w6moY2W+X/eJ8mjp/7P6utf32f9ZpS5RXQCf6YP0r4I9E5AA2x+qzyfrPAiuT9X/EtGpNiqIoiqK0MltvoDCK+S+PP8BTxw5yfHL+w7u+v+MkAHtPTcz7a13KnCqeAuD+vfdzbOIYf/3jA3zxySOU/YsoX15N8pjS3bDiCuhaaT1Y0z9LtSp+IgsrUiZPUynaGwZZN1tfnXWzFIMiDx56kO3D2899jDiC3vX2/C4mb2uhCX04ud16q6ZzZh8UTnSkwIjy6pnPEME6xphHgUeT5UPA69rsUwE6G9+gKIqiKEsIP/bry8YYasV3TxUqlH3DSLmyoA1aF3t4YBjFpNxO3Fu+cH564qfsGtnFh6//MH2Zvrb7FKoF/v7QI8AbAJisBuTSFzj2NcGR6W6sq+VgGWMFFTRC6/IroThiRctChKs99zmq/iis3UqmqRBHNtUQW7E5j+gIy5DKQToPpZH5svSVE1TwHQc5+GMY3IaX7YMVWxvbw8b3muoE5PoX3kblVbEgAktRFEVRlLnHjxoTsWpUrU9CR4s+JingO1qaf+9DLu1S9iOq4eJtBHtgeJLv7zjFB+/cxKaBhc0puhh2jewC4Pjk8RkCy3M8gjgA4GRhjNq0u+JfhJejmuQxpbsxxnD/3vu5I/K4Lo4gDsFNQu9qOVn5FVZgBeVWUTaPVI39HDV7sJrFVvPnvi1hFbL9tvy8X2oVjp1mZD9TO77Kl6JhiAKoTPDR6Q2UK4XG8vAeuPwNC2vjHFMLY17XtY5LpQPT4r6NoyiKoijKrDRPNJsbs+4bmiQydiI+PDm/IVLGGCpBhAgEkSGMOh/S9PLpSX52sLVO1uP7rSdjcGxxFz3oz1jZ1K7RbtpNY4yh5If4TeNcuRhhW52wYiPdTSWqUKgW+PHoi3ZbczXKZg9W8+MFoGIiBGnJs8q5jXys8/bDCis27NHNWNG48+vtw/A6wOjQdr40scfmvNVsml4FtDnn7dCjC2bbfLFvbB/fPfBdjk0e67QpC4YKLEVRFEVZorQTWIVywOB4uS6w9pwevbiDGnNReR/VMMYYGMjbQgvloLNeLD+M+dudp3jqUENgVcOI8XKQLHdeAJ6LWvhbu5LksYk5MVZmx/EChbKP69h9LzgHa/I0HHnCvsduqvH5cZKApuZS7XUP1srWxwtAJQ7JSqrF29EsttqJzzrG2PPwstCzzq4bPQyHHpkvcy+KsxNJTqSTtlUCAX/6e11uEli9GxbIsvmjVoSnUC2cZ8/lgwosRVEURVmiVOPGhLg26Tw7VcUYw+peB88Vxksl4vgi7t4f/gk8+RcXLLIqiaDqz3vJ484KmKFCwxtQC1kcmfLrzoLSxRSE6AC1vLp2AsuP/Lr9k5WArpxdrpxP1E4OwfNfguNPt6yuhRvWc6vaebByK1ofzydJqFzFRGSmbdrYs5Gfv/xeNpcmqZ6rcEUU2OOksrDySltREGyY43wThfDS92BquLHOL3HqZ3/J2aEdAEyV7Q2PzU6W67O2n2txepXG8aM2L271te37k80DxhiOnb3I34qLODacRxgvM1RgKYqiKMoSJYjsBDmKDV/d/X3+9/Z/oFAOMERs6M+yeUUeP/Z5cnAbQ8WhCzvo0Z9BUIGRC2sFURNU/YkH67yT/XnGjxqvP1kJgVabOm3fuTDG1L1Kg1ODlMMy33juOM8cHiWKIyITcdOKO7gy/xYA0l6EI0J0vknx0C4oDMLp3fbxNT8PNFWhnM2D5Xq2nHvt8XyTnHvVROSmbXLE4arYIT92lOrhn85+jNokvlYU46ZfthUFp+c5zQeFY3D6JTj0k8a6kZf57tDP+PqO/0WxOslYdYy0k+If5S/jGrE2Tk0XWOUx6NtsKz0uUBXEY6Mlvv38CXacmPuS/DVhNRUs4oqOc4wKLEVRFGVZIyIzGuaIyKpO2DLX1Cbje4cm2Tc0yQ8OPslQoYI4IZ4reK4Qmgo/O/kk39n/HQCiOOKJwSdmv5uc7rL/Cyfabp6sBDS3qax7sHJey+NO0RwCWBNYQZKv1JNNLepCHKEJWyrknZoaZnCszBMHRuqeLWNcXOxYO05IyhWC8wms5tCsVAY23gHQEiLom2imB8vLN5oML4QHK7lhUDURmXaO0EqBjLj47jmqGZ54zv6vCSwR8Loawms+qZWzN43PWBgkY1o6y0unn+OgX6A3b39+upP3rehPC52rFRRJd1nRG4XzbvpE2b7Gmcm59ZhVoypHJo4AUAyWaE+yV4AKLEVRFGVZIiJvE5ETwCkR+aGIbGna/MPOWDW3VKMqnuNRrjYu53uHJslnbMl213GoxkXCZCIXm5jP7/48O87s4NmhZ9sftBYuVp6ZuzUyVeUzjx3muaONprS1AgsDdQ9WZ0MEWwWWnbD7ybrerLeoc7BqHsmbVt0EwJ6hRh5ZTQzFsYsryViHFSuiz1dYpNrkOfAaFRTrAstNUYpDW3GvbkwZvBy4KUilWzxYxaDI44OPN0IM54rk/CsmItOuFHt51AosE7cv1R5U4PgzdrkWGgjWExeep/LgXFAbZ7fR+LnoN3rDnRo7RGAiblp5IwD5JK+sWJ0WDhpWrRBO18Tt/AuTenX+aG5DBAcnB+vLU4u5J9kcowJLURRFWa78R+AXjDGrgE8DD4vIXcm2JV0r+MTkCXae2Ykf+zh4rPKuqm8zxpBL20lST+KNCqMYRxweO/FYfVK9a2QXhWqhtU+WMY278KWzUJmwCfcnnoPqZP3u9pGRxoSvHiLYlXiwOuwh8psE1FTiwaqt68mmOu5hOxe196ZWSXDnYCOXpyZmotilL2cD6Nb1p0g5zvknxc0T23blzh2PkhiYOAHPfgamhimUR9gfNjUlbjrG9uHt7Dyzk6OFo6/oPGclbniwsu1C+vwSaXEhCvEjn2joJRuSd+RxOLUT9v/A7pdf2dqzy03Xww/nlZpQahJ/U03eqcGx/QCsW3ENAJ44pMWl3Bw6F4W28mEqa8cdFqTRc83LGya5l2OVsXpRinJY5r7t9114mHETNc/r+q7156/+uIy4IIElIq+Zb0MURVEUZY5JG2N2AxhjvgW8D/iiiLwPWBw1m18hDx15iMcHH6cSVjDGZV36BtZmrgMgNFVyGXt6t625xa6LDVk3y4mp1rC/r+z5Sj100O5Ysbkqrmd78ez6Njz132H/w7D7u/UKgbExGGPYNzRJqWpFTHc6E850LgAAIABJREFUhefKhVe0myf8MMZzhZ5sisnENj+KEYGuTIpqhz1s56I2Ge1J9zBZiThbbng2Jqs2xC2OUqzv7eF1W1ewYcCzHqxzFSSJY+tZqXlD4ka4Wb1RtQildA6G98LUGTjwIx44/SwPl45ar5qXb/FuVSIb9jZWbXgy54TIJzQxgYnItBNEQZmMuBCWqRRO8sJDn+fo4/fD4cdg79/C6CG73xU/1/q81EIJrMRb1fRaU4no8sTFJP2t+lY0bojk0t2UmgVwcw5Zzdvoz78w8ad5dr+272t8Zc9XMMZwpHAEgH849g8XfdzaDZz13evxIx8/8qmEFfac3XP+htFLmAttNHyfiGSALwBfMcZcOnUWFWUZc9exT7ff8MhKeNsnFtYYRZl7AhFZZ4wZAjDG7BaRtwMPAld21rRXR83zMFIeIY49RBzedf11PHjwMEFcJu25EMDW/ssACCNDTEw+lSefynPPZffwlT1fAeyd6jrb7ToGtsDIflt9rkbxDJXeKHl9w+B4mb978RQA+bSL4whZz+24h6gaxmRSLl2ZFMVqw4PluQ5ZzyWMba+ulLv4gnhqk9GMm6FcdQnjCqt7MpyZrDJaspPsKHLIe2lSkUM1qpJyHcJzebCCovWo9G2GM/vqYXgwrVG1l4Oah2HsKJNRBbw8Bb/AKi9nCy/UDpkcY7w6RwURao2Ao8A2GRYhG7X5HAVF0uKAMUw981mCyHByvMLlK5K8waAC62+x1feacdP2vOe74XBtjJrGtRhMgjgEJrI3LZwUbvfa+vZ872ZK40es58pNQVglNoaiieseaF78Jrzho5BtbTw9l/hRDCbmmpf+GjPwnnqe5bbT2zg6YT2VGXd6bccLOa4di4HMAGB/b769/9sA9GZ62di9cS7MX3Rc0K+LMeYtwIeBzcA2EblfRO6dV8sURVEU5dXxcWBt8wpjzAng54BPdsSiOaBZEBWDIlFkQ6E29fWTT7sEpozj2Mlpb6aLTCqDH8VUoyqlsESX10VvunfmgSsF672ARv+gZuKo7sGaqoQtk/p1fbagQMZz564P1sgBOHsQJk615hCdBz+MSacc8umGLX4Yk0k5ZFJ22vNK8rDMHDaqPTB2gC+/9OUZd/BrwiXtpomjNCkv4B3X24/weNl6NsLIJZdOkXEz+JFPypGWpsPGmNZS2zXvR62fktO4tx7EAanksZ9q5A3VyfZzcPyg9aQ0FcCoFSt41QLLGDj2FPzkP9jwuji0AstNk24XIhiUbYggMO7bifsMuZQbmPm8Wk7UfHqxotCG1UJLvlclrOCmu9jg9YIx3D1wvQ1fvOPX4dpfJN+9lmIcNJoLhxWerJziy8ceotIc5lirADlP+GFMJioSxYbqgR/V1z8z9AynS6ftKZ6jEuN0D1iNauks6Sis/+bUxBXYsVmuXPDtG2PMfuD/Af4V9uL0lyKyV0T+8XwZpyiKoiivFGPMj4BdIvKVaesLxph/3yGzzkktfKYtY0dhcmhGcQo/cHAdYV13P+v7slyxvsia5EZ32k3z5lUfZGvXbRhjKFQLdHldLQ1c69TEFbRvbhpHlP1G2fOi3wg1W99nc4JyntsSgne4cPjclcOMge33w+DzMyulvfhN2PkN2PYF2PP9hhmxqeeLtMOPItIp662qhSsGkcFzHTKenfY8uu/MrIKpnQduqDjE53d/nvHp5bRfIT88+kMm/UmeG3qu1fYkZM9zPOIojZuqkvbsuDxz5AwjU1WiyArFjJuxRU6aPFhhFPPnP9rP/3rsUOOgtZCznnWw6bVw4/vqm6pRtf55qE7P88n2gZdl18gu8LI8VjjI0Ymj7D59nOMFOw6FauGVC8+wCo9+Eg4+Yj8HZw9CWMU3Mbge6enhY8aAXyKz4gpI5yn4iRhNTZvKdkJgxbH1XiUNnGnKaywHJXKpHO9dfQcf6buJG/qT4hu962HDrfR3r2ci9oknkmIQQYWX/FFwUowGTcUv5jmczg9jUsEZnopPcca0L14yvcx6JYh45vAoJ8ZK/LdHDnDs7MxQxuqeB0if2EZvZuZNndICNq9eaC40B+tmEfkUsAe4B/hHxpjrk+VPzaN9iqLMA89PfJ3nJ77OA86BGX+KspwwxkTA5SLS5vb84uPLL32Zz+36XNtt1Re+zGOP/XuipAR0LmVFTSUQ+nIe3Rk7UZ7iKM8Pb0MQPMejO+vhB43Lfe15M6hNxN0U9F/eWN/k2QiKDe9ZodyYhOU8e6fdERgcL1OshvzDviM8ePBv+fZj/272u+9+0QrHl38AP/1Pjf2m5xSNHYGi9Q78aM9p/vrHs/9WVQPrrco1hSvWRFcmZe18+fQkxTa5YsMTFf77owc5MNxa1W3/2H4qYaVebrqZQjlgvHRxE/e+jFXAe0b3tKyvhVNZD1aGwEzy1X1fxHECCpUy+09P4YpH1nNJu+kkRLCRg3V01E5YW5op18qEe3m4+h3Qvabl9TzHI+2k8VdeUV9fNVG9wMLK3EpiN8OLldP87YEH+OTjX2DbsZOknBR+5L/y5rFTp1sf7/t72Pu3BMTgZkhPF9xRAHFIun8LbLyDQ323sWf1uzjRcwvk+u3nFiC/YuZr1QTWRVYSHCmPsH14OwCHxg9x3/b76oUf6oQ+PPafYW9yE6B3Y4uQK4clsqks4mVxxZkR5tfVvQ5jDOWDidcorOAg4HqMVkbhzt+w64P59fb4UcyB0uMcNRO8EE7LrZs4BdVJqlG1pXLko/uGeeLACE8fshVHj5xNRHrhhL1hE1TwTURGXPLi1T/3NZZz4+EL9WD9FfA8cIsx5p8bY54HMMacxHq1FEVRFGWxcgh4QkT+jYj8Ue2v00a1o6WiXzNxxF5/jBerIxwuHKY/08+KrJ1IRpFDLu3iSOsl3XM9RIT+nEepqYx7NukPdPWAvZPe5SV5HrUms3f989YKbLf+U9usFXCnTtVXTyQCa+uqLm7cYO9OH03uYH/6p4d47NARjh47xtGTByjt+rb1UEznpe+1Pq4JrHaeol02tGj3SVtIYLbS5NUkRDCXdgki6+3yw5i065D1GuMwVpw52T5b9AniMt/Y8/2WyV8tlC8yM0XZ5x4/zOefONLWltmYSEp3y7QAt9r774n1YHmuICJMBhPEiVfBIUV3pjlE0FYRjGPDA9tP1o9Vbz48vfFuE37kk3bT9ljZXpt7e/kbmYoDW+gEODl1kgPVJPStqUDG6txqAI6Pj/HAjpMXX9xklsINQS1EcPr7m3hCM4kn5Ex2A4XcJg72vJb4db8LN/8KZtXVbJ86UR/fOrXKiRfpwXrw4IM8efJJjk0cq4vhF0debN2pPGYLw0yetmPWu9GKrjiGOKYSVe1Nje4k7HbtDS1Pz+cGQByK5XHCOISwiiMCjmsFVs862+x5nsPpqmFMGI0TG8OJZk+VMfyK73DPuP0MNHudpqr2Pa+F4kbGWC/e81+21Sifuo+qiUmLg0RVfvW6X2VN3gr82g2C5cqFCqx3A/cbY8oAIuKISB7AGPPl+TJOURRFUeaAg9jCFg7Q0/S3qGjOx5nRX6g8zkTcmBxmU9l6ToOQqecWNVNLSB/o8gjDVF2Q1DxY915+LzeuvLHxurUJXG0yets/hcvfYD0e+ZUAbDj5Q/ozVhQUygGeK7zvto04jl33lqsb/Zur8STh5DClIOJwZbJR4a1+whGMH2td5yXetXKb6nT5FS3he5XZcj7CiGzKrXvVykGEHxm8lEPea+QfjbXxOlWCiOPV5xmuHOfQeMPe2kRw+h335lDF+HzNfhMm/cl6WF0xKLbktQSRzYmKjOCSwUsKcWwYECIT4koKEaE7k6pPUGt9sO57tNWrV2+oXPdgNTyXL555ke8f/D7VqErGzbROdje9Fn/VVdCzjltX3wrAvlJS7KRJYPVn7GfiqSMnOTg8xeD4RXojaiGJb/z91tVJiKCHsZ+R+uDY46czfQhCOSxjTExkAptT138Z41e/nSeHnuKRY4+0vlYiFrmICf3e0b31suKPDz5eL/Qwo5dTc5hb74a6kD2+62vsefhfUayMk/e64Kq3w12/B32bWp6eT+WhbyN/UzrM1/d+jTgoWQ+ik+Js+WzD/niaR2+OmfJLxPEUxoBp/v2JQ3ocj66kZ1dzmGDtN2Ui6TdnjGltSB1W8U1k8+aCCo44vOfK9/Cr1/1q/QZBJzg+WuKZw6Nzmlc5nQsVWD8CmmMK8sk6RVEURVnUGGP+zBjzZ8B/qi0njxcVzaKqPrGqUR61ifAAxpBxM7iJl8nELulkIn7H2jvqT6kJrK5Mim53NQMZe+d4Va4hglzHbXhlwooNs6p5r/o3wxV326prmR4MhjAyrPOSAgeloB5yV+POLSt401X2+JV4knTidTntl1qKKwCNnkEt65LJW3WaB2JgC/hFHt1n88QOlZ/gG/u+PuPpxhgqQUzWc8nWBJYf1T1YfXmPe2+wRSOmqjMnrCU/ohLZELDmPLVaHtn0/Ljmgh7j5fZ5K9N5YfgFxks+A95mDIYnTj5RF1l+7JN20lT8GFfSpFxrw2suS/Nz1w7giJ3k5jMuGSfxYLkOlSCu98KqnV89Fy4s27GviQzgscHHOD55nNHKKGknTdpNNya76TzVrW8B1+PK/itZkV3BaJSIiKYKhCsz9nVOTdjxqonfk+NlPvXwy3zn+daWADPwp+xny+tqCUP1xSQCy2n12iQeLyfdRZfXRTGY4kR1Ozsmv0MxKXhRE8Azim/Uqt9FF/AeBWU4+GOeGnyyvqr5eNPzkOqeX7A3I5JzeejQ3/FI6QTFOKA/3We/V7n+GS/X5XWBkyKMIwqVUcYrZzHigDgMFYfsDRAnNe8Ca9vo35GKKxjARGEj5ysKSItLl9jvb7MHq9bAvPZZ80Mz47sbYD1YhGWIQtInnmPA667nEHaCwyNFnjl8tn0u6hxxoQIra4ypf6KS5fw59lcURVGURYGIvEFEXgL2Jo9vEZH7OmzWDJrv5s4IcaoU7F1tgDgk42bqniiXfN3T8fr1r+cdl78DaAi2vGe9Hndv+CV+86bfpCfdcN6lnFRD2IVVmC0/K5UmjG3zsBUpO+kt+VFLyF2N121dwWUr8jj+ECvCkGp2C2diZoY41SZqr/kAvOkPYNXVjWa206sGZnuhOkGhbMdoPDjBcHFkxmsfGJ4iig1Zz4YIghVYQRSTTtnJ1E0b++jOpOpNiGvEJmYoKfQRxaZlIlnzZEz3YFWawuLOTl3YZPGF0zvZc2qSl49ZD+SukV0cGLfeJz/y8VyPUhDiOY331Y/LZNIGN5nkdqVT5L08pbCEIzFxcif+rdesoitj96k0e7C8meGBNTzXm+FNqE18s6msFTPJtjjJi1qfuYk1uU2cnqgwmXiiagLrpZMTYEw9XHRWgpLNC3MceM0/qXtJA3HAcZNJedOY1oqlpPP0pHsY94eZMDbsdGhqZvhaCzWvbHgB79GJZ+HY02zwqzPyFTf1bGrxYJWCEoHfdKOga3XdgxU0hZPWwnnbkU/lGzcfopCh4mlwUmzq2YTB2DBB17swcfgqEOPhmSpv4VpkMsWmkSFWZVbQ5VjBmJXa56rxPZ4eputH8YzvbsODVYZn/icc+gkcf7qjIYLlIKrfgJkvLlRgFUXk9toDEbkDWL6ZaYqiKMpy4s+BXwDOAhhjdgBv7ahFbWie4M6YKFYnqdQmbFFAxs1w6+pbeefWd5JnXUsltdpkLkzueOczjVC57LQ8HFdcjDHWgxJWGhPRNkze8tsADKQawmS6B6vGL9+xiQF3hBwpqt5qXg4n2FM4xFOnnmrsVAsl8vK2CW6mF4oj8LP74PhTNqQtNwDX/ILd5hdxsE2E7fmZlgna6YkKD+60OWJZzyXfHCIYxqTdhq1dmVRLFUSAl8de5tFT36MSTxLGpi6qjDF1D9YMgdVUMXGyjUdsOkEcMDheJuN0kXX66qKk9lrVqEraTVP2I7rdVXzgqg/Rn+lnMpgkiAOuX7eCmzb24TpCX6YPYwxh03RsbW+WTMohFZVJ7fomlMet56BN/lWNtJu2RS7imQIr7aatAEi8X3HJFjNYn7mRQinm6IjPsdJODpUfr/ccGxh5lruO/y/uOvZpquU2XsoafhFqfZ76N8OG2+xqE+G4aVLTBFZhosDZYhU8K7BK4STZ5PN3KhHGtXGcQT1E8AJC0pIy8JXKeEtRhvdd9T7Wd62nFJbq360v7P4C3z3+48Zze9ZDKlMXvDW29Gye9eVcx20ILH+Ko6Mvg5Pish7bw27Kn0o8WA2BVQpKM4ttvEqcMGSDk8fPX8vt4Tq2ng755VW38eHL3wlAVmyF0G3HTmOMYXiywljJ2jRQOsJdxz5NXJ5oeLBu/if2lExsvZH+FFSSbUGZbCrbsSIXlSCq34CZLy600fAfAt8UkZPYlgPrgF+ZN6sUZRHxqYdfPuf2j917zQJZsry5b/u5HQofvfWjC2SJshwxxhyfFg7S2W64bWgRWNMnitVJKiaZwMcBruPiuR5berYSxvvrng6A/owNQ7ptjZ2w5pOJRKlNEQIvyauITIQbVs85ES9h72T3pnwcEWJj6mXPpxNEAZWwwErJYFKrCEKHR86+CGnhtWtfayeVtRycWm5QJvGsVZKJYxTCm//QLp/aAcYQlScYyPfBmL17PloeZX33egDuf7qRz9XswSpWQ6LY1IUZQHc2NaPIxZGJI/V+UlEU10VuNarWJ9TTJ4TNIYIX0mB5yp/CD2PWZW4h7eS5PHMPw+ax+mQ5iK14rh13XfdKuie7KfpFHHG4clUf915lQ/NqxUn2jj8H3AxAT9Yjig1rii9zoPw83/zBQ/x27w2km6pChtNCzTJuBt/123qwMm6GnJeD5HPC1Bk8x5bwPzleJkpCQMeDQY5MHuLnzGp6Tz1JzbdYPvQ0mRvf0X4w/Kl6pUKgLu4DE5J2s4APZ/fbcubAs/sHyQ2XuSN26U33EcXYz18ZxhMhV3t/ZuTW1EIED/wDbLzdNtHuWt02ZK9WFKQcTNE7dpx3OFlOrr2WDd0b6u9TMSjWQ3BHKmeBAXj9R2wFw4mQyVqZc3FwMEjm3Cmfm3o2cWJ4Dwzv4agIZPtYnV9dfy0cr8UDfP/e+/Ejn550Dx+67kP17/ErJYxiTFig30szlruMtVMvkXIEd+hFWGOLcjgiHBv1Oe6f4an+UQ6NNDxVa4p7AfCKp6Dq2NDPga1EK68kGt+JJw4c/mnTC1bJZXuoRJ3pg1X2o3qO5nxxoY2GnwWuA34P+F3gemPMtvk0TFGUueGuY5+e8bdpYhubJvQrrFwyHBeRNwJGRDwR+WNs25FFRbMHoRxMu7PrT1EVY3MGoqBemKImCJo9WCknxUdu/gg3r7aT7mzKRQRKbTws9SazQ7swo0da7pJPpxw6xOKSxa+HBs7mwfriS1+kLx2Q8vq5fc1bCYwDiQeuPqmqeelqXoxMd+tBrnt3YzmpHBeVCuSzdvIcGcN3D3yXU1OnZkyoa54ckUYCvtc0Rqu604wW/UYhCKworIU8NXuwavk3/Zn+pLBC47WaRVVz/692GGP46t6vUvYjrlpl89QG0qvpz/TXw678yOZg1SryZdMO3V43U8EUQRyQdhu5SrUiJ2eqx4mTse3OpMikHEKEx6qDYAynwxI2uNMyXbzXc7Biv35utfLtjjhJCJstL35b91a2Zt8EwMlC62d0x9knuH/3lyiGIUnNE0rFNg2ijYETz9nS3+mmbJNEaAdxhFfzpB55omH31CShk+VsKaDbs56lWphXIQlLq4nictT6PtU9WHFoQ9he/Jbts9aO5Fjl8ii5My9zzeQod6+2QVzdiSCcCqZs6B5AHBO6qUZ5+FSWiZpntWulLbk+rTT7dN6x+R7enNvAulSX9X65aVZmVyKIFVhuCqKQUlBi55mddTE86U9SnN6/bBam/CkeOvzQzCId2N8RExXoTXmUvQFeXPt+zkZZxs+eahF2WTdHaKocHy3RnYSiphzBSX6PXph8hifPvGC/045DcN274fI32s9trdhKzzqoFMilclTD6oxm2wtBaQEE1oV6sABeC2xJnnO7iGCM+dK8WKUoypJEvVDKIuV3gb8ANgKDwA+BRfdhbO6BVAxbJ01BpUDo5bnVZChIhtvOHIW1ryWInOQ5rfdL3aYy644j5NNuWw+Wm4RDfXXH/2RTDL84cNms9k36EYGTI0OVXHK82TxYfuTT5US87uotnOlZwaGjWQgmoVKgElas9yUo2cT/mmho9ma85oOw6qrG40wvBgOVCbJpO3Gutcr67oHv8ls3fQSwOUh3XN7Id8l5LuNJGFPzGK3osq85VQnJdNsxGCoO1Rv2RrHUwwLHKrai4cbujYyfHceP/br3ouZp6smmzuvBKlQLxMZQCSI29KwgFQsTlYBMV6YuOms5WOVqRMoR0q4VWKWghCAtuTy96V4GsgMUq2eoxBPk3QFcR8h6LpVorB6mNmGClrGtTstD8lyPdJS24YYmxBOvHqoITX3TMt28JsjznGvF4fBElctzd1KKxnFwKYYHGS8NMxZX8Le+Hxl8jsGTx5nRsnrsCOx/2C7XxDXYUFHAj0PS+VVQmLTFTQqD8PyXWF08S8lbyeiUz+aVl7MhcxO/cNnNfHXiQQpV+141h3VWokrDdhFYeRWcPdDov9Umh88O0ITtS1UtkM1YLxKjB2HDbfR41hN1cPygbcAMYCJGiah3F0tlGI+TMV55NW7PhvaNu5vI5wa4ObOKk8n33hUh42bIe3mmgikm44hjpZMMDj5ez9ercaFeoIOFgxwqHMKTbq7pvZ3NKxrituT7OGGBfLaH9951HduOFThVuQb34PO84fJb6/uZKEVoqpwslLnF7OPWoMSZNW9EToWkXYfT1RNsHw1445q7APCJwHHxkveWnnXQtQrGj5FNZTHYMN9Ze/PNE+UgIrsYQgRF5MvAlcB2GmEVBlCBpSivgnOFHz4/MbNCVjO392qUrqJcINcaYz7cvEJE3gQ8Mcv+HcGPfSiN0pdb1cjBGtkPpVGqlTFId9MXCG+sxlA9BiP7CXpsiLKXOnc1rFx6Zs4RNDxYgeNwuDqOufGXaXekahjxk31neI2bJROV67kv2TYerLrnIA5Zk1tF2OVxp7yWLd6LPHVqJ8H1RcittFXhvLyd/ILNt6rRLK4Asr02zC+cIp0KEYErem6iii1yMFmx4jTntU5rVnVnOD6alPdu8mDV7K4mpd5LQYlK6BMb8FwhTT+T1SLGGMaqYzjisCa/ht1ndzNWGeNw4TC3rL6FcmAbGOfTqUZRiVko+AWK1RCDsK6nj4pfplDyWdWXZSLJW6lVESz7NkdEROjyujAYpoKpFg+WiHD3prv5duk7lExjku06QswUtarxE7EPV95T3z59Ql7zYIH14nmOhx81RGQ9by+VxZQDPKdEkLLC6O4tt3PPdWv44nM/46mTuyH0KMcRXd19FFPdBMXRmQMxNdxY9hoCy+RX8e2pAwx3rWC9m7HiKg7g9O66WAydNKMln/X9WdZlbmRd1xp6M10UKokHq8k7Vw7LrRP3lVdYgTWbsALrXSuewTcxx8ZKXJb3IYv1uG24ja5EENbFFYCJGIvDhsByM0zFAQa4ov96blt7U+MzPhuJAMkl38d8ZgARIe/l2Tu6l9MTQ4xNHoHxNTOeOr2y5WwESZGMh3YfY2d6DX/4jqvrVfTGK0W8qEy+5xo2DnRxYqzCPq8fMPhjJ0hjv9fVwCE0ZYyB7hM/pSeb4vX3vJe42svQqVHwA0x1AtO7EaFx0yjjdUMQ2PPM9kN1N2nsd/DFMy/yuvWvu6BzmAui2OCHcT1Hc764UA/WncANZj4LxivKMuR8+VvzRbM4G3YOnGPPmTzgHOCF8UGYxRulXihlCfJXwO0XsK6jBJGdTA6kBzh62R0YY4h3fgNXHDsp9jLkmqt2RX69D5Pnnjvivyvttm0EW/d0RT7kV1KIq/STI4xDJvyJusfkzKS9I191u3HKozhpOzFr58Gq5e+8NrOK9fm1FHNpYjeDKTngQlAZh77LbJGL5hCxbJ+tJLjq6pkn4HoETpZ0NIU4IY4IA+kNXL1+A48NPsZo2U6wuzKtk6ZNAzmOjZZmjFEttKzmdTpbOUsQRaTiCtlsN5l4gGp0Fj/2GauM0ZfpI59Mgnec2cHB8YOEcUg1uIqc55L1nPOGCE4FU1SCmBu73s26vhyjxYDjoyU2OtaDFZu4LmxGm6qcdTWJkNS0UvfZVBbHEW7clOP1Gxv9lUImiI0h56SYXHV1Pddowp+Y4cHKuJl6JclyWK5XJ6yJk7pISWWI4oi0aQisNb0ZHEfYlF/D+rFdGLKUoi76c72sW72ScLBNqfbC8cZyz7rG+Bif4fWvATdlRZ0HTE1CZRw/EcKhk+HISLEenpZ2HbrTOcaT4gmloFQPqZxRQCEJM617sMDm+blNY1qdgNDnTP8NcOw5xqcCzBqDFEcgCvFcj2wqWxc1H7ruQ3zt9L9lMC5xWU3QuSmOFIqcKfv4By+jK3RZd75U7SSEMScpWHsDuRXXAjBatgJ1LCw1yqZP44Iq8Z18gUrlDH4Y1wV20Y/q4zhamiJlfLqTSo4DXWnKKRvWGIyfJC2275wTOqzsEYhtGG3KEfLVEaDCS+YsblTFxIYw24vXZFumey2MnbBhoPmVYAzr3SwM7eJEcWz+BNbIAfuafRvrq2pe58VS5GIXtrDFqfPtqCiXGp0SUTXuOvbpGesuVlQpynJERN4AvBFYLSJ/1LSpF7igq6uIuMBzwKAx5pfm3soGflRFRBhwMrwclHjq1FO8UNjF7/TdxNmoArlueta/Fga32yeUx/BzSQ7WeQRWPt0IlWumnhwfhZDxGC4P05/t58mTT/LMye3c3vd+3nbNJgbH7GT1xquvgOJOUhn7uu0aHJfCEhhDHylIZejPe4R6beGcAAAgAElEQVROmpFxH78vxt9xP9wY2LLbXpPAErEl22chSHWTjoqIE+A6kK4W6RI7CRxPBNb0SdOG/oYHI9+0rWZ3OQj5/ON/hh9WoFzkdZPjHOi5liwrCKMRikGR8eo4K3Mr60Lj4Lj1mhWDIuWkGlnWcymcpw9WEAUMTVS40kuzIp+mN+clwsGG5DWXRm9Owm8WWGkn3XLMmk1XrU23hHxNmXF6yLDCyTKVVE88PnGc7x/6fr14Qv2Ybpou7GuUghIrcyuZ8qfY2G0npTWR3ZdbSRifJk2RIvYYNRG4Ep+7483sjIbwTUxXTx/ORA9+UMWMHUUct9Fgd2S//f+Gj7bkJo2UR+o9pNJOGlIC/hRxcYR9p20Ri1Q6y2jR56cv26qBGc+hO5NjcNJWtiuHZTb3bGYqmJpZibNWaKLY5EELK+A2haYmQm0i6Rnn4lBaeyddp7dZ8ZVfQbfXTaVwgvUrrrFjYyL2Vs+yd9fn+e3X/Dae4zFSrpISey7bjo7x1mtax7wtV95DrjwE5UGcRPRdPXA1e0f3gjhWYBlT94ZVw4g4tt6n4ckKa3pmKVBTGoV9DzHsT/FiIWRl7ELuzYyXfLozKeLY8PShQRwT0tdr7bxqdTfDWzfCEPjlKarGUA5i0k6KjBdiyvb77zoOnD2AqU6xNxolHQmxcSinsq0CK9sPnLDhwF32Nfr8EmuCKqnRI+3tPr3bFieZ7s2+GGp5dm/7RH1V7UbTYsnBWgW8JCLPAHWpbIx5z7xYpSiXGOcTSSd675ixvealUjGlKLOSBrqx17rmMl4TwOwz+Vb+AFsQo3duTZtJNSjj4dDrpKFwgheGXwKgaELbZDjbT3/vpobAqhQu2IOVS6cotQkRTDtpO2mLA3A9ioENi/ubF3dzplRgfGQ3r718HYPjZVb3ZNiyaRPs3UE6nAS8tsKuFJQgDsk7KXAz9OU8IieDi0MQxQQmtlUBgwrkZu8P5Ec+39qxnS19W3jjlWuounky4SiEE/RUhrj84HfI++ugK8vOk8PAwIxJ08ruNNV4ChBynsPhwmHWd60nnbLTn0OFg5TP2ApoqUh4jVnHjevexaOnpuq9sEpBict7L6+HytWCeUphidPFk7huxJrUVsZLASU/JJ9uP7UqBxWK1QjHS5FyHXqzSQXHyCWMw3rOV8bNUPIj1vfZ7c0Cy3Nbq8Vl3Awi0hL2F8YhE6bAFm8Dmevfwmhy3OGyFRZnSmdajpH38vVcvFJYIjYxxbBYD4dLOSl+/cZf58FnD3F45AukBxr5gbVQy+6oQAmHahhRdVxW9HQxmevFANHz/5uU49hJbq2X0+prZxR+aC6+UIkqkMpDWGWyEjIZurhE5LOtAjPvpejJ5KiEVXaeHMGPQlbmVnJ04mgbD1YP1TDi1NEjtk+biBVYzcVVkubXk649dxehkNtMF9vstvFj5I88CaXTrPYDnu8aY7xYob/LCt1TxVPkWMv+/texYUWGVdkMI5NVotjgOucJE7zs9awvj8C+b9TF7Rs2vCERWK79nhrDrWtvY3PPZv76J89xsrqLVDDEk6Vu7r1hLev7sgyOl7l5U1N1xKQq50ThNCvLE3RFMX1dJxgvrWVTdozCk1+gXLDhuX1d9vvoOMIdV25kx1MOo0Wf4cSDnVnlkk+7xEV7TNcBjv6M0biK6wiu8Tk1AY8eL/Ge9Y18v3Q+aW4elhvFQPY8SJ+TtkVY4qjR4Bzsub70gF2+++PnD7FsR9hUJbRJmNa81vPdB+tCBdafzqcRiqIoijLXGGN+AvxERL5gjDkqInljzHm6nzYQkU3Au4F/D/zReXZ/VRhjePHMDjAR/W4GxvfXt5XigLIJ8bwcXrMgCcoESVGG5hLk7ehKuwSRzT2o5SIdGJ4knRFbWc0YcKzAmqqGVHw7+Thafpbx0luZKAes6c3WJ8XrMz778OpNbZsph2WIIxvulErjuQ6vv3odJ54WojhpwGriRqPZWfjp8Sf4+8OP4zlZNvZ/lBeOB6yMpogHH6e3Moibvo5cZRLyGYJDP6K3503k/3/23jtKkus68/y98JG2vG/fjUZ3Aw00vCEIQ4AEPSU6GUoURYraoTQ70uyc0cycs6PZP3als2dWK63ciLMSh5SoEamRVqIRDQgSJAiABEgQtg3Q3nf5qrRh3/7xIiIzy3U10DAU8zunTlVFRkS+eBFZdb/33ftdqzO90NQlz1e/DEDEVr5y7Ctc0XsFd02omqSFRLEIY0ltMUJHY9DWMYVLGEsWvAWCOCBv5jO1aP+5RQxNo8dp8OTsAxQdg2ONR8hHt/PggQL3XDmEECwjWgteEw2Dq5Pgt+Qm9W+hTiwlj586ipQSV8+x0Ghw5YhaE2ivI0rrolIIIXB1t8N1croxjSCgKHpx7DJe4nbXnhpoaEZm1+7oTkawGmGDelBHSokuXaSUWS3QmarJuNApUiVNsktvf8GfZAaNhVpILwEDBZtmQQXVQSQxNFTAmzYL7t+27H4/O/0sAFvKW7h++HqYPpocH3OmdC0b5x/n6tE8P2gr63IsjX43TyRD/vP3/gtCwP1b+hCI5bVJZo4j0w0W6h59eYuSY9Js1NCdPqJYYmkCbf8/AlCVJtO57Ry3b+AakTyj3iIcfxgtmetB3+OfDk2xsTrIsaiCLHh8+eiXGbeux9ME20dH2Znv4RsHLlDzw4xQr4UBd4AP7vwgpSSd0TVc8mae6TBmuO4yE4VcM3gNeTPPiN3ggn+IU3MVxm14YP8FDE0QxpKdI8WWw2dCGmsyRo998gWLYvMsC429MHUYrzrP0MJhGoZGLt9S2lzbIF8sM1+bz7aVRRndmmXSUwu7n+MMN9ZzbDSLGIbBnrjIc9ocT02HvIu2htWDO+H8czBxUweRKmoWL8bzePVplUaYIrl385HHgwf+O/fveHfHQsO60O6WGNQzQ5XXVYqglPLbQohNwA4p5TeEEDnWmV7RRRevO3zrd9Z+vU1K7qKLLv5ZYEwI8RWUmrVRCHEN8KtSyosVFP4+8G/pVL8yCCE+DnwcYOPG1d331gMv8kBGbDCLDOouutCIkpqL2vBOGm4RN6gqN7Id98HkfgjqLQVrhVS9dqTBRMNXpgxBFPPFp8+hGz5GPnHZs/IqtcqP0EUrPJipNqh6IVtsAywVJO4dtqiUm/zD8U/x0as/2hH4qxTBiJwwsv5D2zeMM/2ErgrMZQyNOZWWaK0eNB2bUYFdEDd55PAMulHEiD0azQaW0BEScsIg9Kr0NI5yqxvy7HQPVw9cndWWVYKKWnGXEi9WgfGJxRMYuoauCZrJ6v5CIyCX9Pkq6z6G5nB6ocH/2P8ggyUDW7eV+UMYs9hQxKQe1Aljia5pDBRspqdmmKqM8MnvHKU3Z/JLt2/puJ6FRh1DWBlxSgPuw+c9ZvD4/tGvsX2oQN2zgAYlV73e3r+t3eQihWM4HQrWhfoFDBnhil5s3caLvCx9LoWt27xn+3uYakwhhMDUTEzNZNFfTGrFIr789Bz16jR3pultQuDrBcxQBa45f5ry45+HgS3kA5+G2UNMkfP2VlxLx86r6wyiWCmLtSkyu3ir05JfSpnZ4b91y1sBCLUzBEGEF8b4ep6btvSh9/Tyizs38ZnHTiTzobFtoBchMoEHW5QxdXO5u54QLIQG4JGWy/3NI4cwR5Qj4g3uOe5Idq3FgqZRpm6PUZFJ6l1Cxm92RjCExgajADFMkMeMxvjShQoDBZujC0cJZZNep5DVBFab6yNYAP1uf8fvt43dxl8+d4pbmiGV+Vs7iIYmDBAtZTpMnE2aQbyMYDWkxDBMcqZO5C3y+LFZbp+YwgsiKsyzoZTHcjoVZStXoro4R6g5GHGTHi2Hr5vUwrOExPj5QfY3TjGouxg9E+Tn1HvFIkRKiR/5CASW0ws3/UrrxDveDGefZDDfA2cmOTV3mBErz2xzlo2FCTj0TwDs92e5UDnFwdmDinRfCtrt671Ki2C9SimC6+qDJYT4FeB/AH+WbBoH/uGVGlQXXXTRRRddXEb8PvAWYAZASvk08Ma1DhBCvAOYXKvno5Tyk1LKG6SUNwwOrqPGYg04hsNHdnyAt+QUUbvLbRVlV50SdU1TSoYQMHED5AbwvToP7FdawsUcsVI15S8eOcaJmVqWJuMHIut9lbOKHJ0/ytOTzxPKVnrNgy+cIIikKohPehXpYYMzzecBmG/Ot78VjbCBkDGO0Fv9h8rjnN74XqSEgFiRK+hYzW74UUca42JivW1pOS4sNpl1VbPcIKrjCJ1ISkyhoc2exhMhp+UUj559lAdOPpCdw498rp4oc82GniwFTyKJ4oi58EVqzSkkUA8izCQk6rEidEyqTcnhqQXCOGZreSsAlaSnlqMVOT67SBhJeuwSrqWzcySf1WHNrVDvNt+sowkjC7TTFKW5GkwnKVhBFBMGipS214+lWFqDBUrlaFdrakENS0ikzOEYDrGMCeOww2HP0R2GckPs6d8DKBI34A5woX6Brx3/GmfnG1giz/FpNWdRErh7RhHTX+S+3cMM+qdViuj8Sdz6WarWEFPF69iy+xr1HjmlwqS9xahNtoLeJcQ6NdkYzY9m2757os5Tp+apBdDo2YG+/R7YfEeHaiqEwDFtNrbVnwW+i6M7HY2TUzSkmvua3kMziDBij8lFj5w/g3Hoi2qnG36Zuu9jGQJLN6gGmnruvUXQTPp1hzfnNmJIlbanxSGacLPeX7WggRQeZbuUkeTPPXGKOL40nzg/jPnDB1+kXh3k6vx1aAiMuFMX0YWBHwWM9XTWX7X3d4uai/hRTBA26Em0kblQWSoEi5M0o4hJrc5OswfhdGZCazmltvq6mt+iCZtKm4hlhZAYkaRX1mWI6NnAfOkGzhf2EMkAL4zxIg9TNzsWCQCYuB5u+hU27HynGk/1HJ/Z/xm+dPRLPH/qOzClatsNoYFfzz67l4T2XoJeS81qvM5SBH8NuAn4PoCU8kUhxHKvyC66+AnEWnbqP65W6qfmG5w+MrPia5+4dsXNXXTxuoaU8tSSf/Jre2rD7cC7hBBvQxk1l4QQfyWl/NArNUZX6KrWwimzMQ4ZNwqcCas8Wj0Fmsbm0ubWzqbD3PwC2Kq2wFiHi2CKR4/McO8ulY6jYVCt1ykAUreAiOennyOUqkg/lD7VoErJKFB0DEhJXlDPGoQu7dlVD+rkhIEQMRgtZUv0bGSuuoegpwSJrTpDu7PX/8u3lXnEb96nLNem60pdCqVSYJpmD5Fm4RPhCD0LWI3aAh4xVT0AKWmcfAzKV0LvZvzIV7U2wGS9ZW5wsnKS096PqHsVRhKHuj7p0pszcQgQQmCJHE1ZYUNuR1Z/peECVWytyMmZswDcOX4fz1W+jmvHzLXNQ5pel2Kx2cQUlprHBP0Fi/qCxWJTEUtR38uTJ+fRhKDsLlc8Msv0JdumGy3r8YZfJwd4wsYQ6hx+7HcqWIa99DQM5gZ5ZuoZAC4seowUc5nymQbsNbOPscozXKUd56qeI5CY+lu6xvDoGDuMacp5tc1x1HsEkQTNgPoMnPuWerO21NAojnj4zMMA7O5vPQ8vzEmuBmYaEcWcAxtVbyVb6yQqju4wWLSZrfn0so9mILENe5mCVUsabX9dHMeY0binGWP0KGK7c+prrR2Lw9SCYxiaRtF21HFOSakgbaTND2M0EaHLAE3Y2WdwujGFqWsUrAI9bffwDx58kZ++bpxN/etLdXvhQoUwlnzz4CTbbEWsdSLlLppMgYZBLEP2jJU5t9Ak9fpud7Q8euos0yfnqAuPjU4vCzQIi1M4wTzhwjkWIh8NGLDLYHY+X0ZBLRz5eo5dpSa7jR/x9Il5LN0nIEY31T2uxAGOleeqG9/Kd576cyIZ0gwivMjD0Vcx3wBMu4wQgtOV02Cpa/z26e9g+FV2FjdSr5+GxdPrc0pcinaTk7bjVWsFcfGauJeJ9RIsT0rpp38ohBAG7W3Bu+iii58YXKyZ8Gvxvl3r+C4uglNCiNsAKYQwaRlXrAop5b8H/j2AEOIu4N+8kuQKaAVvxWHc5gLv7t/LJ+U8oaYCt46ePmaOhuejWwH7tgyvcLJOtNcbNPwoU7CEEAS+zwazyE2b7uPvTnwVKS0i6ePoZarhFKFUwUlPzgRNA8OBoJGpJkuVgkbYwNUswAetFWDmbZ2m3ovfMw7nD8Oen+o0GEjwqUeOcceOARaaDcquyUIjICbENWyuG8/xZS8mKm7l6Z6fZW/+cbRz+wlERFV4cOE5zjXmqf3oL8nf8792BGYpCZFSNTfVNYEMfMrYbI/7uWtshKJjKvMNwNBsiCvYWsswYCJ3JQeZIqf3sBAqgtWbK+A2XIpOxFnvGcacnSBtGkGUKYdRHPHC1Ay2KKC1BXZXDBc5u9hazDKEzUzVp+gYHQHgFb1X8MLcC5Ss5V4rSxWshl/BFQaRMEEa2T1qJ1grBb29jjI6ODxZxdRsdGFmkV4zCdir9hBUgIMqhYuejTB/EoCb9+zk/HzU6n1kaETCpJEfU0sUZ59qmVy0KVjTjWkOzR4CoNCWOhjq6nlvYneQTSEEN23pY6SsriFv5jF1jd1jJbypTVSaoUqNbKs5i2PJoQuznJLTNEXIjB4i0THShsDpVO+8X81h4GNogoJtU/VCZfHemOtQRfwwRtc9NBkS63amYAVRjKELHN1ZtvDx90+e4UO3bGKwuJzgLkXUpnjN1mMGgTAIqPmqCTWALkwiAnrzFmXXZLbWJJJ+ptIA1KvzxEhCISlpJnGpD6feZOLc5/FHS/ww10fUmKR07S8uG4PlqvukIRkru4CH01hktKBT8HXyjgPDe5i0SriGy7UbB9h+tsDibEDdjzoaVq8EYToYaFT8RbASI4zI58H6KYZv/Z+ZfmQ/RHLdvb4yeFU49JXW723HH5x9jqcrjzHf/DV6nJ4VDr48WFeKIKpI+D8ArhDiPuBvgS++YqPqoosufrxx7OGVv771Oxevgeuii8uP/wmViTEOnAGuTX5/fSENPtN+PeUNDA5dtfK+pkvNCxnJS+7YsUZ64rGH4cUHOgwXql6YESyA95Tv4O25zQyXN7GzdyczjWmCuImjFdk2mM8I1mBBBYV13eCrFx7PyMtSglULaspBEFopgignwyjSCNyiqnUdujJ7rT19ar4e8MD+C9T8Jv05FXBHMuD+q0bIbdxHMw6xzTxN4fLNUzFeUxKbMfOxDw2VrrjfU6TFP/oQVM4DqgeUOpciAQV/Cqd2FhEJBslRSJWlsKlMKjRVj+KI3izFaMi8glsH3sO9V7QaG20ol3F0h+OVw4yPnGd4+HQ2zyk+d/BvaUaL2EZnsHnzlj4+cecuBgoWm/pzFCKPscWnyDxLohD8OnduuJMP7vzgisGqa7h4kUcUq3vaDGrkNZNIaxEsL/I6CdYKSljJVM/dVMVjR+5Nav6S9L70eambfWzqbzMm2f3u1s+5fmzdzp4HS9f4wYYPc3bTTymL9PT57t3ckRranv7VY6uA1wsjPL3AueLVHBp8y7L6pdu3D7BtUD0bKelUqp/NQsPPas9SfPb7J/j0U1/lO66Db/bQNMtEmq0IloyxwhpnStfyVLSFLz1zVhEsXaPk2NRTglWb7uhFFcYxdqSei0BzuK78Xm4cuZEgkpi6ls3xz928MUsVBHj+7MKyuV8J8222/7FmUHIMNBmy2AiyBtmpglVyDAq2wfHmYzxb/QKNtlRbN65xNr+TutlHZfM76MkN4kdK3WmGIXPCptp3FUO9y41HjOHdNI0SF/pvyLY5QseJG/T12cpOPtfHrGHgGi6GMLANnZiAxWaDE4snOheGlkIzsDSDWtBmSBEFIAR/feQfmbQcWLI4cDHUvJB48XznxjayfWTxAJahc7Z2dt3nfClYr4L174CPAs8Cvwr8E/D/vlKD6qKLLl57TCyuUnpybI0/ll108TqElHIa+PmXcfxDwEOXazyrIqlDyZqv9m3lHUO7ePjMwxycPch4sa1ZpjSpNEM2Fi6S5nL8uwDo2+/ljVcMMFXxOHCu0tGzKW420CwXNJ1ep5eqr4IvDQND09m3vcC+gQmEENSCGp+ef1b15SmqYvz2QDaKI6Yb00ykNVZthMA1dZA6zWB5bUx1iYV8TEgsJWWnBMwRyUAF2YVhPBnhahbVKGYqLuFiUNWauFKjT3eYjZroCDj2HfypA9A4B8URFj1FsGIZU2nOUaqfJIxiNM3B1DVEKmOETd51zRg/OKFzYHoYtynh0T+EK95CzR9iINfDvgmHA5VevDCm5NpZMG0ZWubo2J6mda6qrNH3TXSSYSEERdtlx7AyhLi78Qzz8+c4NrBL7XDgCzB7FPP231hmfpDNaxLAepFHTsvRCKoUdYNFYSKTmp1aUCOWMZZuZc2MlyJn5oiTHDNHt9kxVGByUd3blGD91G1XM7L/ceU8ecsnsr5V6qAeTN3MngchBJZp4EW0elCVxuDan+1432oSXL9p45syA4evPX8BhOBE763qMHf1cLXduj5vGxw4V2FWLrB5VAXlUkqmqz61aBpfzzPpKiIRajZuMMsNZ/4SgaRu9vGtgyqNtBJ5GJqgaDucm2u2xg8wchU05gjnD2PHFQaLNi/qDlGkkzfzBFGMqZvZHA+XHH759s1EseS/P3EqSwe9GObrPiXXZLEREAuDvG2gyYi6H2VtGXRh0IwDCraBZWjMB2fUsc0a0Kt6YAVNGrrFrLkFOz9I3i8zhfr8f615kqPWFjbYE62m423IFUs8NfYz7BzOwYz6W+IKA/w6826pwz7dNVzlamk4RDLgBxceB5R1vRdGLDbC5cqdEBi6iUwcLW8bu41Hpw+rlFIhVCppHNFszLEeSCn55HeOsls7wVs04MaPwQ//W4eCFUc2llGj4lfWdc6XivW6CMbAf02+uuiiiy5eEv5kXuX383LSDI89vHzbXLIi2HWA7GIFCCG2AP8S2Ezb/73XXS/HVAkqb4Bb/gXYJUxN456N93Db2G1ZwFb3Qw5Oh0jgymKzo8fLqjj8INfvuJeD5xdVAFrzQcb0UCX2a5BTqoSpmQRRjCZgY2EXdqFKyZVU5DEeOHGWAXdApf21BSxB1CJrc54KhHp0B6h1KFg5S0cTJjV/eT1F6uyVIlVByomaF0lP9dNyrsIvjWAUd+PPx9TNXlxp4NrqfW52RnjQMahV5+H4I3iydV7ZVtkwWzuPhsqA85wRzMTunvIEBA22BofZ6n2HT7tvJp5TjnXMn6Tm9TFQsOlxejB1LQt021fpNS11clPvHcVRpgQV7eUKlBAC5k+BX2VLYRs/Am4cs5St+ZRKnaN6Acrjy46FVrPomcYMOTNHM6gzohnMC4NYqvHNNeeUFbmpCFZqy96O8/OSg+dU0HnvlRNMVrzMpTJNEbRNHW779c4Db/yYcgjUNGzdzgwrAGxDV2qLk6heS3pfgSJ/mtC4orelCp6eUyQ/b+vUvOiiDnz3b7kfU5jsP2VyfqGJ75vUggZBHBCGag5iIgq2kSmLtptjKJhiMQnuF5yJ7HxeGGC4gpJj4Yd1fCP1mCSrGwyOvYAramwbzFPpG+WhSYkuLMJIYuqig8QKIVTaoKHhBRcr/1RYaAQMFm029LocPz5N0TEoNs4TzxzBH1VzpQmTmBAhBLdtG+Ab50zm6wELqanDgS8SS8mCWYboFAXbJa/10CQEITns9hGGGlKs3CS76Ji87/oJRssOfEdtczQDQo954o59U4OSvGUTyZAw1kDAHeN38M0Dkxw8X+ETd29ruRsmsHRHEXZg7+Bedg7eyKdOPwjAzoE9ONUF9k8+D7UZpXyeeBS239tJ7hOkbSvm5heQfRJhF1VdWaJgRbGk6tfpd7TXB8ESQhxjhZorKeXWyz6iLrr4McVKis8t861UgO9t/PirOZwuuuiihX8A/hyV2h5fZN/XDilR0S2wOvtDpQqJF0b82bePYkYx1wO9Jx8A/zzsesfy88Vtl3r6Cdh6F/kkVXC66rOp8iO21Z/CNjQYVEHj5vJmgihmpFTiX929l88dPEAjbPDt098G4MW5F0E3wFdjFYgV65yuLmyAhZmOGqyya6ILg8VmZ7rP6bk680tc9xpBUvdlF9k6mGfcNrEMjXoQQ99WHKGIV93sY99gD4+aOvRtI7fr58gf/gK1RaUY+TLC0QziRLlJMVObRGiCOJQ0zWEWhjbAYEJS67Nw9CEIGgzoCxgzL0APYBWoeiGb+nOYmsnu/t0M5ZTfV67NtCEmVX2SuqWgip+kdF09tGf5fQKYOw6A427h1q390GfAyUfbJmR2VYI14KralWOLxyjZJYKwSV43iGgpWLPNOR4/Nsvm4iCjQ1UG0savbfjaszOZsll0TOYbAX4Y8+VnzvHCBRWMrui8VhhUXyiXQz/yiWWMJjRsQzUfpn8bnHochpdffy2okTfzzNZ8vvLced517RiuqbOpL8/eiTLfOzqzoqNiO1KXx9LWgIV6wMxUDi+Iqfk14iiHlDFS+Fw5WqbSDFhoBFw/MEpwvs6zZxY42vdGwra6tJgIW9cpJUYdi6KHbMZMF+KQMJKUjBoCgZEQSD9Q823q2ooqoW3qHerxWqh5ERO9OnfvHGJuMKL0rMnEhScpHDqIP/hbAOwc7qUiVWOwwaLNrtEST56c42TlOHAlLJ4liiXz9iDUIWfaFPRekPCUPokvR4li0MTqtgob+jr/FrkJOZ8nQiDQhEYkI7b3bFevGzZCq9MMIgJNMOZu56vnjwGKNA4VlxAsw4KoiamZaELDDb1M+b5z/I08feJxgtp5wqc+i5G6UPZtgaFdy8baTMxYjLhJEAssw85qRgEmK02CuIFtmFnK8CuF9aYI3tD2swO8H1i9/ToghNgAfAYYRpGzT0op/0AI0Qd8DrWSeBz4gJRyTigHjT8A3gbUgV+SUj65/kvpoosfP6QOhJPa4dd4JF108c8aTYScuUIAACAASURBVCnl//NaD+KiyAjW6qv1CwkRCfQcg4VkBff8s7D1zs40JmilHKZozFFKirovLDa5JprB1DVVTG8XeOzIDFcMF7iu9DOtJremu6z+wTLz+NVJiCPKbj9+3CIuU/UpDM2gLAxFxLRWqXdPzkTDYL7ZUr8qzYC//cHp5VORpDD1umWGSw63b1TjTseSs1TA7RsFhne+FWafAcMm7/Rg5/rxE+XKkxEWGiSBv0AgkdT9RaVgSQilQ3XsdrhqVJk3BI1MoeuhoghXj0ngN/DDWNnVA3dtuEsNNmhQMNqc4ZK+RM0w4vxCk0MzZwmimB25uxgvLSc2HUhrReqzcOKx1vbm6nU7/W4/A+4Ai/4inz3wWZAxtqYTSZMoUsHswRmlhLnxFubOb2LT3i3LziOECpZjGVNyTcxFjTCWGbkCZVyxFtIasSAOsHUbXY+ZakxC775VMwxqQY2CWeBLz5xjtuZzZLJKtRmybdBgQ19uWYC/FsquyR1XDHBg2sUPY+phHRnahNJjx5Ayw+jL2/TlbZoyIm9qTOWvYLJwZcd5YhniGBYTveq9jzRyLYLl9BDW56l5IXldKUWGnQdqBIGab1MXK6bcOYbG5DoUrDiWeGGEY+oIIegr5pGaSmINI0mzod5351AvB+Y1ojjKXD1NXePQ/FPgq04UIToR6pksOy65WJmZnBc1mrG6n/sGbrn45A7uhKlDOEmPvDkZYhs2H9r1IcI4zBYZLN1C0ypU/Qb7p2r8xdyx7BSLjYChYmf9n6W7EFTVsyMl1Gf4yKa3Yuy8H8OrKcUMaDbnKaQLNvWVXY5T1diMm3jCxhJCOZkmn+cjU4uE0qfo5LKU4VcK600RXHolvy+E+CHwH9c4LAT+Fynlk0KIIvBDIcQDwC8BD0opf1cI8e9Q9V2/BbwV2JF83Qz8afK9iy5+bPGFNuJ0eg0794th1XqoLrroYj34AyHEbwNfBzK55XW3iBf5KtVPW/1fc7Otrsfe83aYSvJ2HvsTuOu3OndOg3XTUc54jTnKbf26bE1iaIK6H1PVSnzv6AxPHJ8limWmVLiGu6zP1Rsm7iJu+jTL2zkW1TNlKIojnp1+Ftdw0aJOB0GAgm2gC4sXJlvF5ecXVnYHi6UiWD1OERZadV6p9XYuUfQcU6e04RZYPJSN1zBdwu1vgvPH8GWcNSUGKNklFrwFiEI0TSCBWmi2XBZNRwVjQgcZMjH5EGebTfafMxnPqYCst34UjjwN2+5WZOy7v89E/6bWtMsAQxMcXTjM3z9/AQ2TuhHSZ5VU36iliAJ+oXQlGm1pnoe/0fpZ07NmsashZ+Y4W03mNY4YNws8EZrUPBWspw1oLS2HLkzm6z79hU6FxTI0duXvR8Okx1WK4VJoF7G2TglWWud13jvAofmn+OnmJvqSJrZRLDk732Ci1+ULT5/lqDfD7uFxjtfUczRZ8Qhj2TIduUQUHRND2HhhTCNsIP0Svqxj6xr3brqXelDn0bOPshhUeaRxkutuvIe3bt7OH32z9f86JsQxTIqOSV/e4kI1gNG96n5bOR4/dBrhR1jGPAgT0ykANZqeuv5rh65bcWyOqXcYzKwGP4qRsk0x1AwEAlMXhFGMX50DlI08wFRjir9/8e8BRe78MCaonMUETvfezHBZRy8WmOgpEiUKmi6gFulsy93B5tI6EtJ2vxuaCzhPfhpQbR1KVglLtzrMV0zdRNcj6oFqrN2OldQ7yypA9bRKdW0uQOjjlifU3w/DyRSzahy0CNYqNVlp3aMRNWlIS3WIN3OQ/A1b9GoYumC40Jv1w1uJCF8OrDdFsP1J0VCK1prHSinPAeeSnytCiAMoB6d3A3clu30aVTj8W8n2z0gpJfA9IUSPEGI0OU8XXfzYo0uSuujiNcPVwC8A99BKEZTJ768fRIFSr5bUU01VPCxDo+yaWQpMT85k+MpbwW6o9D+5QuZjqohtfiO8+PUsyLhypMjB8xUcmhi6IIxjFkjc+pJA3DFbtUXVdocvYKBvKwNWH+TGONc4rVzgpOTUwnEAdubH4fjyv3dCCDb39TB1PuAbB85x1xXDmRtaip+/ZSOHJ6t89ZCy/u5LGp+mBKvqq7GU7ALQJGfpHfVPuqZjCINmMoe+jLCFjpaYN5TtsiJYcQASFuxxYmug5bKYFNWnMBOSsdAIOP3iWRiGiTNfBUOHrXep2ihgYOYEH9v3IR5ZPMzJykkcU+fRc99itukzYu9iphZw7UhxecNVAK9CcYUGwgDseDOc+1GrQe8qcA2XMKljecfILQyf+iFIiydPLPDk4ixXT5Rx9BKuaeOHMZVm2EGwwijGD2NsTSmXmiY6yOCWgTzbh5Zb6i9F2gi5FtTQhU41nCSMJbWglhGsp0/P8+1DU7xp1xBHJqs8XT3PTRM7M/JxZk6plKWXSLDylo6ju1TCmHpQBz9iITzDmK6aKXumepaeL/ZxvJKnYHlMLCG+sYzIJ32ZevMWC3Ufrnl79vrx+YAtQFSfB2sTpbyay6lKyLXF93Hb6MqExTF1gkgSRvGavetSEuak9UpJ3zJD1whiSVCdQdeGyFtq++H5FjkccIY4sXCOurdIGTipGRyuPsa2oQK2YWMVx7Jz+VIteqxEppdB0yHXhyFaY0pdH9vh6i5C81loaOsiWKbTA6GHPXsMzv9pcpLe7D1G9BxCCF4I5hgxcsoopTa15rwZsUddJs+rmYOKohLzzQqGJrhj4g42lTateI7LhfU+vf9X288hSWrfet9ECLEZ2IdqVDzcRprOo1IIQZGvU22HnU62dRAsIcTHgY8DbNy4cb1D6KKLLn4SsJYFfNcA4ycZ7we2SimX29e9nhAHy1QfgL/6njJZeMfe0WyF9n3XT6igaPMbYP44VKfU8z9+HVzxFnVgWnPklFSAlliYpz2FbOmh6wZh5DFHZ3phquhoohV4bShuQCLpT4rZCVUT0dnmLBz5Jk8e/BsYv5brjz2uFKD+5bbPO4d6eeI8/OjkNJv6ClkDWwBDEwwVHSrNkDhJaSraLqZmZirZTHMGTWhJYHce19Q7xghqBT2Q6nhPRpQ1Cz2pR8v6SMUhV+X6eD4cZswYJpcqWO325dvvxXrqy2p3oaMnKZdZkb5f61hJt/xaZg/umhqVptq/Ec1jiRx9+VUarvrVlbc7ZZi4HqYOdpiKrISc0Uqjc1GOiIZpZe20FxsBO9x7uefKIb763HkmKx6bB1ppjc2E6L7xikGuGi8l19ma1zfsGGCgsLymaCnSuqMvHPkCYRyiaS5R3NnHaHJR/Xx2vkFEQCwjbN3NguM0CC/YaxtbrAYhBGUnz5mGamC8w30zzXgRQ9MoW2UWUUrk2agG/dtZSMwOhksOF5KxRTKgaKv56XFNTkzXOhpH20nN1USvC4XhzITj+HQdTejk7JXD63ThohnGFBKCFccSIegg36lSne6fpg0bmlKwgkaFnDWaPYtT9RbhGM6PcGT2DHVvgTJw3DuOkbiNWpqFqZt8tLyH328+TSx0DNZJsFKkxjG6lfVOa0fZLoPWZMELcPXO11dUsFxFvK25E5BPUleTbQhBTjPZbpZ5zpthePPd7HQH4fgjyhimZ0PHuRrtBCtJhcTKqzYLXpWZ5jSGrq1IDC831jWjUsq7277uk1L+ipTy0HqOFUIUgL8DfkNK2ZHwmKhVl9SwWEr5SSnlDVLKGwYH1+j90UUXXXTRRRcKz6FsCl7fiPwOW3NQykKKLz1zjvmGIhpZ6pDpwHhbmfSZtqzHlGDpJrg9mYI1WLRBSqRfwxu9gSdHP8jJsDMQcpPztzu73Tx6M+/a9i5ESkJCD8dwaIZN5Mnvcz6oQuRjpyvco9csu8SJXuUiF+JT9cIOK/M0GMhZOlFCkFzTwtRMnp56miiOmGvO0Wv3ZqTKSCzRrx64mn1D+9Q2YSg1RzfwZIQtDOxE3cmMB6KAG0obuKb4fvJ6f9t8tjdzdjKXQM/qZ6Sg8559bUYTzQUV6KXwa5i6SRiHmEbL0SwQc5haTjVqXgoplfnDSkhUi/YaktXQruJZiZop20wWmkGEIWz68+r5euTwdMfxqYtj0TGyoL096M5b61uPTy3TUzWtGs4QRpJ60D5+dc8mKx5BrNQqES8nn8WXqGABlFwrU0efmn6cSnSWDaVxdE3PDGNS0jdZn0RKyXuvH+djd6gAPyYkZ6q56smZhLGk0tbXrBYK+vIWG3pzsPVubEPDMrTM5n61WrX0OWtPE3z48DR/9M3DNIMIKTsdKO12U5GxfTT7rsSPIWwssm3he1i+mr+ZZquSZ0NhgljCYqNCLCWe1LOm1UaSfmwLPUn3FBjCvjSCFUd8uLSLnX072Tu4d9nLeTOvzE3iWoeCVXJNqitY1KcES29PkV1STzqq52Hz7TzoXyBOXBw58QhLkRLTgh5Si00afsRf7/eVa+qjf8iF+ml6mmcp/uAzyqXzFcR6UwT/9VqvSyl/b5XjTBS5+qyU8u+TzRfS1D8hxCgwmWw/A7RT0YlkWxdddNFFF128HPQAB4UQT9BZg/U6s2kPlhlcPHSoMxXm2HQNXRMY7bUw1iqpW5lphg1OD1TVv9vxXhdXDxkqWNScPJ5ZZqbWGWykgeCAO8CVfVdycPYgRSsJejRNjTPycIxegjjgWKjWT3fkxqByVO2XX74IWrBcbt7Sx8KkT91v2ZcDWXCaM42sBsvWbTaVNnFg9gCT9UlOLJ5gODfMRK/LYNHm9u3KeuCOiTuy8xiaQRAHeDd+lNpzn6Jn9hy10ANTw9It3rL5LZxv/H8MiwJaqK5zRQXLcIivei8Lc19HOGX2DFegTfXh+HdbtVFCgF8l76prnm+21pMtM0IELvmVVI2DX4bpF5dvB5WCmI4pXG5t3452gmVHERgWUayekS3urTjmHCLQcKxWwN7wo0ypTAN6ty2gbw+6MyXlIljqnJcSjblGPduWqpYzVZ9AKoIwW1X7TfS6nJ5LjUxeem1MyTHo5WqC6DjPnD8CtOzsHd1BCJGRGS/yqAQVSlYpI5exDDOymKpTlWaY/VzzIhY2vRlGTSgMIpJr9cOY7UOFlVNB2+Yjne8fHJ/lyRNKBf3Th46wd6LMm3a1UmedduKz834WmcScPEZz8igTxgL2kTlwBH7kkzfz7Bvah19Xn4lKY54wljTx2ZIb4SNXvbc1rtFroHYaPFSK4Brpisugm+QjkzdtfsuKirtjONlzNFwokIjRDBQspirLn2OnpFIWY6RaMHJ7l6VJbzSLqvcesKDr9A5eoWzbl8ALIwxNkNdDpiOD2brPjDHEqak6fXmLoHqM7c0FNL8Kk8/D2L71X/cl4lJcBG8EvpD8/k7gcWCVvwqQuAL+OXBgCQH7AvBh4HeT7//Ytv3XhRB/gzK3WOjWX3XxesMtJz+5bFvXAbCLLl73+O3XegDrQhQQawYyluiaoOFHPHum0z1upuqTt/XOAM7Kd54njhUJSu3TdUs1L546BEGDnOXysZuGMX7gcNpRx05XPHKWTj1RMtrtuO/ecDe3j9/eGTwnQX+amvbVmkpj3JH2uNr8BsgtNxt2dAdNE5hmSM0LidtyWNLgtuAYRIRoQkPXdPYN7ePA7AFemHsBgIniBI6p86FbVq6hMDSlYNUEYLoU7DL1sAlmDoFgW882trnjLYWPtmC+zW4d3SI3tpUDQyZvyx+AcEYpTikWE/fDa34GDnwRgrpKjwIsu2VKMVyymZt12Dqw5D4BTL+w4jWoQSWNhQ1nZQXrxGPKzn/0mo4UQTsOwXCImmqsveZGesxtzAcBtqHx9r2jfPmZc0xXvcyhr6WYtALt9n5FqxGGpbCWKLDpc7TQRrCqbUpQINX2qQU11l2jpYxgrfc9V8Jo2aXfvILnTymyP9HrZo2ahRDkjBy1oEbJKrHoL1IP6ln66MffuJXPv1DKriU120jVlzCKldq08WrY3Gr+fMPmPh46NMkdO1Z3imwpWIpAPfxip5L4zOmFhGCtoGChyN68cMgFsywEMaNBI+sxNl4YZ+/gXl6cVH8znp09hBNr+NJkwN3eQcK58m3cmhvj1FNPq+bAl0Jmt92jFheSHnVL4RouZddUZHHzBk6dy3N0qkbJNbN7246CWYCRqwliCbf/5vIT3vyrlITG+2XA377wt8w0Zui1S1lrAz/yqfgV+t1+gijG1iWNRoNJQ7AhiAh1l0PuPsbrB5H1YwxryTzMHntdEKwJ4DopZQVACPGfgC9LKT+0xjG3o4qKnxVCPJVs+w8oYvV5IcRHgRO0arn+CWXRfhhl0/6RS7iOLrp4yXjsaOcqyPfCNf7hddFFFz92kFJ++7Uew7oQ+fzgVI1H517kN+69gplaa7X3l2/fwl88ouyOl/UiWkqwvAW1CtyeIlhM6qYq56BvK0akAp3Bvj44nQTiOYt6knLUrmQIIZb39DFsCL2WtXKCwvRh0F1V97UC0vQswwip+xFCQH9BraDvnVBZnLomGCrpaJ5S5vKmur5TFVWmvat/ef+bdpiaSSxjZb4BuE4ZOfsi1C0Yuy2ZowrkW4FwR8pldiIX29D5l/dsRz95AY6HnUpS6KtUpr4tgISzT1Ha8gY15tJZRsoOvTmTnpzFO3bspCe3gpFFaUwFens/AM98Xm3TdGW0kQawhq3eKyXOKY4+pL6PXoObpjZKiajPgNtLWGvdl0ozRAiwdC3rKTVT89sIlgr42++7u1LPq4tgKcFKUyyrfjMZnmSx0SJYphlAA87Nweb+HP2FVcw+LhG9yVzrSYraWI/LDcOtVFrXcKkFNYbzwyz6i9mzApC3DTQtzhSvNFWx6gXJdzX+pS6H127o4doNa2cit6cI+m0GL0XHoNIMMZOU16wGa0nqXt7WOWeWyQUzbBsqYLU1jHYNF6SkN16kv3mG6XiBr1kuQbyF8tIWDsAt43t54pC6/5d0r0euVl+rwDVchBDkbQPXcHn3tSqt9tEj0wRR3FHLBtDj9IDbw9bx21c+YbJQ0xuH+JHk048/wydGexgNfQg9Hj77XQ7NHuLeTfcyVfdxEPTmLF7UbKYTxaxmDfD4+WkwmpTKE0rBmzqgPmevpYsgyoiiPX/Ap2VOsSKklN8FVlt+eNMK+0vg19Y5ni666OJ1ilPzy1eoUmy4SLPILrp4JSCEuAX4Q2AXYAE6UJNSrswCXitEPlP1GJlXgehcTQV0H7plEyXXUAXubRbqGZYSrMp5RbDSGgPDbqXr1edUF8vzzwBgF3rZPNDk+HSdnpzJmeTzmwZ6qyIhWAPuAMStgLkgkpShFZqsQiuFzNQjan6IqWu4ps77b+gsVr9uU4lztb5kXxNTU41BDc2gaC4PFjuGltSZVBLzAldYXGn1sr9yhK21RWW13ZiFgR3YpoYXxK2amfZV/oQsGLrWqoda2o8qdTtzeyFoZv2wFk58hy31aSjuA6yORsQdCBrKDKTdEGTvB5RpSUqm0veOfNDS+re2kKw6Sc4uZD8TOrDhJko1I2vgHMUS29RU4JuoFd99cSojBKk5QPuz5Vo6e8ZKF23y2w5DtMLKodwQZ6LzANSTxtFHpmod9Ud9xRijYqMJnaGS3TJgWWdK4mrY0Oeya7TEsy9W0QTcMnZT9lyAIu3TjenM2XCpU2YQBxnBSpW8M/NNrt9ERhDTdMFLQWZyEUQsNluGD++8ZowXLlT44Yk5oqQHlqGJZU6DfXmLqjVEf/0oAwWbuM1KwRUGPPyf6Ql8it4ksaYjnaSOzFn+mTF0jbfsGeHMfCOr0boccNrSbNPFEVDpkVKCF8Ydz1nJKvFLe35p9c9IOl7NwIiLzDZneOCowy+WgQNf5FDjGFh5vnHiGxyZbnKLfSf9BYsgdDmfmJZ4RpFFfPTYo9cdUQSrNNapSF9mrPcJ/gzwuBDiPyXq1fdRFutddNFFF1108XrHHwE/i0prd4GPAX/8mo5oJfg1Al0Fs14YM9/w0TXBQMHqSOMpLK3lWboC+/w/qO+ZgmWp1DchlF37t34HzimChVPOVq8LtpGVPlw0PUu3IfIo22X+xY4Pqm19W1sGF8bKSoSt2wgEuh5S99QqfnutTz2o8/z08zTCRkdKUxp8mZp50bGlKsqir+qg3E23M6i7/Gr5KkrHH1HKj5TQv533XjfB/VeNtM6pt81tez1WWhu3lGA5KiWQoT0gY0RQYzQ/SlhPUr9mVCVFwVylTi5stow1BnYosty7GTbc2DYOu7VviqCVcscPP90Kahuz6vvYPt5z7Tj37R5u9TRLvqfXGkSSyUqTKJY0gghTF5nilOLNe0a4ary88thXQPu9GcoNZbWCNb9J1Qv54tOqV9d9u4fZM1ZipKx6cwH0uBY5y+Cd14zxy7cvb4R8KRBCcOVIkUFzB66lc+3QtR2vv2H8DWwobmBn7040oXUoWFJKgihY0ttJcGRSkbCUGL0UgpXWOp2Zb2SOeu+7foLhkkNf3kJK5fhYb6uPa8dQ0eHGfdewN7knWuxnJMGtTUEUomuCSMREUhIlCl7ZWSE9Fdg9VuK+3WvqJZd+jW0tBwpt9aEpUW2vu0xxMXKVwjVK+LKGr6vr8acOdqTZeqFPr3dWWf4b5azPXl0vs19bQJOCYm4IyuMwdm3n5/0yY72Nhv93IcRXgLSK9CNSyh+9YqPqoosuuuiii8sIKeVhIYQupYyATwkhfgS8frz7pYTyBLUpFbTV/YiaFyakRwWpjqlTaYYrmyXseLNyCkzTzEDVYKV9tYRQhCFYojDrZraIO1x2+OgbtmTud2vCsDKyIfwq+5whGoN7ERcSgwtjZUtyIQS2YRPoAfWaShFst//+/rnvc2D2ALrQGSuMtd4uUUYa4eoKeYpUeXh++nlFTIf3wPBV8NDvqh3OPqVql0rjDGsaw6VV7NONNhUuDbZTgmW6ai7dJCUs/d6Yp9DeKDrpqdW+kt8Bv9ZSzXa/e+UVdb1NwUrRTrby/WhC453b3olV8yA/Ark+elE9nB4/NksziDpUg5u29PH4sVk++72TXLuhBz+KlyujLxObSpt4bvo5VU8YepltPcDOkSJXjZf57P4alqbmpi9JD1xPv631oOgYjNi7eNumm7NnIkXZLvPObe8E1L2ptxHWUIZIZMcxV46UePbMAnEs2X9OEfeX0gg5/SwfnaoxniiD6fOfqnf/7dHjgDKjWQnbtu6AE8l7R6FSkHUTV6pzCwS6JoilJBapgnV55nQ9aCfZWVsEWqYpXhBDKsRGMX/y0BHGelzed/3ERc+tYRPETepJPd0PvamOvnVxHDI29Qj2aIkGPcikpnQxPs+ikcMNPWz9lVOt2nEpT0cOWJRSfkoIMSiE2CKlPPZKDayLLi4n/u8HWisct5xc7jzTjpWMLLq4zDj28GU93Z/MP7Pm65/oWW4l28VPFOpCCAt4Sgjxf6L6K768HKTLDSHg6vcxeV79rap5IVUv6lCrUtezZQoWqH5JAFvuUJ+vOFJpZO0kISUFKa5+HwDXbuwhlrCpL7dm89MOJAoWAN4itzojsPWtcOGPW6+vAlu3CfWQWEoqzbAjHWy6qZSfSEYt10JaqtQbJ9540aGl+6bNibM+WXf+W3jsjxWp6d3cWc/UjoEdytmvXSlbSrAKQzB3AspJamOaKtiYI58u0JuuqtmKY0WwohDOPglj16mV89BTTo9pep++iiKyooKV3EfTyZpMbzDL4DdB71TZ0sC2vc6mXX05Nl2jv2C9IgTrw3s+zKEzn2aqcYG5ulKAbtjci6lrLHgLLPjz7OjfTFSHwXX02boU9BdsfvamjQwV1z5v3sx3KFhB4r7ZTrAGknM89MJk1gj5pabVXTFc5IULFS4sehiayNIGU4KVYnyt1Mzd74bFM3D6B0l7BxM3aqXq5oSBh4Zv9UIzflUJFsB7d7yXqcZUR1pmmobbrmC9cKFKFEtOzdaJEnOftaBJm0gGhJqGvP1fsfD1f616ZRk56mEdLagTajFaro+8b1P1QoZLDjeNlfnzJzZh1iLYfMea73G5sF6b9t9GOQnuBD4FmMBfoYwsuuiii58grFVj9XKP7dZodfEK4RdQhOrXgd9EtQR572s6ooug6oVUmwGDxZa6kqbYbOhb43OSqiFBIwm81gguk/S20bLL2/de4mevvTfTmR+q7+128aukCIJyEqyLlprRHvi31/C0NwN929a3cWT+CLv61ja4AJapFRk0vVUvVhxbeR+APT/daqaaIiU/Z36gvu94C3iL0Js4GTplZSO9cIr8QrL2nB9QzVCDmgo0n/4bZWhh5mDkKkX0YHWb/RQZwWo32EjmPj8ItSQdcUGZgHSkF9IiWO0Eqj2Yj2K5TOF6Ofi5K3+OMOljljfzjOW2ccb7EccWTwAl9o73cKF2gb978e8AuHPHRraUtlxaL6Z1YqS8ijrZhpyZYzZNrUTVX0GnYUfqMvn0KUVeX05a3a5RRbBmax6O2XIEXbpwsubYh3crYp4SLPK4caxI/e53cYW4ieMi4nzwNIbukbfWl4J3uTCcH2Y43zlHLQWr9dk6Nt0itjU/vGjapZDqs+DHTRYiOJ4rsbVZ5f49H+bIwlEOvPjHeELA1e+n/1CDqhfiWhq64dFbyDGY/zc4pdVdHi8n1qtg/RSwD3gSQEp5VgixdpVpF128jvDk4ueyn1eyVX9XvP3VHE4Xq+DlkLcuOetiJQghdOD/kFL+PNAE/rfXeEhrQhMqtafmhdT8iM12K+i9fccAFxabDBXXCLzSep6wma1sZ0hVj81vgMZcywb8pcCwk/SkGOqzoBmditAqKYIAtmGD1uoT1d7vqD2obSdYtm6zu3/3uobWfo4P7PxA54spSSkMrX4CTWOZwJmeM03hc3sh3zZ/mq5UqXPPUAwWWvvMn2rN+2xCvFLylvbQsi9GsFqNnTOk58wlJC4K1X0AGO2sN0pNJQbaHPpKbiv8q3ohQRyzqW+VNMZLRI/Tb2zyhgAAH8FJREFU6aS3pbCLk/Uneezct+nnndimxgszJ1tjsfMvqZ7pcsHVXZpRSx1MCVY7UV/qsrdz5KWHwGmK70zNzxo/Q2dq3R07Bla29W9H4gw4WpvnnNtLHqGe076tuP0u0dlJzlebWIZoqbivIVaqwWpXrI5O1S7qwkisCFYgm/zm136PgTjgOtcCv0bBLGAEFRpmGdwecpa6j66pUwtqXDU6xJ0jW+m/zErpalgvwfKllFIIIQGEEJfnU9hFF1108WrhW7+z9ut3v37Kcbq4fJBSRkKITUIIS0rpX/yI1xaagFjCdNXDD+OOVe3xHnfttCFoEaygrgLy9hTBjbfCkW/C4JVQWN4E+JKQ1QUldV6pbXNqMa6tHl44ukM1PJ793k6wojblaCi3BglaA712L1vLW9k7uFe5HLZj4kY4/YTqC3YpaLcft/IrpxfGKnAc0hO1wMzxgeIO4pFb1e9CKILm19UcPfXXyfkuEqxnBGuFFMHUHdKvKkXMdJeZnty2rZ+HDk2xe6xVD1NcQmi8IH5FFCQA1zIIY0kYSzQhOFk5wslFRbDu3nA3m0or9zN7tWAbNl7kZfbhK6UIthtOvGff+DIzkEtBSrCk7Ow11o4rRooXN5pJiOw9osD8xvvQzz6TLai4pp5Z1Pvhq1NzdDF01GAlaARh9rH41sHJixMsqa7pTPNHhJFkPtQp5zVozOHmymiRR6NQAE3P/q44pk4lqFO0C2wdfPVSJddLsD4vhPgzoEcI8SvALwP/9ZUbVhdddNFFF11cNhwFHhFCfAHIclKklL/32g1pOaRUQSjAsWlVdL+iocVaSN24goYiP2ZbwLLhpiS16DIkoKQpgEFDEbn0fa/7RaWOrREcGpqBqQvqcQNTc3Gt1jX6iZHDnRN3rttZbCl0Tef+Lfev/OL2NykFz7jEVex2grX3Ayvvc8WbYfIg+eoFNrKJLZvuZaD6ZRBmonwJQEJQa6X1wao9wzKsVIMVNlQwnZpr+FX1tdSyH9g+VGT7UOc91zXB5oEclq7zwgWlpIUruLtdDtiGxrC1i3r0Isf9b/ONk+oeD+YGL9rT7NWArdvKOTBWzoF+rMZntqm/7Qsdgxep6boYcqaekYqldvR37BjgmdMLFKx1fO6FgF3voHzgS5TNoqrnS55Tx9TRhM6ofRW3bbm4ecSrgZVqsBp+zKb+HMen6+tqdhxHDkJALVJqbajZDGkGNOfRcwOIOCQ01NylKa+aENSDekdN56uBi95BoSj054ArgUVUHdZ/lFI+8AqPrYsuXjV8YYW0wRTd9MEuuvixx5HkSwNet+ntUdxaaU7TupYWvl8U7QpWW8AFqIDscpAraKkqlXPqe1rjURy5qDq0pbyF/TP78eIqpuZmfZlAEaxtPdvYM7Dn8oxzKYTobCa8XrTP42qplaPXwOg1iCjgHVIqEmo9pBSroJGZURA0oTmvfnZ7Vje3SKHpap8OBSuxd08J1cIZdc8vVs/Vhp/apwLve8Mhvvb8BW7e+jJSRteAY+oQ24RI6vEkoEhhu533a4m0N5sXqcbZqTlKe6ppGqzbprayycwlQNMErqlT96NlCtYNm/u4flPvxdWrFKm5il9LPu+JgpV8pu7ceAtv3zP6ssZ7uWBoAiHg3ELrOW4GEX15k5u29PHE8VniWKKtYXTh+TojuXGmG9MEsceoeyM5noP6DEIroBES6inBUoROAs2oyaDxMlX7S8RFn5IkNfCfpJRXA11S1cVrhnYnwKX4zfuueMXedy3y1cWPB9ZyGew6DP7zh5TydV13lSJVryxDww9VMD5wqfUCZpvJxdIUwcuJlGSceDR53/WrTZl1c/FxdvV8sINE+pH/ugm8O9BOgi5GiNpfN3Mq+PVbxfwEjVa91PUfWd/7///t3XuQnNWZ3/Hv05fpuWpGjISQdUECIYMQIAgXsRgKw4IhXtu7GyqmsvFScVx4sfHaxC6H9R+Jk2xV2E3KXm8S4lDglNfBNjYsu9qNY0zKBmPHgIwQIG5aITASCHRhNLrMtbuf/PGenunp6RlNj7r77Z7+faqm5u233+4+75npPv2855znpNqnJ7lItU9+wR7cE73GolmSd8wgk0ry0Qsqf9zcnz9Bgg7Gs/mJdbEAFrcvrtlrVqI4wOqhZ2IpgM7U1P/p264+c7aO2cpeM5WIAqwyCyrPObiCyffd2PFozmU6SlzTF95Ty/vmcTGhRswMdxgem8x2ODyeI5NO0pVJ4Q4j2RydM/Te7XhrkKGxHF2pHvbl3wKgLdnHaLKTPVsfpbs9RSaXJReC1nWndvPWwDAXre7jlVdHpiyAXA9zDcO3mdkl7r61pqURmaNpqdR/VnLlTfNpRCQws6XAl4FzmViBBdz9mtgKVUahB2tNfxc73z3Kmad2Vz4vJpmOki1MZBGsUbDStSRKdT7wRnS7ggCrMFSnvzvD5Wd1TflCOZYfm/jC21ASySh9+5IKL+a1dUfZBgtpwBPJqKfp0K6o92quvWnpkjXMxoejYDqVif4WECXNqFYPZRW1p5OkrZORbG5iyOsVK65gwylzS1pSa6Vp/YfGh0hYYtr/YTXT2LelksA47TPMwZr7E4Uey7HjUYbMMPfx9P5Obr50FafNtMZbTNad2s2hY1E95/POWDZPeyo50Yt9fHT2AAtgWfdidhWWo7MOBhOLOXDsbQ4cGyVlCXLJ6POksy3FjectZzw3Ts5ztCfrWxdz/eS+DHjSzF4zs+fN7AUzm33hGRERkcZwP/AKsJYoi+AbQMNdMCz0YJ3e38lnP7hu/r0Kbd2w/+UokUKtAiyYTFEOFQVYqURqIoFF8cLBuXyObD47Ze5LQznvJlheYY93W9fUHqzOU2DoEAzunextnIviHqxcFo69Ozk8MNkWrduVz0HmBPO5YpBJJ0hbB2NZJxWSg5zVd1bD/J0LX7wLAdZwdpiOVEdlPUkVKjx1uR6siqTawgWV41MuqJgZy3trew7z0ZVJMhySXBTmYrWlEnSGwHuoqHer2N6BIfYNjpBJJ7jyzNUT+9PWzkBuMnBKkyCfnBqgFTJENlQPlpmtdvc3gQ/VqTwiIiLV1u/u95nZ5939ceBxM2u4AKvQg5VK2slldOvsh0OvRdu1GiIIsGjF5HYlwQLRgsEP7nxwSoBVSC7QkD1Y89XWFfVYjUaL7NLZD8cORNsl6dRn5flontUrP4J9z4XnCj1XS9bDkbej7QYMsNpTSVIW/U1ToXehI9U4y2oUerAKCVaGskM1L18h23+mGpkb27qjeX6lcy4bUDqZYGQ8x+M7D0xkDMykElN6sMr54a/3AnDWqT0s605yen8nnW1JUscyDI4nJ4KZFAm8pE5HwtzFevdgnWiI4N8AF7n7b8zsIXdv6IUZpXX9avehqTt2f2nKzZWaRyUzmJiftf3usvd/ZtNn6lgaqZHCqrb7zOzDwNvAKTGWp6yJAGuWSd5zcsYHJwOsWn7hOokAq/AFdkqAlVuIAVZ39G36+IFoIeKwuDMwtf5OZNH7ogCrEFxB1BsGsHoz7H4s2m7AIYKZdAIzY1PPTVy9bhmbVvU2VM9K4f/tyGi0NttwdnjeGSwrVZVhh4V5frnxqDergR0biXqotv1mYCKoyqQSE8MCy/VgFWe37M6k6Ep38r6wXIWPpjh8xCksxpAiASVVGlcP1olC5+J3wBm1LIiIiEiN/KmZ9QJfBL4E3AvcEW+RpisEWImT/fJZvMZVLQOsZAo2fAzWXjVrWvZyCl92Rooy4xWCrXp/EaqpwjC+d16IeqGKe0YqCYZWXz719qpLovXMIKr7wtpXJ7N4dI0U5hklLMmpPe0kE9Wby1QNhQBrz9E97Du2j6HxoWkJLqotH7qwqhJgtXXByGD0/9XgPVjFmSrfOBQtRZFJJWlLJWhLJTg+Nr0HayhkVE2Ycf7KXtqT7bQl27jktEtoTycZyk6GMmkS5EsuUBU+Y+p94eZEoa7PsC3ScJTtT0SKmVk78EfAOmAFcJ+7fzDeUs0sGxaqTZVbxHa+KuxZqtiy+SUqSFmKhCUmri4DbD+wHVhoPVglX9RTRV+AKxm+Wbq+1elXTA1qL/t0NAcr1XhfsLvbJ79qnrqo8f62ZkZ/ez/vDr3Lw7seBqj5mklnLu3mwNHRua13dSLtvdEcPJhcALxBndLVxh3Xree+X7zOO4Phgkpb9HnXkU4yNDq9B2s4BF0fPn/5RJKUT278JIax6809vNO9gWyije6xA6SP72fUx6c8vjC3rt7DUk/0l73AzI4Q9WR1hG3CbXf3xhvsKyIiEvk20fDAJ4AbgQ3A5+fyQDNbBfwVsIzoAuM97v6NGpUTmOzBSiarOHyqs+FGQgLRl9r2ZDsvHnyRvkwfG/o3sO9YtKZWf3vj9cLMW3vRQs/vv3FqCvdKeyov+3T0Ozs6PXAuHnrYYNLJBBes6qU9lZy27lOjWNWzikMjk1MN0onaJuDYfMYpnLO8h97OKrxO8f9YAwbY5fR1pDkyHAVCXSHI7Moky/ZgHQ9BV1dm8n8nYZNBWT6RZqj/PE7rheWDWd5O5cnlcxM9pYWe8YbqwXL3xnwniIjU08/+4+z3a1mARrUhrOGImd0HPF3BY7PAF919m5n1AM+Y2aPu/lItCgqTWQRPeg4WwJor4M0nK1p4tt6GstEQocf2PMYZvWfQmepkWeeyhskuVxXtRdeh+9dF2f9gfnNlGjRYnotrzl4WdxFmVTrnav3i2q2tCdEFhr7OKgVDxcF1g/dgFSwK63SZRUESRGnVB4bGph07FIKuzvT090whSUgmneDaC9bw4qEreWvP4xwePUx/R3ShprCAdL2Hpjb2bDgREZH5mxgr4u7ZSibWu/s+YF/YPmpmLxMNM6xZgDXRg1WNAGvtVdFPA+tIdUxcXT46dpSh7BDLuhr7i/i8rLoUhgeiYX6FhYFz5dNRSzzOXXIuo7lRzu0/l0wqU/MerKrqKOrBapKLE4XeqPZ0kkT4vOvKJNm1f4yxbH5KFtWJACszPUA6Z/kiXnnnKN1h6GBh7twDrz4wkaBqJDsSy7BjBVhy8k50dX8muuovIrV1QcnQ9o6iYe9zHuZuZmuAC4GnalHIgmyuij1YTeAjZ36Elw69xI6DOzg6dpSR7EjNkwvEYt21k9sdi2Hpelh2XnzlkWnSiTSXLb8s7mLMz5Qhgs3Rg9WTiQLB4o86C3n1fvrKfm7YeNrE/uNjWdpSCdLJ6XNT1yzp4ncvXEFf6BFbnFk87ZiR3EgsiXMUYIlIy9tzeJi9rx0qe9/ogZ3coU/KplSNYe5m1g08BHzB3Y+U3HcrcCvA6tWryzy6MlXtwWoCSzqWcMlpl7Dj4A4ODh/E8YWVQbAcM9ioFW+kiqYkTmmO909xD1bBmUu72b7nMPuPjkw5dngsR2fbzB/la5dMJoDpa+9j/eL17B7cPTEPayQ7Uvc1sEABljSQrz+6M+4iiEyz7cgD3J0oPyrsM33n17k0Uk9mliYKru53978uvd/d7wHuAbj44otPOtNuTbIINrj2ZDvpRJrXBqN1uxppAVqRppFIRlkkO6b34DSijhAw9XZMDmlc3d/JisUdlF5eOj6anUiEMRerF61m58BOBkYHWNKxhNHcKL2Z+ieBUYAlTWPbkQcmtvcrJbs0gbtnWLwYtIBxo7NowtZ9wMvu/rV6vGar9WBBNNm/u62bgZEBAFb2rIy5RCJN6JJPRQFWAy3gPJtlPe38o9MXc8Gqvin729NJBoenplkfHs+xuIKEIIvaopHfx8ePs6RjCcPZYc3BkhZTMndr85tTh2g9ufrWepZGmtyew8Oz3r+qb/Yr4yuPPDPznSd47IzzEA8/D2uvnP2x0qiuAD4BvGBm28O+r7j7j2r1glXNIthEetp6GBgZoDfTqx4skflosgyTiYRx1fql0/a3pxLsH5+aqv34aI6Vi+c+2rvQW7X1na0kLclYbiyWzxUFWFJVv9pdfh4LwOVnLKC1TaTpnCgAm4+7Dz9f9eeUxuDuv4Bpo1VqKpd3EmYTWbVaRUcy+vKzoBYYFpGKZdJJRrP5idu5vDMynqOjTIr2mRSCqf1D+9ny2pboedWDJSLSXE7Yc1anckjzy+adVDUXGW4SZ/efzasDr7Jp6aa4iyIiMcqkEoxl8+TzTiJhDI1NX2R4LjYu2ciOgzsmn1cBlsikzW/eM+W25l2JyEKWy+dbav5VwYruFdx2wW1Usk6ZiCw8hYWDR7N5OtqSDBfWwJoli2A5hUWGC+JYvFwBljSULQqipAGd1PDC158ov39gUGvByRS5fOvNvypQcCUimVQUSI1mc3S0JScWGe6oIIsgTCa6iJMCLClrpuxnv3rtEBct+viUfaXJKWYy2/wskVZz9+HnQVkGpUir9mCJiABk0pM9WMBEgNWZrqwHqy8zmZ1w/eL1rOqp/2B9BVhSseJ06TB96N5H8+tmfKx6qESm+tVsCxxft77OpZE4ZfPesj1YIiITQwTHowBreLzQg1VZgNXT1sPl77scgAtPvbCKJZw7BVhyYkVDnFYeqX4mNpGFbLbhhXtnCK4mzJT+HTS8cAHKhYndIiKtqDBE8MCxEZb3tfPznQfC/soXX48rsCpQgCUi0oxmC75AAVgTyubUgyUiraswRPDnOw9y8NgYAH2d6aaco6kAS6b5+qM72XZk8sp6pb1WGgYoMjezLW68+fAgzHPtuNnmd2luV+PK5vMkE5VfqRURWQiKe6peevsIADdsPC2u4pwUBVgxmymZRMFsX4bm+9gogHqg7H0iIhKP8ZzTnm6+K7UiItXQlpx+gam/qzkXIFeAdQJff3TnvB9bjQnqJwqi5vPY4t6pgtmupItI/W1J7OLZw29V/XlP5qKO1FY2lydd5guGiEgrKB0KuHFFL23zmH/VCBoqwDKzG4BvAEngXne/q9aveTIB1Mk+d10zhClRhYjUmuaFnRRlERSRVnf+yl6e3zsIQG9H/RcIrpaGCbDMLAn8N+A6YC+w1cy2uPtL8ZasOZWmflZQJdJiZlrg+EQGBqtbDpmz8ZyrB0tEWtq15yzjveNj7B0YZlFHw4QpFWukkl8K7HL33QBm9n3gY8CCDbBKk0mIiEjryubypJLqwRKR1lZY96o9Vdn6V43E3D3uMgBgZjcBN7j7p8LtTwCXufvtJcfdCtwabr4feLVKRVgCHKzSczWjVj5/nXvrauXzb9ZzP93dl8ZdiFJmdgD4TRWeqln/LrWkOilP9TKd6qQ81ct01aqTsm1SI/VgzYm73wPcU+3nNbNfu/vF1X7eZtHK569zb81zh9Y+/1Y+91qoVtCnv8t0qpPyVC/TqU7KU71MV+s6aaTB3m8Bq4purwz7REREREREmkIjBVhbgbPMbK2ZtQE3A1tiLpOIiIiIiMicNcwQQXfPmtntwCNEadq/5e4v1rEIVR922GRa+fx17q2rlc+/lc+9kenvMp3qpDzVy3Sqk/JUL9PVtE4aJsmFiIiIiIhIs2ukIYIiIiIiIiJNTQGWiIiIiIhIlbR8gGVm3zKz/Wa2I+6y1JuZrTKzn5nZS2b2opl9Pu4y1ZOZtZvZ02b2XDj/fxd3merNzJJm9qyZ/X3cZak3M3vDzF4ws+1m9uu4y1NPZtZnZg+a2Stm9rKZXR53mVqdmd1gZq+a2S4zuzPu8tRaubbXzE4xs0fN7B/C78Vhv5nZX4a6ed7MLip6zC3h+H8ws1viOJdqmalNVr2Ub6tDUrSnwvk/EBKkYWaZcHtXuH9N0XP9Sdj/qpl9KJ4zqp7SNlx1Ur5tj+U95O4t/QNcBVwE7Ii7LDGc+3LgorDdA+wENsRdrjqevwHdYTsNPAVsjrtcda6DfwV8F/j7uMsSw7m/ASyJuxwxnfu3gU+F7TagL+4ytfIPUWKn14Azwt/juYX+WVyu7QX+HLgzbN8J/FnY/sfA/wmf2ZuBp8L+U4Dd4ffisL047nM7iTop2yarXsq31cAPgJvD/m8Ct4XtzwDfDNs3Aw+E7Q3hvZUB1ob3XDLu8zvJupnShqtOyrftcbyHWr4Hy91/DrwXdzni4O773H1b2D4KvAysiLdU9eORY+FmOvy0TNYXM1sJfBi4N+6ySP2YWS/Rl9v7ANx9zN0Px1uqlncpsMvdd7v7GPB94GMxl6mmZmh7P0YU/BN+/27R/r8Kn9lPAn1mthz4EPCou7/n7gPAo8ANtS99bczSJrd6vczUVl8DPBj2l9ZLob4eBK41Mwv7v+/uo+7+OrCL6L3XlErb8HCOLV0ns6j7e6jlAyyJhO7iC4muDLWM0L2+HdhP9GZqpfP/C+DLQD7ugsTEgZ+Y2TNmdmvchamjtcAB4H+GoSX3mllX3IVqcSuAPUW399JCF7uKLHP3fWH7HWBZ2J6pfhZsvZW0yS1fL6VtNVFPy2F3z4ZDis9x4vzD/YNAPwuvXkrb8H5UJ1C+ba/7e0gBlmBm3cBDwBfc/Ujc5aknd8+5+yZgJXCpmW2Mu0z1YGa/A+x392fiLkuMPuDuFwE3Ap81s6viLlCdpIiGZv13d78QOE40ZEKkYXg0TqdlRhQUm61NbtV6KW2rgbNjLlKs1IbPata2vV7vIQVYLc7M0kQf5Pe7+1/HXZ64hCFSP6OJh1FU6Argo2b2BtFwpGvM7H/FW6T6cve3wu/9wMMszGER5ewF9hb11j5IFHBJfN4CVhXdXhn2tZp3w/Acwu/9Yf9M9bPg6m2GNrnl66WgqK2+nGg4VyrcVXyOE+cf7u8FDrGw6mVaGw58g9auE2DGtr3u7yEFWC0sjL+9D3jZ3b8Wd3nqzcyWmllf2O4ArgNeibdU9eHuf+LuK919DdGE15+6+z+PuVh1Y2ZdZtZT2AauB1oik6i7vwPsMbP3h13XAi/FWCSBrcBZIQNYG9F7ckvMZYrDFqCQresW4G+L9v9hyPi1GRgMw30eAa43s8UhK9j1YV9TmqVNbvV6KddWv0wUaN0UDiutl0J93UTUvnnYf3PIqLcWOAt4uj5nUV0ztOF/QAvXCczattf9PZQ68SELm5l9D7gaWGJme4F/6+73xVuqurkC+ATwQhjbDPAVd/9RjGWqp+XAt80sSXSx4Qfu3nLpylvUMuDh6PsMKeC77v7jeItUV58D7g9f5ncD/yLm8rQ0d8+a2e1EDXgS+Ja7vxhzsWqqXNsL3AX8wMz+JfAb4J+Gw39ElO1rFzBE+H919/fM7D8QBagA/97dmzlpVdk2GdVL2bbazF4Cvm9mfwo8S0jcE35/x8x2ESVSuRnA3V80sx8QXVDKAp9191ydz6XW/jWtXSdl23Yz20qd30MWBbAiIiIiIiJysjREUEREREREpEoUYImIiIiIiFSJAiwREREREZEqUYAlIiIiIiJSJQqwREREREREqkQBlkgVmFnOzLab2Q4z+6GZdTZAma42s9+ax+OuM7NnzOyF8PuaWpRPRETqz8yOhd9rzOyfVfm5v1Jy+/9V8/lFmoUCLJHqGHb3Te6+ERgD/mguDypacb0WrgYqCrBCeQ4CH3H384gW5PtO9YsmIiIxWwNUFGDNoc2aEmC5e8UX+UQWAgVYItX3BLDOzD5iZk+Z2bNm9n/NbBmAmX3VzL5jZr8kWvhvjZk9YWbbws9vheOuNrPHzexvzWy3md1lZn9gZk+H3qUzw3FLzewhM9safq4wszVEQd4doWftynLHlSuPuz/r7m+Hc3kR6DCzTF1rUEREau0u4MrQRtxhZkkz+0+hfXjezD4NE23RE2a2hWhBWszsb8IIhxfN7Naw7y6i9mK7md0f9hV6yyw8947Qfn286LkfM7MHzewVM7vfwiqxIs2sllfPRVpOuLp3I/Bj4BfAZnd3M/sU8GXgi+HQDcAH3H04DCe8zt1HzOws4HvAxeG4C4BziFZe3w3c6+6Xmtnngc8BXwC+AXzd3X9hZquBR9z9HDP7JnDM3f9zKNt3S48Lzz2lPCWn9E+Abe4+WsVqEhGR+N0JfMndfwcgBEqD7n5JuKj2SzP7STj2ImCju78ebn/S3d8zsw5gq5k95O53mtnt7r6pzGv9PrCJqE1bEh7z83DfhcC5wNvAL4EriNpPkaalAEukOjrMbHvYfgK4D3g/8ICZLQfagNeLjt9SFMykgf9qZpuAHLC+6Lit7r4PwMxeAwqN3QvAB8P2bwMbii76LTKz7jJlnO24LaXBlZmdC/wZcP2JTl5ERJre9cD5ZnZTuN0LnEU07P3pouAK4I/N7PfC9qpw3KFZnvsDwPfcPQe8a2aPA5cAR8Jz7wUI7egaFGBJk1OAJVIdw6VX7czsvwBfc/ctZnY18NWiu48Xbd8BvEt0ZS8BjBTdV9xzlC+6nWfy/Zsg6ikrfhxlRlnMdtzxkn0rgYeBP3T310qfSEREFhwDPufuj0zZGbVfx0tu/zZwubsPmdljQPtJvG5xO5dD301lAdAcLJHa6QXeCtu3nOC4fe6eBz4BJCt8nZ8QDRcEIPSEARwFeuZw3BRm1gf8b+BOd/9lhWUREZHmUNpGPALcZmZpADNbb2ZdZR7XCwyE4OpsYHPRfeOFx5d4Avh4mOe1FLgKeLoqZyHSgBRgidTOV4EfmtkzRJn5ZnI3cIuZPQecTUlv0hz8MXBxmJT8EpMZDP8O+L1CkotZjit1O7AO+DfhsdvN7NQKyyQiIo3teSBnZs+Z2R3AvURJLLaZ2Q7gf1C+N+nHQMrMXiZKlPFk0X33AM8XklwUeTi83nPAT4Evu/s7VT0bkQZi7h53GURERERERBYE9WCJiIiIiIhUiQIsERERERGRKlGAJSIiIiIiUiUKsERERERERKpEAZaIiIiIiEiVKMASERERERGpEgVYIiIiIiIiVfL/ARA7cdH7eNmmAAAAAElFTkSuQmCC\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "# Show traces and histograms\n", + "import pints.plot\n", + "pints.plot.trace(full_chains)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": "R-hat:\n[1.0514614977716135, 1.0496007923779316]\n0.17344244362561234\n0.15020101719994083\n0.1366455438681189\n" + }, + { + "output_type": "display_data", + "data": { + "text/plain": "
", + "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAF1CAYAAADlbe0oAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nOzdd3xT1fvA8c9J0kGBlkLLLFBG2ZsyZKmIAqIIioKKOBhuRAEF9xb9uRX9insD4gABRRCVJaNAWWWXUlqgtIUC3U3u+f2RogULBEh60+R5v168SG7uPedJKXlyxj1Haa0RQgjhvyxmByCEEMJckgiEEMLPSSIQQgg/J4lACCH8nCQCIYTwc5IIhBDCz9k8WbhSqh/wFmAFPtJaTynlnBuApwENbNBa33SmMiMiInR0dLT7gxUCWLt2bYbWOtLsOIQoSx5LBEopKzAVuBxIAdYopeZorRNKnBMDTAa6a62PKKWqn63c6Oho4uLiPBW28HNKqb1mxyBEWfNk11BnYJfWOlFrXQhMB6455ZzRwFSt9REArfUhD8YjhBCiFJ5MBHWAfSWepxQfK6kJ0EQptVwptbK4K+k/lFJjlFJxSqm49PR0D4UrhBD+yezBYhsQA1wC3Ah8qJSqcupJWutpWutYrXVsZKR03wohhDt5MhGkAnVLPI8qPlZSCjBHa12ktd4D7MCZGIQQQpQRTyaCNUCMUqqBUioQGAbMOeWcn3C2BlBKReDsKkr0YExCCCFO4bFZQ1pru1LqPmABzumjn2ittyilngXitNZzil+7QimVADiAiVrrTE/FJE4WPWleqceTpgwo40iEEGby6H0EWuv5wPxTjj1Z4rEGHir+I4QQwgQeTQTCfKV961cYaNPnCQghvIV8GvgVzXDrQhKC7mBz0B38L+ANKpBvdlBCCJNJIvAjj9im83zAp6w1YvjJ0Z3LLXF8EvAqwRSYHZoQwkTSNeQnWqtE7rTOZYb9EibbR2FgYbXRjDcD3mOc7Qem2G80O0QhhEmkReAHFAbPBnxGJqE8Zx+OUfzPPsfozo9Gd263/kptMswNUghhGkkEfuByy1raW3YxpehGsgk56bXXim4AYHzAd2aEJoTwApII/MAN1j9J01X4yej+n9f2E8HnjisYZFkmrQIh/JQkAh8XSRaXWDbwvaMXDqylnvOZvS8At9gWlmVoQggvIYnAxw22LsWmDL5zXHzac/YTwQKjE8Osf8gMIiH8kCQCHzfYupy1Rgx7dK0znveZvS/hKptB1uVlFJkQwltIIvBlx/bT3JLMAkfsWU9drZuxxajP7dZfQesyCE4I4S0kEfiy3YsBWGK0deFkxSf2/jS1pEDiH56NSwjhVSQR+LJdi0jTVdim6579XOBn4yLSdRj8/Z6HAxNCeBNJBL7KcMDuP1hqtAGUS5cUEsCn9r6wayEkyViBEP5CEoGv2r8e8rP4y9HmnC77xNEfwurB/IngsHsoOCGEN/FoIlBK9VNKbVdK7VJKTSrl9duUUulKqfjiP6M8GY9fSVoGwAqj5Tldlk8Q9HsRDm2BP56XgWMh/IDHFp1TSlmBqcDlOPcmXqOUmqO1Tjjl1Bla6/s8FYffSlkDVRuSuT/s3K9tdhW0Hw7L3oDCHLjiebAFuT9GIYRX8GSLoDOwS2udqLUuBKYD13iwPnGC1s5EENXp/K5XCq5+B7reC6unwXsXwb417o1RCOE1PJkI6gD7SjxPKT52quuUUhuVUrOUUq5NbxFnlpUM2WnnnwgALBZnF9Hw78Gww1fXwoEN7otRCOE1zB4s/hmI1lq3ARYCn5d2klJqjFIqTikVl56eXqYBlkspxd/e63a+8LIa94Hb50NQKHx1HeQevvAyhRBexZOJIBUo+Q0/qvjYP7TWmVrrE4vbfAR0LK0grfU0rXWs1jo2MjLSI8H6lJQ1EBAC1c9toPi0wqJg2NeQkw5rP3NPmUIIr+HJRLAGiFFKNVBKBQLDgDklT1BKlVwAZyCw1YPx+I99q6F2B7C6cS5A7XbQ4GJY/SE4itxXrhDCdB5LBFprO3AfsADnB/xMrfUWpdSzSqmBxaeNVUptUUptAMYCt3kqHr/hKIK0zVCng/vL7noPHN8PCbPdX7YQwjQe3bNYaz0fmH/KsSdLPJ4MTPZkDH4nYwc4CqGWK+sLlS560rxSjye92B/CoyH+a2g95LzLF0J4F7MHi4W7Hdzk/Ltma/eXbbFAk/6wdwUU5bm/fCGEKTzaIhBl58S3+MdssxluDaTlazsw2OX+ihr1hlXvQ/LfzsdCiHJPEoGPaaH2sl3XxfBAYy960jwqkM+GICuffPoxU+z/tgqSpgxwe31CiLIhXUM+RdPCspcEo77HasgjmDijKb0smzxWhxCibEki8CG1OEy4yiZBey4RACw12tDCspdIsjxajxCibEgi8CEtLEkAHm0RAPxttACgo2WHR+sRQpQNSQQ+pLlKBmC7izuSna8EXZ8CbaOdxQOD0UKIMieJwIc0saSwz4gkhwoeraeQABJ0NO0lEQjhEyQR+JAYlcIOHVUmdcUbjWit9mDFUSb1CSE8RxKBj7DioKE6wM4ySgTrjcaEqAKaqJQyqU8I4TmSCHxEtDpIkLKzwyhtywf3i9eNAaR7SAgfIInAR8Qo5wrfZdU1lKyrk6kr005JIhCivJNE4COaqn0YWrFLl02LABQbjEa0sSSWUX1CCE+RROAjYiwpJOvq5FN2m8xv0g2IUSkEU3D2k4UQXksSgY9oolLKbKD4hM1GA6xK00LtLdN6hRDuJYnAFziKaKAOsrPMuoWcNhoNAWht2VOm9Qoh3MujiUAp1U8ptV0ptUspNekM512nlNJKqVhPxuOzDicSoBzsLKMZQyekEU66DpNxAiHKOY8lAqWUFZgK9AdaADcqpVqUcl5l4AFgladi8Xnp2wHKcKD4BMUmowGtlLQIhCjPXEoESqnz2e6qM7BLa52otS4EpgPXlHLec8DLQP551CEAMpyJYLeuXeZVb9INaaxSoTCnzOsWQriHqy2C95RSq5VS9yilwly8pg6wr8TzlOJj/1BKdQDqaq1L3yT33/PGKKXilFJx6enpLlbvR9J3kKqrkUtwmVe9qXjA+J8tMoUQ5Y5LiUBr3RO4GagLrFVKfaOUuvxCKlZKWYDXgfEu1D9Nax2rtY6NjIy8kGp9U8Z2dhtl3xqAfweM2b/elPqFEBfO5TECrfVO4HHgEeBi4G2l1Dal1LWnuSQVZ+I4Iar42AmVgVbAn0qpJKArMEcGjM+RYUDGThPGB5wOEc5BHQ6p60ypXwhx4VwdI2ijlHoD2Ar0Bq7WWjcvfvzGaS5bA8QopRoopQKBYcCcEy9qrY9qrSO01tFa62hgJTBQax13/m/HDx1LgaLcMp86WtImoyHsl0QgRHnlaovgHWAd0FZrfa/Weh2A1no/zlbCf2it7cB9wAKcCWSm1nqLUupZpdTACw9dAP/OGCrjqaMlbTAaQuYuyD9qWgxCiPNnc/G8AUCe1toB//TvB2utc7XWX57uIq31fGD+KceePM25l7gYiyjpn6mj5owRAGzUJ8YJ4qHhxabFIYQ4P662CBbBSdtehRQfE2bL2A4h1ThCqGkh/DtgLN1DQpRHriaCYK119oknxY9DPBOSOCfpOyCymakhZFEZqtSXAWMhyilXE0FO8Zx/AJRSHYE8z4QkXKY1pG+DyKZmRwJ1OsoUUiHKKVfHCMYB3yml9gMKqAkM9VhUwjU56ZCfBRFekAiiYmHLD3D8IFSuaXY0Qohz4FIi0FqvUUo1A0584mzXWhd5LizhkvRtzr8jmwK5poZCneLbP1LioPlV5sYihDgn57LoXCegDdAB5wJyIzwTknBZ8Ywhs8cIAKjVBiw2SJXbQIQob1xqESilvgQaAfGAo/iwBr7wUFzCFenbISjUO7piAipAjVbOFoEQolxxdYwgFmihtdaeDEacoxMDxUqZHYlTVCfY8C0YDrBYzY5GCOEiV7uGNuMcIBbeJGOHdwwUnxAVC4XZ/3ZZCSHKBVdbBBFAglJqNfy7U7nWWpaKMEvuYchO846po0D0pHlEq2z+DIJH3v6EGY5LAUiaMsDkyIQQZ+NqInjak0GI83Aowfl3jf9s+maaJF2TI7oS7dVOZnCp2eEIIVzk6vTRv5RS9YEYrfUipVQIIJ3AZkorTgTVW5obx0kU8UYj2lt2mR2IEOIcuLoM9WhgFvBB8aE6wE+eCkq44NAWqBDuHTOGSlhvxBCjUqls9n0NQgiXuTpYfC/QHTgG/2xSU91TQQkXpG1xtga8ZcZQsfW6MRalaWPZbXYoQggXuZoICoo3oAdAKWXDeR+BMINhwKGtUMObuoWcNhiNAGivpHtIiPLC1UTwl1LqUaBC8V7F3wE/n+0ipVQ/pdR2pdQupdSkUl6/Sym1SSkVr5RappTynpFPb3Y02TlN04sGik84RkV2GnVknECIcsTVRDAJSAc2AXfi3Gym1J3JTlBKWYGpQH+gBc5lKU795PpGa91aa90OeAXnZvbibLxyoPhf643GtLfsRBqNQpQPrs4aMoAPi/+4qjOwS2udCKCUmg5cAySUKPdYifMrIp8crknb4vy7uhesMVSKeN2YG9Rf1FOHzA5FCOECV9ca2kMpH9Jan9ijsFR1gH0lnqcAXUop+17gISAQ6H2a+scAYwDq1avnSsi+7eAGCG8AQZXNjqRU8cXjBO1knECIcuFc1ho6IRi4HqjqjgC01lOBqUqpm3B2N91ayjnTgGkAsbGx0mpIXQ/1/pNTvcZ2XZdcHSTjBEKUE652DWWecuhNpdRaoNSN6IulAnVLPI8qPnY604H3XYnHX0VPmkcER4kLTuG59Rfzcdw8s0MqlQMrm3QD2soUUiHKBVe7hjqUeGrB2UI427VrgBilVAOcCWAYcNMp5cYU35MAMADYiTij1pZEADYWd794q3ijEbdZfwN7IdgCzQ5HCHEGrnYNvVbisR1IAm440wVaa7tS6j5gAc7lKD7RWm9RSj0LxGmt5wD3KaX6AEXAEUrpFhIna2vZjUMrtuhos0M5o3ijMUG2eZC2ybmfsRDCa7naNXReK4hprefjnGpa8tiTJR4/cD7l+rM2KpFdug65BJsdyhnFG42dD1LWSiIQwsu52jX00Jle11rL/P8yoWltSeRPRzuzAzmrA1QlTVehRupas0MRQpyFqzeUxQJ345wSWge4C+fexZWL/4gyEKUyiFTH2KC9e3zASTmXm5BEIITXc3WMIArooLU+DqCUehqYp7Ue7qnAxH91tTjvxVtteOeNZKeKNxpxReZMyDviXClVCOGVXG0R1AAKSzwvLD4mytBFli1k6FB26CizQ3FJvC4eJ9i/3txAhBBn5GqL4AtgtVLqx+Lng4DPPROSKJXWXGRJYKXRHPCupadPZ5NRfON5ylpoVOpN40IIL+DqrKEXlFK/AD2LD92utZaveWXpcCK11WHeM7xvxdHTOU4IRDSRcQIhvJyrXUMAIcAxrfVbQErxjWKirOxZAsAKwztXHD2tOrGQGgdaVgYRwlu5ulXlU8AjwOTiQwHAV54KSpQi8U/SdBUSdS2zIzk3UR0hJx2y9podiRDiNFxtEQwGBgI5AFrr/ci00bJTlAc7F7LI0ZHyMj7wj6hOzr9T4syNQwhxWq4mgkKttaZ4KWqlVEXPhST+Y/diKMrhF6Oz2ZGcu+otISAEUtaYHYkQ4jRcTQQzlVIfAFWUUqOBRZzbJjXiQiTMhuAqxTOGyhmrDWp3gH2rzY5ECHEaZ00ESikFzABmAd8DTYEntdbveDg2Ac7VO7f/Cs2uwu7ybF8vU7cTHNzo7OISQnids36yaK21Umq+1ro1sLAMYhIl7fgFCo5Cy0GwsvDs53ujqE5g2OHABqjX1exohBCncLVraJ1SqpNHIxGlW/MRhNUr3zdknRgwlu4hIbySq4mgC7BSKbVbKbVRKbVJKbXRk4EJIH278/6B2NvBYjU7mvNXqTpUbQjJf5sdiRCiFGfsGlJK1dNaJwN9z6dwpVQ/4C2cG9N8pLWecsrrDwGjcG52kw7cobWWCecnrPkIrIHQ/hazI7lw9bvD1jlgOMp3UhPCB51tjOAnnKuO7lVKfa+1vs7VgpVSVmAqcDmQAqxRSs3RWieUOG09EKu1zlVK3Q28Agw9t7fge6InzSOSIywN+pSfHRcx8fny26USPcm5r/JgSyXeCDzKlY/9jwQdTdKUASZHJoQ44WxdQyXvXmp4jmV3BnZprRO11oU4N6e/puQJWus/tNa5xU9X4lzuWgB3237GhoN3HIPNDsUtVhVPfe1i2WpyJEKIU50tEejTPHZFHWBfiecpxcdOZyTwS2kvKKXGKKXilFJx6enp5xhG+VODw9xs/Z3vHb1I1r6x2vd+Ikg2Iuli2WZ2KEKIU5yta6itUuoYzpZBheLHFD/XWutQdwShlBqOcxe0i0t7XWs9DZgGEBsb6/Orl00MmAlo3nEMMjsUt1plNOcy6zoUhtmhCCFKOGOLQGtt1VqHaq0ra61txY9PPD9bEkgF6pZ4HlV87CRKqT7AY8BArXXBub4Bn5O6liHWJXzi6E+Krm52NG61zGhFVZVNG5VodihCiBLOZRnqc7UGiFFKNVBKBQLDgDklT1BKtQc+wJkEDnkwlvJBa/h1Muk6jKn2a85+fjnzp9EOu7bQx7rO7FCEECV4LBFore3AfcACYCswU2u9RSn1rFJqYPFp/wdUAr5TSsUrpeacpjj/sHEG7FvFK/ahZBNidjRud5RKrDGa0cciG9UI4U08uniN1no+MP+UY0+WeNzHk/WXKwXHYeGTUKcjs3b3Mjsaj1lkdOCJgK/gSBKER5sdjhACz3YNiXOx9DXIToP+/4f24X+WhUZH54Nt8898ohCizJTT5Sx9w4mbraLUIX4PfIe5Rk/Gv3vQ5Kg8K1nXYLMRTav4r6Hr3aDK2UY7Qvgg3/3qWY5Msn2LAyuvFPnHTdVfOfpA2mZIXml2KEIIJBGYrr3ayVXWVUxzDCCNqmaHUyZmO7pBUBiskb2NhPAGkghMpZkU8C3pOoxp9qvMDqbM5BEM7W927ryWudvscITwe5IITHSZZR1dLNt4y34tuQSbHU7Z6jYWAirCzw+AIXcaC2EmSQRmMRw8bJtBolGT6Y5LzY6m7IXWgiueg6SlsHKq2dEI4dckEZhl4wyaWlJ41X5D+d2L+EJ1GAFNB8Bvj8OvkyEnw+yIhPBLfvoJZLKifPjjRTYaDfjF6Gx2NOZRCm74AhZMhpXvwar/QWgUyUfyqKTycGAhVUfwtaMP3zt6kTjlarMjFsInSSIww+ppcHQfU+yP+vTNYy6x2uDK/4MOtzp3MMtKZu3hZLKNCthw0Nqyh/8LmMYQ6xIouhwC/GwsRYgyIImgrOUehqWvQuPLWbG5ldnReI+arZx/gAdXzSvxgmaY9Q+mBHzkHFge/D+5CU0IN5NEUNaWvgb5x+DyZ2BzktnRmObEXdVnp5ju6E0kWYzfOB2ie0AHH9jDWQgv4uf9EmUsY5ezH7zDLVCjpdnRlCvvOAZDVCf440XnGIsQwm0kEZSl3x4DWwXo/YTZkZRDCi57Eo7vh7iPzQ5GCJ8iiaCs7PgNdvwKvSZAJd/aeazMNOgFDS+Bpa9Lq0AIN1Jae24LYKVUP+AtwAp8pLWecsrrvYA3gTbAMK31rLOVGRsbq+Pi4jwRrkdET5pHEIX8FvgwRdjoXziFIhmaOW89LJv4KvAlxhbeyxyjOwBJUwa4rXyl1FqtdazbChSiHPBYi0ApZQWmAv2BFsCNSqkWp5yWDNwGfOOpOLzB3bY51Lcc4gn77ZIELtByoyV7jBoMty0yOxQhfIYnu4Y6A7u01ola60JgOnDSRrxa6ySt9UbAZxebaaj2c7d1DrMd3fjbkAHiC6Wx8I3jMjpbttNE7TM7HCF8gicTQR2g5P/UlOJj50wpNUYpFaeUiktPT3dLcGVCa16wfUI+gTxfNNzsaHzGLEcvCrSNYdY/zA5FCJ9QLgaLtdbTtNaxWuvYyMhIs8NxXfw3XGRN4GX7jaRTxexofMYRQllkdGCgdQU27GaHI0S558lEkArULfE8qviYf8hOh98eY7XRlG/9cXVRD/vB0ZMIdYxelo1mhyJEuefJRLAGiFFKNVBKBQLDgDkerM+7LHgUCrKZXDRK1hPygL+MtmToUK6zLjE7FCHKPY99Qmmt7cB9wAJgKzBTa71FKfWsUmoggFKqk1IqBbge+EAptcVT8ZSp3Yth00zo8SC79XkNi4izsGNjjqMbfSzrnOs3CSHOm0e/qmqt52utm2itG2mtXyg+9qTWek7x4zVa6yitdUWtdTWtdfmfVlOUB3MfhGqNoed4s6Pxad87ehKk7LDlB7NDEaJckz4Ld1v6GhxJggGvy5LJHrZFR7PVqAvx35odihDlmtzd5CbRk+bRSKXyS+Dr/Gz0YPy0bMDVFTbF+VF87+jF46lfQ8ZOiIgxOyAhyiVpEbiN5nnbp+QRxItFN5sdjN+Y7egOygrrvzI7FCHKLUkEbnKtZek/9wxkEmZ2OH4jnSrQpJ8zEdgLzA5HiHJJEoE75B7msYCvWWvEyD0DZuh0B+RmwNafzY5EiHJJEoE7/DqZUHJ5rGik3DNghoa9IbwBrJF9CoQ4H/KpdaF2/AYbp/Oe4xq26XpmR+OfLBaIvQOSV8D+9WZHI0S5I4ngQmSnw5z7IbI579oHmR2Nf+t4GwSHwZJXzY5EiHJHEsH5Mgz4cQzkZ8F1H8k+A2YLDoUud8O2uXBws9nRCFGuSCI4X78/41xKot9LULOV2dEIgK53QWBlWPyc2ZEIUa74xdfY6Eml39h13lscrnwflr/p7JfuePsFRCbcqkI4XDwRFj4J2+ZBM/dtYSmEL/OLRACaSI5SXR1hr65BNiHnWYyGv16BP1+EZlfBla+CUu4NVZyzkoneRjQ/B9Yl9Nv76VeQy6Yp15sYmRDlg28ngsJcWPsZSwJfp57l353N4o1GfGLvD0Y/sFhdKyvvCPw8DhJ+4ntHTx6JvwF7/K8eClycLzs2Hi0axczAZ3k34G1wDAarb/+aC3GhlNba7BjOSWxsrI6LizvzSVpDwk+w4HE4lsIqoxm/ODqTpsNprFIZZF1OI8sBiGwOlz0JTfuf/pu94YAN38Lvz0FuBi8VXM8HjqsAaQl4s6HWP3g54ENoNxyufhOsAS5dp5Raq7WO9XB4QngV3/qqpDUk/+380E5eATVaw3UfMvT9Iyed9q5jEP0sa3jf8TNMvxFqtoEOI6BxHwirC0YRZOyAnQth3eeQlQxRneCmGXzwtv9sslaezXBcSm2VyQPxX0HWXrj6LajWyOywhPBKHm0RKKX6AW8BVuAjrfWUU14PAr4AOgKZwFCtddKZyjypRaA15GRA+lZIXgVb58DBjRASAb0fd364W6ynHyx+4QrY9B0sf9tZhjMq4N+fySqjGZ/Y+7HA6IS0AsqfpBuz4ecHwFEILQdBk/5QoyWE1XHOMLKcPHFOWgTCH3msRaCUsgJTgcuBFGCNUmqO1jqhxGkjgSNa68ZKqWHAy8DQM5V7OHU3S57oQR2VQW2VSQVVeKJGqNPBOYDb7mYIPPuAcPRjvwFhwBPEqBQ6WHZSW2WQr4NI1dVYabTgEOHn/uaF92g7FBpeDEtfdyb9zd//85KhFXkEkk0FsnQlDuqqJgYqhHk81iJQSl0EPK217lv8fDKA1vqlEucsKD7nb6WUDTgIROozBNWudqD+bFRLUnUEB3Q1UnUEu3QdthjRHCbUI+9F+AYLBs3VXhqqA9RQR6iscgmhgErkUVUdp5bKpO1zG6RFIPyOJ8cI6gD7SjxPAbqc7hyttV0pdRSoBmSUPEkpNQYYU/w0u/1z8ds9EvG5i+CUWH2QT73HPaUfLvke65dVLEJ4i3IxWKy1ngZMMzuOUyml4nz926O8RyF8nyeXmEgF6pZ4HlV8rNRziruGwnAOGgshhCgjnkwEa4AYpVQDpVQgMAyYc8o5c4Bbix8PARafaXxACCGE+3msa6i4z/8+YAHO6aOfaK23KKWeBeK01nOAj4EvlVK7gMM4k0V54nXdVR4g71EIH1fu7iwWQgjhXrIMtRBC+DlJBEII4eckEQghhJ+TRCCEEH5OEoEQQvg5SQRCCOHnJBEIIYSfk0QghBB+ThKBEEL4OUkEQgjh5yQRCCGEn5NEIIQQfk4SgRBC+DlJBEII4eckEQghhJ+TRCCEEH5OEoEQQvg5SQRCCOHnJBEIIYSfk0QghBB+ThKBEEL4OUkEQgjh5yQRCCGEn5NEIIQQfs5mdgDnq1pEhK5br75Hys7Ly2P3zh0EBQUT07SpR+oQ3iVhx24Ks7OUmTFERETo6OhoM0MQPmzt2rUZWuvI0l4rt4mgbr36LFyyyu3lbtm8kesGXEH1GjX5cf4iGjZq7PY6hPdp1KK12SEQHR1NXFyc2WEIH6WU2nu616RrqIQTSSC4QgVJAn5Go80OQQjTSCIoVjIJ/DBvoSQBL6S15o/fFzL2rpHcdN1AFsyf67ayTe0TEsJk5bZryN1efPoJLBaLJAEvtXbNKh59ZCLr1/xNWJVwjmYdYfv27fS98iq3lB8UYHVLOUKUR9IiAAzD4ODB/cQ0bSZJwMukpx9i9B230b93D5KTdvPYC2/we9xO+l9zvVvr0dIzJPyY3ycCwzCYOO5eNm2I54r+7vl2Kdzjp+9n0q1DK+b9OIPb7x7H3CXxDB0xisCgIHZu20JUvWi31eUwJBMI/+XXXUOGYfDwg/fx5acfMW7CJO4Z+6DZIQkgJyeH+++9m7nff0urdrE899r7NGrS7J/XD2ems2t7AjcMvdFtdVpkkMDnRU+ad9rXkqYMKMNIvI/fJoITSeCLTz5k3IRJTH7yWZSSTwOz7U3aw7DrriFx5zbuenAyY8Y+jM128q/p2lUrAOje62K31RsU4PeNY+HH/DIRnOgOOtESkCTgHdauWcVNQ67B7nDwwdez6drz0lLPi1/zN0FBwbRt39FtdQfbJBEI/+V3v/0lk8AD4x+RJOAllvy5mGuv6kvFSqF8PWfxaZMAwPo1K2nZtjK3mCoAACAASURBVAOBgYFuq98uYwTCj/lVIji1JfDoU89JEvACixb8wo3XXU1UvWg+/+E3ohvGnPbc3Jxstm6O5+KL3dctBJBTaLi1PCHKE7/pGpLuIO/0y9w5jBwxjCbNWvHB1z8RFl71jOfHrVyGw+Gge69L3BuIzB/1a6cbSPaXQWS/aBFId5B3+un7mYy8ZSjNWrZl2rdzzpoEAFYsWUxwcAU6d+3m1lisVr/4ryBEqXz+t1+6g7yP1poPpr7FnbcPp23HLnz47RxCw6q4dO2KvxbRsWsPgoOD3RpTQZHDreUJUZ74dCLQWkt3kJfJy8vjrtEjeWLSBHr3vYr3v/yRipUqu3RtSnISSbt30r9/P7fHZbfLGIE/qsoxXrF9wCO2b80OxVQ+PUaweWM8X376EXfdN06SgBdYs+pv7r97NIk7tzP6/oncO+FxLBbXv4usXLoYgN59+noqROFHotUBvg98mmrqOADbjbr8ZPQwOSpzeE2LQCmVpJTapJSKV0q5ZVH2/ampAPS+vK8kARNlHz/OE5MmcNXlF5Obk8P/vvqJ+x9+8pySADhvJIuoXoNGMU3cHqO0CPzPSOsvVCSfKwteZJXRjBcCPqYO6WaHZQqvSQTFLtVat9Nax15oQZs3bWDsXSOpXSeKtu06uCM2cR5WrlhGj87t+GDqWwy5+Q5+WLSKbhdfdl5lrY9bSbvYrh5J6g67jBH4k4rkMdi6jLnGRSToaCYU3UlFVcBA699mh2YKb0sEbrF50wauG3AFFUJC+HH+IsKrnn02inCvwsJCnnr0YQb2vRSLxcrnP/zGEy+9SaXKoedVXuq+vezft5dLL3Hv/QPCPw2yLqeSyudru/NLyT5dg01GNJdZ15kcmTm8KRFo4Del1Fql1JjSTlBKjVFKxSml4jIzMkot5EQSCKlYkR/nL6JBw0aejFmUYk/ibvr17sX777zBDbeM4rsFy2nf6aILKjNu5TIA998/UMwi00f9yg3WP0kw6rNe/7vs/O9GBzqonVTlmImRmcObfvt7aK07AP2Be5VSvU49QWs9TWsdq7WOrRYR8Z8CNm/awJCr+hJSsSI/zFsoScAEP//0Pb27d2Jv0m5en/YVj7/4hsuzgs5k3eoVhIaF06x5SzdE+V9abijzG1U5RltLIvMcXSi5N93vjg5YlOZSS7x5wZnEaxKB1jq1+O9DwI9A53O5/kQSOLHVpCSBslVYWMi4sfcz8pZhNG7anFkLVtCn/zX/Oe9Y1hEOHTxAfl6ey2VrrVm9YgkdOl90zgPMrvJUucL7dLdsBmC50eqk45t1NGm6il92D3nF9FGlVEXAorU+Xvz4CuBZV68/dUxAkkDZOnhgPyNuuoH4uFXcMupexk1+ll07tvL9N5+xOX4th48dIy8nm6OHM8jKdM7KqFg5jB8W/k2tOnXPWv7ObVtITU7iwfEPe+w9SIvAf/SwbOaoDmGjbnjScY2FpUYbLrHE4+yp9p+Zhl6RCIAawI/Fs0FswDda619duVCSgLlWr1zBbTffQE52Nq9M/YwmzVsy6pbrWL/iTywWCw2atqJSaBhh4dWIadWOqOjG7ErYwLIFczh0cL9LieDbzz4gMCiIK68e5LH3YTjMmT5aPB42BqBevXqmxOBfND2sm1hhtMQopUNkg9GQIdYl1OIwB6hmQnzm8IpEoLVOBNqe63UnuoMkCZQ9rTUffzCVJydPpHZUfT74eg7L/1zIYw/eSXCFEG4d9zh9hwynUuh/l4748bP3WLZgDpE1ap21np3bEpj93dfcPOJ2IiIjPfFWAPNaBFrracA0gNjYWGmWeFgDdZA6KpP3jP92WwJsNhoA0NqSyAFDEoHXs9vt0hIwSUFBAffcNZqfZ33LxX368+hzr/LUYxNYufgXul52JXc//jLh1Ur/0NZas3jOTJq0ak/tqDN/A87Ly+WJh+6icuVQHnnsaQ+8k38FBQd4tHzhHbpZtgCw7JTxgRMSdH3s2kJryx5+MzqVZWimKreJoLCggCNHDvP6ux9IEihDmRkZ3Hj9IOLjVnHP+McYOOQmxowYQsqenYyc+AwDh4854w1fiVs3sXfXNh5/8c0z1lNUVMTEu0ewdXM8n30zy6OtAQDZl8Y/dLTs4JCuwl5do9TXCwhkp46itdpTxpGZq9wmgsxM530ENWudvXtBuEfKvmQGX9WXA6n7ePX9L4hp1oKbr+lDXm42T733DW279OTYkUyOHz1CWNUIKoVW+U9SWPjTtwQEBtHv6mtPW09eXi4T77mVJb8v4OU33qH/VQM9/dZMGyMQZStWbSfOaMKZBoI3GQ3obV2Pc8DYP5TbRHA4M5MHJ06mQ+w5zTIV52lP4m6u6d+HnOzjfPD1bMKqVGXEtX1BKV74+AcSt23i1r6dyDqY8s811es35um3PyOqgfOmnYL8PP6cO4vuV1xNaJXwUuvJzEjngZFD2bQ+jpffeIfbR91VJu9P9iPwfdU5Qj1LOp8XnXnRwk26ATeov6hNZhlFZr5ymwhimjZj0hPPyGJyZWBP4m4G9ruMgvw8Pp45n+AKFRhxbV+sAQFMeu0j3n35KXavW0GdJq3pNngEIWFVOZ55iGXffcSkkdfx4dwVVAipyLrlf5CbfZybbhpRej27d3D3LddyOP0Qn3w1kwEDPTdL6FSBgdYyq0uYI9ayHaC4RXB6mwzntNLWFv/pHiq3iSAkJESSQBk4sD+VwQOuoCA/jw+nz6VqtUhuHHgp2jB4cMp7vDjxLo5npjHooRfo2P/6k/5NKoZX44dXHiE1aReNW7Rl5e/zqRwWTuxFPf9Tz9bNG7hr+CCUUsz+9XfadyzbgTpDBgl8XqxlB3k6kC06+oznbddRAMSolDOe50vKbSIQnnfk8GGuvbofWUcO8/GMedSNbsiN1/Th2JHDTPy/D3j9iQfJzz7GqNe/oW7zdv+5PudI8ThOVH0Mw2Ddij/p0P1SbLaTf+327NrO6GFXU7FSJX74+VePLDN9NkWyQ5nP62jZwQbdCPtZPvbyCGafEUmMJbWMIjOfdIyKUuXn5zNsyCCSkxJ5+5MZNG/djgfvGUnS9i2Me+4tpr36HLnHsrhtyqelJgGAxPhVVKsTTaXQKuzdtY2jhzPoc9nlJ52TdmA/d948iIDAAGb/ssiUJACyd73PK8impUo6a7fQCbt0bWKUJALhxwzDYORtt7B+zd+8+OaHdO7Wi0/ff4O/f5/HrQ8+znfffkZ68m5ufOpdopq1IX1fIvGLZpOfffyfMooK8tmzYRXdLnF+8CesWwlwUreQw+Fg8tiRHM06wswf5xLd4ORb/suSxSLdjD4tZQ02ZbDGaObS6Tt1FA3VfjD8o6UoXUPiP55+7BEWzvuJCU+8SN+rr2Xl0j9455Vn6dnvGo6kH2L32uUMHv8ikfUa8t6EkeyPXwKALbgid7zyKfVatGfPhlXYCwvo2KM3ADs3xxNWNeKkm8g+ee914lYu4+33P6J12/amvNcTZNaQj0teiUMr1hoxLp2+U9chWBVB1l6oat4XlLIiv/3iJB9MfYv/vfsmN91+F7eMvo+0A/uZeO/t1GnQmFax3Zj95Qd0veYWQiNr8ubIAaQlrKbl4Lu56J6XsefnkJ68G4DE9X9jDQigZceuaK3ZsHIpLTt0+Wcwee+eXbz/xkv0u/o6ht5c+iyismSXHcp8W/IKtur6ZBPi0um7jDrOB+nbPRiU95BEIP4xa8Y3PDFpApf1H8jEp6ZQkJ/PPXcMpSA/j+tHPcC0lx+nYftuREY35ovHxhBSrSZXPDedlteMpkK4887filWcu8Ht2biGqGZtCQquQOLWTWQeOsAVffsDzmUmXnjsIYKCgvm/N970jtlf3hCD8AxHEaTEscZo6vIlu/SJRLDNQ0F5F0kEAoBf5/3M/XfeQaduvZjy9scAjB87ml1bNnDHxGf44OUnqVK9Ng3bdeHnt56iZsuuXDr5IyrXcHb1HE50ruFSJ6YVhfl5HNiVQGxn565kS375EavNRu++VwEw94fprFz6B0+/MIUaNWqa8G7/KzBA/iv4rAMboSj3nBLBcUI4oKtKi0D4j4W/zueOW4bSvHV73v54OoFBQUyacD9Lf53N0DsfYuan72M47MR06sWiT98gKvYyuo19jcCQf3ceO7wngQrh1alcrTrJW9ZhOOy06tAVh93OH3NnEduzD1XCq2EYBh9PfY2mLVoz4vbRJr7rk3lFq0R4xl7nNqfnkggAdhm1JREI//Dz7B+49aYhNGnWiv999SNBwRV46P7RLJj1JQOHj+GvRb9w5MA+mnS5hJU/fUm9bgOod1F/kpbOJn3H+n/KObJ3K+HRLQBIjF+JxWqjeYcurF22mKzMdG4svpv4l9nfkbhzO+PGT/SqD1+5ocyH7V4Mkc1Jp/RlTU5nl64DGTv8Ym6xzBryY9988SkP3X8XbTp04t3PZmEYDkYNv5Z1y/9g0Ii7WP33UtKSdtCsa282LJpNVKc+HN6fQvKKCf+U0feF76hUvS7ZafvoeNkAABLXryCqWRtCKlbil5mfUTWyBj0v64fdbufNl56iZZsODB4y1Ky3XSqr1XuSknCjwlzY+zd0Hg37zu3SRF0LCrPh+EEI9e3FLaVF4Ie01rz+youMu3cMXXtcyv++nk3izm1ce3k3Nq5ezk33PMxfv83lUPJuIpt2JGHZb9Ro2ZX98cvIS0skasBY6g95DID8rAyOH9yLNhxE1mtEfvZxUndspmv3i9mXuIO1yxYz9JaRBAQEsOyP30g7kMrESY963R7BDmkR+Ka9y8FRAI16n/Olibr4wz9zp5uD8j7e9b9ReFxRURF3jRnFlOee4qrrbuT1D7/hw7f/j9uu64vVZuPGu8cz69OpFOTmEBoVQ9qWVVSLaUvalpVUqNWYZnd/SGTna7BVcI4PWAICObY/EYDq9RqRtHkN2jBo3ak7c776kIDAIIaOGIXWmi8/mkpE9Rpc3u9KM38EpSoqlGWofdKu38EWDPW7nfOliUZt54PMXW4OyvtI15AfOX7sGLfcNJQVfy3izgce4cpBNzDiun7s2LyeS666jsO5hXz59kvUbNSc48ePc3hPAsE1GpK5cwNVO/Sn9uV3ElA8QFyYlQZASLWaHNy4HGWxElmvEesX/oQtIJAataP4ffYMBg+9harVIlm9YglrVizhhVdeJyDA+3YDk83rfdTu36F+dwiocM6XHiQcAkIgQxKB8BEH9qcy5JoB7Nm1naf/711stgCGXtmTgKBgrh/9AAt+msGxjDRiOvVkd/xqrIHBBFSuRv6hJCo17MDhDYs4HL+IoOjONLv5cQoyU1C2QCqEV+doyi4q16yPNSCQhOULadCuK7M+eRe05va7xwHw4/QvCA0L5xYvmilUkiQCH5S2xTnY22nUeV2usUDVRtI1JHzD1oTNXHFJd1L37eWND79l6fJlPP7gnTRo1pJ6rTvx3YdvYbUFUKVeM3auWUpozfo4igox8nOwBIeRvWc9QdEXYYtsTEHicvLTk8lLSyQ4oh4Wi5WjKbuo36Q5+xLWk3Uwhe49Lub32dO5fvgdRNWLJj3tIIvmz2bwkOsJDg42+8dRqoAA2Y/A52yYDhYbtLru/MuIaAwZkghEObd65QquvqI32jB448Ovefu1F1g8ewY9+w0iJXkvCcsXEd2mM0fT08hOS6ZivVZk7duBNSQUR1EBWKyE9Xuayj3vISi6CwC2kDBy9++gVtPWFOYeJydjPzUbNmP13OkEVqjI7m2bsVptjLx3PAAfT30Nu72Iex8Yb+aP4oxksNjHGA7YOBNiroCKEedfTrUY53pD9gL3xeaFPJIIlFL/6QRWSl3Av4Y4H0v+XMyQgf2pEl6VZ159j0fH3UXyru10vrQvS3/9CVtgEBUjapG0cTXh9ZuBLYic5C1Yw+pQlJWGrVYrwq5+iYAazhtxitK2YQkJx56fjSPvONUatyFjRzwAYdVrsfH3OXTueRlLf/mRm++4i+o1a3E4M51Z33zKwOtvNnV10bORyaM+JvFPyD4IbW+8sHIiYkAbcCTJHVF5LbcmAqXUpUqpFOCAUuo3pVR0iZd/c+F6q1JqvVJqrjvj8kd//L6Qm4YMpG79Bkx86iUm3HMrDsNBtXqNWLX4V6KatSErbT9F+XlUqN2EzN0bsQRWwFKxKo6j+wms1wl7+m6OLn4HrTXaXkhR6gaqNO1CTtIGACKbduTAhqVYA4PZGbcUZbWQtj+FKtUiGTP2YQA+mfo6RYWFTJgw0cwfx1lJ15AP0RqWvwkhEdDkzPsTn1U1537bvt495O4WwStAX611BDANWKiU6lr8mitfuh4Atro5Jr+zbMmfjBh6LQ0aNWHsI08x8Z7bqFg5DG2xkZa4ndA6jUjZtpEqdWMozD1OfnoyoTGdKcw6iHY4UBVrUJi8BmWxYRzaSGFyHAV7V6OL8qjapg/Hd68lMLwWQaFVSV61gOrNO7Fx8c906HYpOzev477xj1GxUmWSEnfyzaf/Y/CwEcQ0dW0deLN42W0N4kLsXgx7lkCvCWALurCy/kkEOy48Li/m7l//QK31FgCt9SxgEPC5UmoQcMZOWKVUFDAA+MjNMfmVjfHrGH7DYKLqR/PA5GeYeM9thIZXIycnh/zs4wRWqsLxg8kE12jIkb3bCKnTFEvlWhzbuRpbZAzaUYjOO0xAs2uxNbkaAG3Yyds8B2tYbSrUbsKx3XHU69CTnb99Q1HucSz5WQSFVGJ3wgbqxzRn8DDnchIfv/saNlsAzz7/gpk/EpcUyn0EvsFRBIuehir1IPaOCy8vOBQq1/L5ewncnQiKlFL/LCdZnBQuA54GzrYjxJvAw8Bp/0cqpcYopeKUUnGZGRluCNe3pKbsY9h1AwmrEs6jz7/OI/eNpFJYONk52Wg0htY47EXYKlYhP30vVVpcTE7KNhzZ6QQ27IE9bTsqoBKBHe/EUqMtjuRlYKsAjiIcR5KJumwEWZsWo+2FVG/RmW3zPyc8ugWp2zfRtFU7Dqen8fRLbxAQEMCOrZuZ+8N0brl9JNWr1zD7R3NWDockAp+w4FE4uBH6PHPhrYETImKkRXCOJgEn/a/XWqcAFwNTTneRUuoq4JDWeu2ZCtdaT9Nax2qtY6tFyNhzSXl5edw4ZBB5ubm8+NZHTB53JyjILyzEcDgoyM/HGlQBh8OBUVRAQPWmZCX8ha16cyzhDSlMXIYlohmBHUZjqRiJ4+A6jKxEQtoPIXf9TKxVowlr1p2DS78hJKo5yat+w7AXUnD4AJH1G7Nx9TIuGzSMjl26YxgGz04aS2iVcCZMesLsH41LZIeyck5rWP42rJ4GF90Hra51X9nVYnx+8Tm3/vZrrRcBm5VSX59y/KjW+kz9A92BgUqpJGA60Fsp9ZU7Y/N148bex7YtG3nxzWm8/vKzHE5PI7BiGAW52TgcBoEhoRTl56MCglAh1Sg6mECF9kMxioow0jZirdeLgJZDUbYgjJx07DvnY6nSAHtWCkZuJg0HP8TBv76k6OghGnS6mJTVv1G9XiPyc45TwWYlLLwazzz3CgC/zvmejevW8MzzUwivWtXkn4xr5IaycsxeAHPHwcInoPlAuPxZ95Yf0QTyj0JOunvL9SJuv7NYa+1QStVXSgVqrQtdvGYyMBlAKXUJMEFrPdzdsfmqH2fN4MfpXzDqvglsil/LpjXLqR3TkgO7thJYKQyAoqJClC0AAsOwH06iUs/7yd2xFCNjK7ZG/bDVda7FoguOUbjxS7AGEhzTg9w1X1K9xzCMghwOrfiO8Na92blwOhUjanMwcRttu/Rgw6plvPT2R4RWCedwZjr/9+wkmrduxw033WLmj+WcSB7wTtGT5p32taQpAyBzN3x3m7M7qMeD0PtJ94/8RxT3amfsgErV3Vu2l/DUEhOJwHKl1Bwg58RBrfXrHqrPbx08sJ8J4+6jTYdOxF7Uk7uHD6Jxi7bsSthAxcg65GVlEBBWHeNYBtYaLSjat5bKve7HKMjGSIvHFn3pv0kg/yiFG78Aey4VO40gZ/VnBNRqSXirS9n1+QSCI6PRx/Zj2Aspyi2ienQMm+NW0u3yq7hy0A1orXnl6UkczTrCrDm/eN0Ko8LH7F0B394IygI3Toemzq1Qz5Q8zktEE+ffGTsguod7y/YSnvqfuhuYW1x+5RJ/zkpr/afW+ioPxeVTtNbce9doigoKmPDEi0waO4pqNWqze9smIuo2JCc9lZC6LSnI2EdE54EU7VtLhbbXERDVnpx1M7BUaYi1/iUAGMdSKVj3IbrgGBU7DSc37iusoTVpOPA+Er9+FGUNoEqNWmTt3UZoeDUUCqMglyrVIpny2rsopfhxxhfM/2km4yZMomWrNub+cIRP66i2wxeDoGIkjPnjnyTgEaF1ihef8917CTzSItBaPwOglArRWud6og4BP3w3naWLf+Php1/mrddeIuf4MQIrVKRS1Ugy9iVSq21PDmxYSkSXwaSvXYCtWkNC2g6mMCUeinKx1usBjkKK9i3HkbwEAitTqevt5Kz+HFUhlOhB40j85nEMeyG123Zn38pfqdWoOQcTt9G8fWe2bYjjk5nzqRJejU3r43jx8fF07Xkp4x95zOwfzTmTjWnKj0iO8H7gW+wpqsLg1AlkvbwF2OK5Ci0W5/0EPjxzyFNLTFyklEoAthU/b6uUes8TdfmrzIwMHntkPK3adgRg7bLFVK1Tn7ycY+Tn5hIWFUN6YgLBNRpgDa6EzsuiYtfbURYbluBQAIo2f0vByjdw7P0TS2QrKnUaTvbKj7GEhFN/wH0kzXgGrTV1O1zMvpW/UrdFew7s3kqXS/uTsG4V9zz0GB06d+PggVQeHH0TEdVr8ukX32C1lr+7dC0WSQTlxWsB/6MSedxZ9BBZrnU0XLiIJj7dIvBU19CbQF8gE0BrvQHo5aG6/NJD48Zy7GgWdz04mbemPE10THPS9uygcs1oHIUFVG3UCvvxTOpe9SDpaxcQULs1AZHOQa+A6k2w1u2BCokkMKoNoVc+S3C91mQvew9beD3qXHITSbOew1qhMlHte5C0fC7Vm3diX8J6mnS5hLili2jbpScj732Igvx8Hhp9Mzk52Xw98wfK67Reu13uIygPelo20su6iVftN7BD1y27iiObQlYyFOac/dxyyGP7EWit952yObnDU3X5m59n/8Avs7/j7gcf5d03pmCx2tifspfq0U04lLSD5lePZNsvXxDepg8BlatiZB+iQquTh13CL7sPAKMgh+y/P6Iw6W8C63ehauOWJM95jZA6zYmoG03S0jk06XIJO1cvoUHbLmQm7aBKtUjenvYFFouFJ8bfzeYNa/nsm1nlelxANq/3fgqDSbZv2WdE8pWjT9lWXr0FoOHQNojqWLZ1lwFPtQj2KaW6AVopFaCUmoCsIeQWKfuSGXfvnbRq2xGrzca2DXGEVq+NNjTHso4QFtUYR2EB2nBQ69JbseccBcAS8t/5/IUHtpA15xEK966iVu87qBwRycHfPyGseU+qREaQ/Pd82l42kF1rl1GnaWuCtIPjWYd59+NvCa8awWcfvMWvc2bx2FPPc+XV15T1j8Kt7EV2s0MQZ9HHso6Wlr28Zr+eQsp4l7saLZx/p20u23rLiKcSwV3AvUAdIBVoB9zjobr8ht1uZ/TtI3DY7Yy6bwL/e+MlGrdoS9qe7US3iSU/K512N40ncdlcqjTrTlDV2gRVrQUWG0X7N/5bTlYqx/56m2MLngOLlcYjXiFn32Yy184l5oqbCHDksH/9Erpdextbly8iIqoBMU2asm1jHM+++h4t2rRnye+/8uaLT3L5gEGMHf+wiT8V97Dayt+4hr8ZZv2Dgzqcn42Lyr7yKtEQUNG565kP8lTXUFOt9c0lDyilugPLPVSfX3j+qcdYu2o5z772Pm+8/AyVqoSTkryHOk3bkLhhNfW69gMN9pwsqra9AnBuIhPc7AryE+bjOJaGtudjT98B1kBq9BpOtfb92DPzGfLSdtN22EPsW7WAI8nbuXzkeJbO+JDK1SLpd80NfPHWC4y8dzxXDrqepMSdTB47iqYtWvPhJ59zShdguSR3Fnu3mmRyiSWe9xzX4MCEpG2xQPXmcCih7OsuA55qEbzj4jHhou9nfst7b7/OsFvHsC8pkb27tlGtXgyFebnUbtIKR1EhLQaOImNnPCgLlaLb/nNtzNWjibxoCEZOOtpRSM2Lb6H1Q99Stc1l7PzsIQoy99H1zudJWjaHrH07GTj2af7+4XMCK4QwevxTfDP1FWJ7Xsb9Dz9JTvZxxo26EZvNxlczvickJMTEn4r7mHXzW8mFFNPTfXcJgwt1g/UvrEozw3GJeUHUaOnsGvLBLw1ubREopS4CugGRSqmHSrwUCmakcd/w97KljL17FLFdezBg0A3cOqQvnS6+nLgli+g6eATrFs6hdtuehNZuSE7GfgIqV8MaXPGf620hof/f3nmGR1G1Yfh+d5NAKKEGEUKvgkhXLChFUEAERIpUBURUFBRQelGkCgKCFAEDfBQRBOlVkKLSe1NK6AiE0AIpu3u+H7NA6Ans7uxuzn1de2UzOzPnmZ2Zfea09yXs9Q8Je/3Dm8uuHt3J4ek9EYuV8p+NYMf0IVw5c4wGXYeyInwotvg4vv5+MoO/aE3GLFkZ9sNPAHT/7AOOHj7IL/OWkDNXbk9/FW5DTBo+qpQah5G7gzJlyvjfL4xLULxlXcs6e1FOKBNDPDxRFLZOgitnIORJ83S4AZfnIwDSYBhMwhnFl4G3XVxWsmDP7p00afgW2XPkYvAP4fTs3I50GTJx9kIUwSHpyV6wGLFXosj/agMAbDHXsQQFP3CfUXv+4ODkLwhInZ7KXX9k9+xRXD51mMZ9RrFp4QwunD5OzxHh/DZlDJFnzzB0zCRC0mdg3IhBrFwyn97fDOSllyt44Og9R4CeUOa1smUMOAAAIABJREFUFJLj5Lb8x0JHuYev7E6eKGr89cN+ApfWCJRSfwB/iEi4Uuqonln8eByNOEK9WtUJThnM6ClzmB4+jiMH9tCwTQdmjBlCjY97cGTHBgJTpSVL4TIABKQMxhF3/Z77U0pxdt0MTq2cQOqwIlTqNIwtP/Ul8tBOGvYYTsTOTRzcso62vYbw38njrFs6j3ade/NMybKsWbmE0UP78cZbDWn90aee/Bo8hDYCb6WqZTMOJaywmzxsM0uCkUMFPDx81c24q2E0m55Z/HicPHGcWtWrEBcbx5ipvxEfH8fE0cN4pUZdNvy9npDQrJR9oyH/bNtIaKFSWAKM4XSBwWmwx9496cUeE83ROQM5tWI86Yu+wms9fuSfxVM4te0PanzUnZSpQ1g380fK1GhA8XLlGTegG0VLl+PdNu05euQgnT9pSaGizzBy9Fi/6By+Ez88JL/hNetmtqoCnCO9uUJSZTQyn518YNoUn0TPLPZCzp79jzpvvMbli1GMnTqXfAUL07XDx6RIGcyrtRpyZPvfPF+7GfGxMVw5c5RM+Yrd3DZF2gw4Yq/hiIsBjFrA5YObOTDuI6J2rqRIrdZU+fxbTm5eyYHFk8lXqR7PVHyDWQM7EZozH526f8PwHu0AGDJyAteir/JpiwYEBAQw1Y86hzW+QXbO8bQlgmVm1wZuEPYsnNjkdx3Gemaxl3ExKoo6NV7jzKmTjJ7yK0WLl2LhnJ/ZvfkvPuo5mPXL5xOYIiWlq9XjbIQR+yRd2K0soCHZ8wJwctlYUmQK48LOFVw/9Q+B6bJQ4cuxZClcmgsRe9n8U19CC5WmaafezOrfkeuXL9J3zHSWzJrC7s1/8dW3P/DEk9lp17IBxyMOM2v+UnLkzGXKd+IJdKwh76SSdRsAyx1lTCn/zpDWza2p6RN4Gi6fhHRhpmhyB+4ygttmFgPt0DOLH0p0dDT16rxBxOF/GRU+i9LPvcjVK5f5tm8P8j31DBVr1uOn777hqRerkCokPeeOHwYgJFuem/vIXrICwVnzc37TPABSPpGXUs26kqf8m1gDg4i5HMWfIzqSIiQDrb4ZxY4Vv7F7zWKateuGUoopw/tRrlI1atVvwqA+nVmzcikDv/ueF17y7wpdgE5V6ZW8bNnJMUcoR1TWh6/sAbY6nA9dxzdqI0gEbYDh3JpZvAxjprHmPthsNpo3aciubZv5dsxkypWvCMDY4QO5cO4MXb6bwO5Nf3L9ykWKVagBQNTp44jFSqpMt24SsVio3ncq16POIiKkzpzt5mf2+Dj+/L4DsVeiaD18BtcuX2TBqK/JU6IcVes2oWPjaoRkyMigYaOZ9tMYpk74gdYffcJ7rdp49sswgavXEpVMT+NJbHE8b9nLXPuLeEtn/j6VkxgVSMoTm1ybF9lk3JWP4DzQ+KEram7yeft2rFmxhO79hvFqNSNuz8njR5k6cQyVajWgYLFSjPqqE0HBqclfxsiSdCXyLClCMmCx3n4arQGBpAnNftsyh8POxvG9OP/vdhp0H06m7LkY+8nbBKZISfeBo/i+12ecO32CiTMXsfHPtQzq/SWVX69Jn36DPfMFmIzdplsuvY4TG0kjMaxxeE8wQxsB7FR5efb4RrOluBS3GIGI5AE+AXInLEMp9aY7yvN1Jk0cx4xJ42j+wafUb9ry5vK+vbtgsVpp/NEXOBwO/ly1lAJlyxMYlAIAh8OBxfrw4FvK4WDrpH4c37CU197vRJHyVZnW80MiTxzlq3E/s3T2/9iwaglf9B5IfHw8XT5tSfHSzzJx8lSfzC3wKOi0ml7IwZXEKyt/OoqareQ2tjoK8OzppRB3DYL8Y/CEu67+uUAERliJIQlemjvYtmUTXTq258UKVWjf5auby7dv/pv1y+ZT972PyZw1G0f27+ZK5FkKl6t0c520GUO5fvEcl04euu/+HbZ4Nv7Yk8N/zOGVRh/yYr1WzBnchQMbVvNB136cO32SmeO+o0qdRhQv9SyftmhAztz5+Hn2PIKDHzwxzZ9w2HU+Aq/j0O9sVQW4inf92K53PA2OeDiyxmwpLsNdfQQxSqkRbtq33xAdHU2LZo0IzZKVASPG33z6Vkox4KvuZMichTrNjbAQW9avAqBA2fI3t3+pXgs2LvqFpd3qkev56mQrVYGwMpVvjvOPuRTJhnHd+W/PBl597zNerNeS2QM7sWPlPBq3/ZInsufk60+aUrzcy7R8/yM+aFSTDJkyM2fBEjJkvDtstT9jVogJzX2IjoTTO1hnr2u2krvY4HgKgtLCgUVQ6HWz5bgEdxnBcBHphdFJHHtjoVJqq5vK80lGDBnIyWMRTPxlMeky3PrhXb96BXu3baBN1/6kTGXEDNqydTOZw/KQJsOtDGCp02ei7Zg5TOnbif/2beToX4vIVrICT9dpw4Uje9k9exTx169Sp0M/CpWrxJRu73N42180+aQLxcq+QM/W9cmZrxBfdO3Dh01rkyJlMHMWLCXrk9nu0qrReJSINYBinaPYQ1f1NHEEQv5K8M9ScDiMyKQ+jruMoBjQFKgE3KhzK+f/GiDqwgVGfz+MarXqUabcSzeXK6UYNuhrsmQLo0rdW/3tUWeOkyks9137yfBEdj79fhp2u42/ZoezbOJQTm1bDUDGPEVp3HUQl86dYVSbWly/HEX7viPIka8gPVvXJ2OWrPQeMIx2rRpisVj4bdFycufJ6+5D90oCdD4C7+LwakgRws4YL70eC1aDvb/B6e2QvZTZah4bdxlBPSCvUkqPybsPM6ZOIibmOi0//vy25etXr+Cf3dto22sIgYFBN5enTpeRK5Fn77s/qzWAl+q3onjlNzmwYTUhmZ8ge8FiLB7Tn+0r5hKaMx99xxiG0bN1A1KnTUffIaPo1KYZdrudeUtWkq9AQbcdr7ejJ5R5GYdXQ+6XsO/wUoMuUBXEAvsX+oURuKtOsxuSFhhERFKKyEYR2SEie0Skj5u0eQVLlywlf6EiFHzq6duWjx31HZmyPEnFN+vdtjxf7jycPxHBlQsPjlmfNlMWSlerR+y1aEa0qs7OVQuo3/ozxvz6O7ExMfR4vx6p0qThm6Gj6dK2JfHxccxdtJxChYu4/Bh9Cbvdv0IG+DRREcYrbwVzdTyI1JkgX2XYNgVssQ9f38txV40gPbBfRDZxex/Bg4aPxgKVlFJXnbOR14nIYqXU327SaBp2u50dWzdSvXb925b/s283OzaspXn7brfVBgAq127I8rnTGdq0EjmKlCQ4TQgFn6vA069UI0XwrdwDkaeOsuiHbzjw9yqyFyxGv/G/kKdgEbas+50Bn7ckY5as9B0yii6ftDJMYPEKnipyuxklR6w6DLX3cHi18TfPK8D9R8SZTrk28L+6sGcOFG9otprHwl1G0CupGygjV+BV57+BzpdfPqYd2L+X6KtXKFHmuduWTw8fS1DKYKrWbXLXNk+VKMvIX1czd9IYDvyznxMHdrFn7VLW/zKBpt/8iFKKv34NZ+OC6VgDgmjRsTc1G7XCGhDAkl8mM7Z/V3Llf4re/YfSsU0z4uPjmLNouTYBJ4GBvt/h5zcc+h3SZoPQQni1EeSrDJkLwd8/wDMNfDqErbtmFv/xKNuJiBXYAuQHRimlNtzxeWugNUBYjpyPK9M0/lq/FoCSZW8l4Y6Pi2Ppgrm88GoN0qbLcM/tcuQtyCd9hgJGp/LmNcsZ3KUtQ5tVRjkcWCxWSr72Fm07dCNTlqxcvxbNj193YsWc6ZR6sSKduvbm0/caYLPFM2fRcooU9b4RGWbhZ8EkfReH3agRPFXT+39YReD5j2B+O6PjuGhtsxU9Mu6aWVwOYzLZUxhZy6xAtFIq5EHbKaXsQAkRSQ/MEZGnlVK7E3x+M61fiVKlffbWXbhgIdlz5iYsZ+6by/bu2sbVyxcpV6laovYhIpR9pSpDpy5i6awpPBGWkzLlXyVrmBEhdO+2jYzo2Z7Tx47w/iedqFKjDh81q4PD4dDNQffArieUeQcnt0LMJcjnIwMMSzSBTRNg8ZeQryKkTGe2okfCXU1DI4GGwC9AGaAZkOghKUqpiyKyCngdo+PZbzhx/Bh//rGClh93uG35kYP/AJAzX6Ek7S8sT35adrrVr37+zCmm/jCIlXNnEPpkdib8vIjgVKl4v2ENgoJS8NviFcm+Y/he+GOyHZ/k0O+AQN6KZit5IAnDUxeT+swN6sHcbxrTIb4NEQPeMFHZo+G2hlGl1EHAqpSyK6V+wvhRvy8iEuqsCSAiwUAVnBnO/InJE432/LqN3r1ted6ChQFYt2zeI+038uwZxg3oxgdvPM8fC2bT/INPmb96C7GxMbSoX53UaUNYsHy1NgGNd3NoJWQraWQD8xF2qbyMtNehrnUtrayLzJbzSLirRnBNRIKA7SIyCDjNw03nSWCSs5/AAsxUSi1wkz5TiImJYdJP43m58utkC7u9j6NYiTK8XK0O00YN4r+Tx3itbhOy5czDteirXIw8R0j6jDyZM89dT66XLpzntynjmDf1R+y2eCrWrEfHL7qTLSwns6b9xDddP6NA4aL8MncBT2R90pOH61PExtrMlqC5dgFObIaXPjNbSZIZZnuL/HKCrgHTYHdleNr7QmM8CHcZQVOMH/O2wGdADuCB34xSaidQ0k16vIJZM6YSFXmexi0+vOszEWHg0FGMyZmDqRNGs3LujLvWyZItjBoNW1Di+Ve4GHmO9cvms2rBLGzxcbxc/S2+7NKLsFx5sNlsDO7TmSnjR/FihSpMnjqDtCEP7J5J9ugw1F7AwRWg7FAocf1k3oTCQof4D8kcdJnnZr8PASmhcA2zZSUaUS4eLuF8op+slHJrPoISpUqr5Ws2PHxFLyE+Pp6yxZ8iY8bMTJ2/6oFt0pcvRrFu9QouRkWSOnUaMmYO5cypk8z9dSa7Nq2/uV7K4FS8XK0OH7VtT94CRtNS5LmzdGnXir/XrqLRe234duh3BAS4LSOp3/BEjvw4oiJM7SgoU6aM2rx5s5kSTCN354V8HziCcpZ9PBs7CuW+Vmu3kprr7Mk3Gs7shEY/e1Wnt4hsUUrdM+eny38hlFJ2EcklIkE6xMQtZk6bwqnjR+nWd8hDOyZD0megeu16dy2v16QFB/bu4sTRI6QMTkWp514gOPhWiN4N6/+g66etuHzpIsNGjaNRs/dcfhx+S7zvzw71ZQKx8YplB4vsz/msCQBEEwxNZkF4TZjRGJovgLDSZst6KO56VDwMrBeReUD0jYVKqaFuKs+riY+PZ/DAfhR9phQvVaz6WPsqVKQYhYrcPv4/Pi6O7wd/RfiY4eTOV4CZvy2k6NPek9XJJ7DqWpOZlLXsJ0Sus9Lh+3F7CM4ATefA+Mow4x14/3evz2/sLus9BCxw7j9tgleyZPbM6Zw6fpQPP+/i8mGKR48cpGntVwkfM5x6TVqw+s/N2gQeBYuXBjdLJrxm2USMCmSdw0/mt6QJNZqG4q7Bz03BHm+2ogfirpnFfh0wLik4HA6GDRlEoSLFKF/pNZfue9nCufTq+BEBAQGET5tF9Zq1XLr/ZIVDdxabht1GdesGVjhKcZ2UZqtxHVmegloj4ZfmsHYoVPjSbEX3xV0zi0OBL4CicOvMKqW8p+fEQ6xeuZzD/x6g/4jxLqsN2Gw2hvXrweQfR1KsZBkmTf3Zp0NueAPWO4L8aTxIxFpC5TLz7c8/fF1fo2ht2F8P1gyCwtUhq3eGdXFX09BUjMlgeYA+GPmLN7mpLK9m1crlpEiRkirVXROHJOrCeT5oXIvJP46kYfPWLF7xhzYBF2DViWnMY/dsrqhgVjtKmK3EPVQbBCnSwvKeZiu5L+7qIcuklJogIu2cAej+cIakTnb8d+Y0adOlIzDo8Z849+/ZyWetG3Puv9OMGD2ehk2au0ChxsBnQ1f5NrZY2DePZY7SxOIftbKE4Sdu0NJanR7XpxoB9fJW8LSkh+IuI7jRM3JaRGoApwDfmTPuQipXfZ25s2fSpnFtPvmiJ0+XSPpQMqUUc3+eQr/uHUiXISPzlvxOqTLPukFt8sXh0EZgCvvmQ8wl5tjLm63ErfzPXoX3ApZyPvxzasd9BdzeTBwxwNzJZ+5qGuorIumADkBHYDzGDONkR9367/BFt14c2LeL99+pycED+5K0/ZlTJ/i8dWN6dfqYZ0o/y+/rN2oTcAMOh44+agpbJ0H6XKx3FDVbiVuJJYgfbLUoYTlEWTlgtpy7cKkRONNNtscIMNcQ2K+UqqiUKq2UerRoaj5OQEAAHTt35/d1G4m+eoVFc2cmarvTJ48zrH9Palcqy/rVK+jepx/zFi0jS5Yn3Kw4eaJnX5vAhcNwZA2UaurTk8gSy6/2l4hSaWgZsNhsKXfh6qt/Ekaz0FqgGlAEaOfiMnwSu90Ynpgla7b7rqOUYs3KJYSPGc7WjX8iIlSu9ib9BgwiV+48npKaLNGpKk1gyyQjAXyJxrBom9lq3E4MKZhmr8SH1vnkkP84rrznoc7VNlxEKdVEKTUWeBvw74a/JPDrTCOIXLnyFe75+YXIc0Y/wnv1+e/0KTp17cmGHfuZOuMXbQIa/yPuGmwJNwKzhdz/4cjfmGyrigOhsfV3s6XchqtrBDenzymlbDrZh8HFqCh+GDmMcuUrkjtvgbs+37F1I+1bvcPlSxfp/+0wmrVoTWBgoAlKky82naHMs+z8GWIuwnN3R+L1Z/4jI6scJalrXcO3tnrY3DZeJ2m4ukZQXEQuO19XgGduvBeRyy4uy2cY1K8Pl6Iu8Hm3vnd9tnLxPN5vWJNUqdKw7I+/aPnBx9oETMChjcBzKAUbxkLWZyDXC2ar8Tg/2ysQKpeoYNlhtpSbuNQIlFJWpVSI85VWKRWQ4H2yDIi/e9cOJo4bTb0mLSlc9PYYQL/N/B8d2jSlQOEiLFr5h44RZCK69upBDv0O5/ZBuQ+9P0G9G1jlKMFZlZ4G1tVmS7mJd9RL/BSHw8Hnn35MuvQZaNux+22fTRo7giF9u1GufEVmzJpLqlSp7rMXjScQS/L7QTKD3J0XMjmwP4Ut6XlpRiriZtw9+crfsWPlV3t5WlkXkplLnMf8hPf+P2bLRH6eOpntmzfwebe+pMtgzKdTSjFqyDcM6duNqm/UYdbcBdoEvACrxZxbQURai8hmEdl87tw5UzR4ksJyjJetuwi3VSWO5NsE+ov9ZQLEQS3rOrOlANoI3Ebk+fP06vYlJcuWo+bbjQCjhjCw1xeMHTaA2vWbED5lGkEuCD2heXzMaqFQSo1TSpVRSpUJDQ01R4QHaWldxDWVgqn2V82WYiqHVHa2OfJTz7oGbwhvoo3ATQwZ2Jcrly/Rvd9wLBYLcbGxdG7bgmk/jaFN2/aMHT9RT2LyIuy6s9j9XDlDLet6Ztlf5hJpzFZjOrPt5SlsOU5RiTBbijYCd3Dq5AnCJ4yjTsNmFChchMjz52jTpDZL5s+mx1f96dNvkO6c9DJsOnm9+9k0ngAcTLS/brYSr2Ce/XliVaBXdBrrR1I3MPmn8dhtNlp89Dmb/lpLt/atiYo8zw/jJ/F2g0Zmy9PcA6tVh6F2K/HXYfNEVjhKEaGeNFuNV3CZNCx0PEdt6zqIi4ag1KZp8YoagYjkEJFVIrJXRPaIiE+Hpbger1BKMW74QFrWr05gYBALlq/WJuDFWAO84lbwX3bOhGuRTLBVN1uJVzHVVpkQuQ67Z5uqw1uufhvQQSlVBCgHfCwiRUzW9MgUzJsLgMW/zaJN2/as3biN4iWTHn5a4zniYr07p6xPoxT8PRqyFmODKmy2Gq9iiyrIAUcYbJ5oqg6vaBpSSp0GTjvfXxGRfUB2YK+pwh6R+o2akip1asq/UonMyWAkiK9zMSoKR1ys2TL8l8OrjQlktUdDhO4bux1hir0KfU/9BBHrIPdLpqjwlhrBTUQkN1AS2GCukkcnMDCQOm830CbgAxw7GsGr5Z/FEpjCbCn+y9+jIXUoPF3XbCVeyS/2VyB1Flgz2DQNXmUEIpIGmA20V0rdFZso4eSbyPPnPS9Q41ccOxrBWzWqcOnSRZ2Yxl2c+wf+XQplW0GANtt7EUsQvPCJUXM6bk5GX68xAhEJxDCBqUqpX++1TsLJN5kyZ/asQI1fceb0qZsmMGveEqMdW+N6/h4FASkNI9DcnzItIFUmWNoVHJ4fyuwVRiDGoPoJwD6l1FCz9Wj8n7mzZ3LsaATTZ8+neMnSWAO9orvMv4g+DztmQPGGkFo/uD2QFGngtX5wYiNsmuDx4r3CCIAXgaZAJRHZ7nzpcWYat/Hvgf0AFHFGfLUG6HkELuevkWCLhXIfm63EN3imAeSrBCt6w397PFq0VzwGKaXWAXo4gcYjDOr3FVPCJ9D03ZY3A/4p3TTkMnJ3XkgGLrMuxQ+scDxPuyH/Av+aLcv7EYE3R8L4yvC/t6HlMkifwyNFe0uNQKPxCIP6fcW3/b/mnSbNGTz8h5vL7TrEhEtpHbCQYOIYYatjthTfIl12aDLbmGk88XU4vdMjxXpFjUCj8QQJTeC7UeOwJAg9HaCbhlxGbjlNC+sSfnO8wCGV3Ww5vscTRaH5PJj+DtfGvEovW3NjiGmCRpOIATVcWqSuEWiSBQ8yAY0LUYqvAsKJJYB+8TqkyiOTrQS0XsV2Rz4GB45jVOBw0nHVbcXpu0Hj99wwgYaNm93XBCxWfSu4hE3jedm6i8G2Bpwjg9lqfJu0WWkc35X+8e9QxbKFJSk6U0b2u6Uo3TSk8WsSYwKAnkfgCg6ugMVfstJeMtknnkkquTvfL2WnhbH2mqx3FOX7wO+ZEdSX/rZ3QFV3aTYl/Rik8VvuNIEHhZrWTUWPyfbpML0RZCnCp/FtceifFpeyW+XlzbhvWO4oTY/AqTD3I2NorovQZ0vjlyTFBACsVj16+ZG4fBpmtYS5bSDHs9BsLtEEm63KL7lCKj6Kb8d38XVhxzSY8hZcj3LJvrURaPyOxQvmJckEAGw2HWsoSdjj4c+RMLIM7JsPr3SGpnP1DGI3o7Aw3F4X6k4wZiFPeA0unXjs/eo+Ao3fcTTiMABf9f820ZnH4uP1PIJEE3UUZrWAk5v53V6CPrZmHF2aFZYuNVtZ8qHY25A2K0x/ByZUNUw4tOAj704bgcavOHY0gh9HjyRz5lBSpU586j+7XRtBoji+EabVB4edtnGfsMBRDh0UwPPc6FwuIp2ZFDQQRlamSVxXDqicjzTHQDcNafyGY0cjqFP9Va5cucyMOQsICgpK/MZ60NDDObQKJteC4AzQejULHM+jTcBc9qrcNIjrgY0Apgf1paAcf6T9aCPQ+AUJTWDWvCU8U6JUkrZX8TpD2f3I3Xkhb3cZwvXJ9dkXm4kypzqRe7B7xrNrks5hlY0GcT2II5CpQf0g8lCS96GNQOPzPK4JACD6VrgfT8lRJgYN5pTKRJO4rpwnndmSNHdwTD1B47iuWHDA/+oaIcCTgO4j0Pg0LjEBwBKYhGak5ERUBJOCBnKVYJrGdSFSm4DXckhl5/24Dky78A27B1ajUVw34ghM1Lb6MUjjs7jKBACdqvJeXDkDk2sTRDzN4jpzCj001NvZqgryefyHlLH8Q6+AyYneThuBxidxpQkABOgMZbcTHQlT6sDVs7wX9wUHVZjZijSJZJGjHGNsNWkcsJK6ljWJ2kYbgcbncLUJAIhFj365SXQkTH7T6HRsOJVtqoDZijRJZLCtPn/ai/B14E/kk5MPXV8bgcanOHP6lMtNAPQgyJtcOgnh1SHyIDSaAfkqmq1I8wjYsdI+/mOuE8TIwO9JQdwD19f1YY1PsWjBbxw/dpT5y1a7zAQAAgKS9zNR7s4LyS8nCA8aRDqieT++I3//eB24X1RMjbdzlgx0iG9DeNBgugRM470HrJu8r36Nz7Fvz24AChUu4tL9igtD+voiL1p28WtQb4Kw0TCuB387XPv9asxhtaMk423VeDdg2QPX0zUCjc8wqN9XTJowjibNW5A+g2uTnnhz0Ln7xap3SbpCpeCvUUwOHMC/KoyWcR05Sejj71fjNQyyNaScZR9w//zH2gg0PkHCVJPfjhjt8v17bY0g6ihvWdbwlOUY6YgmhiBOqsxsdhQEe1WwJm6c+D25dgHmfQL7F7DMUZaO8W10CGk/JI5AGsV1Axrcdx1tBBqvxxP5hu12L6oRxEXDzpmwbQqc3MLQIIhRgUSRlpTEkUGcuWu//R6efgtKNjVy3CYWpWDvXFjcGa5FQpWv+XB+XnSXuf9ymQcHYPQaIxCRicAbwFml1NNm69F4B55KOh8fE+OW/SaF/ScjGdO9Ce9YV5JOrrHPkYO59ndY5SjBQZX9Ztav9FyhnGUfY54+Dtv+B5vGw5PFoXgjKPImhGS7dwG2WPh3Oaz7Dk5uhqzPQKOfDROZrzuFkzNeYwRAODASSPx0OI1f4ykTAMBuc9++E0khOc771gUsdjzHT7bX2KIKcq+n9IukZYnjWXi7j5GhaudMwxCWfGm8Qp8yjCEkGwQGQ8wlOHfACCEde4njjlBG21vyc0QF7CNOAg8fZ67xb7zGCJRSa0Qkt9k6NN6BR00AwGL+rXBepePl2CGJ7qy91YkcBnQmv5zgVctWnj2zn0oxayD6LDhsEJASMuaDIm/y7oasrHMUw+Y9t77GC/Cpq0FEWgOtAcJy5DRZjcZdhE8Y61kTAPCCzuIzZEQeY8TOQRXGQXsYY+xvwjkARQB240f/KnDMVUo1/oYo5T0ZOZw1ggWJ6SMQkXPAUXdrSgSZgaTFfPUd/PnY4Pbjy6WU8vi4yYQPN0AhIBJzv3NvOOdag3vKv+817rNG4C2IyGalVBmzdbgDfz428M7jM1uT2eVrDeaUr2cWazQaTTLHa4xARKYDfwGFROSEiLQ0W5NGo9EkB7yms1gp9Y7ZGh6RcWYLcCP+fGzgncdntiazywetwePle1UfgUaj0Wg8j9cf2BwIAAAG6UlEQVQ0DWk0Go3GHLQRaDQaTTJHG4Em2SJeG3JUYybJ8brQRpBERKSQiDwvIoEiYjVbj6sRkfwiUkZEUpitxR2IyEsi0hRAKaW85aY381oy+5yLSFEReUVEMplRvlOD6deFiNQUkXaeLhe8aNSQLyAibwH9MKJ0nQQ2i0i4Uuqyucpcg4i8gXF8kcAZEemllPrHZFkuQUQsQCpgrPGvpFZKjXHe9BallClxqEWkoFLqH6WUXUSsSim7h8s39ZyLSDVgIHAYCBSRlkqpMx4s3yuuCxGpCnwNdPJEeXeiawSJREQCMTI7tFRKVQZ+A3IAX4pIiKniXICIvAAMBporpSoCUUBnc1W5DqWUQyl1FZgETABeEJHPbnxmhibnj/B2EZnm1GH3ZM3A7HMuIhWA4UArpVRtIA7waFQBb7gunOdhCtBaKbVcRNKJSC4RSeWJ8kEbQVIJAQo4388BFgCBQCNvaWJ4TAYqpbY53/cCMvphE5ENw8AnAc+KyFAR6S8GHrsfRCQ10BZoD8SJyP/A82aAuef8P+ADpdRGEckKPAe0FZGxIvK2h+8pM6+LSCAeeNLZPDYXGA2Ee+p70EaQSJRS8cBQ4C0RKe98WlgHbAdeMlWca9gA/Ao326tTALkwzA8z229dzG/AGaXUSmAz0AYIUQYeqxkopaKBFsA0oCOQMqEZeEiGqedcKbVPKbXK+W9L4AdnzeAv4G2MwGuewrTrQil1AKgBfAfswLgm3gCWAHUB1ybovgfaCJLGWmAZ0FREXlZK2ZVS04BsQHFzpT0ezmO50dchwEXgglLqnIg0BvqKiD8ktL2OEcbkfYybfQCQU0Q+8LQQpdQppdRVpdR54AMg+IYZiEgpESns5vK95pwrpb5RSvV1vg/HMKMcnijbianXhVJqB8aP/wCl1I/OJquJGCbg9pj7urM4CSilYkRkKqCALs4bNRZ4AjhtqjgXopSyAVdF5LiI9AeqAu8qpa6bLO2xUUqdEpHjQA/gY6XUfBGpCBw0WVek80dnsIjsB6xARQ+Wb9o5FxFRCUIciEhdjHvqlLvLvoE3XBdKqb3A3hv/O7+HUDzw26JDTDwCIhIEvIjxFBcDDE/QzurzONskA4F9zr+VlVL/mqvKdYhIDiCLUmqL83/TRg3dibOj8kugilJqlwfLNf2cO/smmgCfAw2UUrs9XL5XXBfOc/EeRpNhPaXUHreXqY3g0XG2q3q0bdmTiMi7wCZPXIhmcOeTqNmISAZgJtBBKbXTJA3vYtI5d47MqwIccrabm4LZ14XTCF7B6LPY75Eyveg+0HgZZt8QyRERSamUijGxfH3OkyHaCDQajSaZo0cNaTQaTTJHG4FGo9Ekc7QRaDQaTTJHG4FGo9Ekc7QReBgRsYvIdhHZLSK/eDKw1AM0VXAGvkrqdplEZJWIXBWRke7QpvEd/OzariIiW0Rkl/NvJXfo8xa0EXie60qpEkqppzGiLbZJzEYi4s5Z4BWAJN0sTj0xGDMxO7pBk8b38Kdr+zxQUylVDGiOER3Ub9EhJsxlLfCMiNQEugNBGJEIGyul/hOR3kA+IC9wTES6YFyQqZ3bt1VK/SlGON8+GLFiimFMStoFtAOCgdpKqUMiEgqM4VbskvYYeRXaAHYRaQJ8Auy/cz2l1Po79Sil3gHWiUh+l38zGl/HH67tG+zBiAOVQikV66ovyKtQSumXB1/AVeffAIyIhx9iBJa6MaejFTDE+b43sAUIdv6fCkjpfF8A2Ox8XwHjRnkSI4LkSaCP87N2wDDn+2nAS873OYF9CcrpmEDjg9a7qSfB+u8CI83+bvXL3Jc/XtvOz94GVpj9/brzpWsEnidYRLY736/FSIZRCPhZRJ7EeHI6kmD9eepW4K9AYKSIlADsQMEE621SSp0GEJFDGFFSwXh6uhG87FWgSILw5iEikuYeGh+0XkI9Gk1C/O7aFpGiGBnUqj7s4H0ZbQSe57pSqkTCBSLyPTBUKTXPWRXuneDj6ATvP8NI5lEco38nYSiChFVWR4L/Hdw6zxagnLojhME98l48aL3oO1fWaJz41bUtImEYCaiaKaUO3bkjf0J3FnsH6TCqvGB0TD1ovdPKCHLXFCNUcVJYhtFOCoDz6QvgCpA2EetpNEnFJ69tEUkPLAQ6K6XWJ1GLz6GNwDvoDfwiIlswRivcjx+A5iKyAyhM0p/OPwXKiMhOEdnLrVEd84E6zqF/5R+w3l2ISARG5rZ3ReSEiBRJoiaNf9Mb37y22wL5gZ7ObbeLSJYkavIZdNA5jUajSeboGoFGo9Ekc7QRaDQaTTJHG4FGo9Ekc7QRaDQaTTJHG4FGo9Ekc7QRaDQaTTJHG4FGo9Ekc/4PUnjPxNe8FU4AAAAASUVORK5CYII=\n" + }, + "metadata": { + "needs_background": "light" + } + } + ], + "source": [ + "# Discard warm up\n", + "chains = full_chains[:, 200:]\n", + "\n", + "# Check convergence using rhat criterion\n", + "print('R-hat:')\n", + "print(pints.rhat_all_params(chains))\n", + "\n", + "# Check Kullback-Leibler divergence of chains\n", + "print(log_pdf.kl_divergence(chains[0]))\n", + "print(log_pdf.kl_divergence(chains[1]))\n", + "print(log_pdf.kl_divergence(chains[2]))\n", + "\n", + "# Look at distribution in chain 0\n", + "pints.plot.pairwise(chains[0], kde=True)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We see that sampling u approximately uniformly from the interval \\[0, 1\\] at each MCMC iteration still recovers the high probability regions of the pdf reasonably well. It seems, however, that in comparison to before [11](#gradualu) the tails are less extensively explored. This is because the gradual updating of u clusters rejections of proposals (if u is close to 1, more proposals are rejected), while the total amount of rejections for each chain remains the same (u assumes values in \\[0, 1\\] uniformly for both updating strategies). As a result, clustered rejections, lead to a better exporation of the space, which is in this case illustrated by a better sampling of the tails. For more information, see [Neal Langevin MCMC](http://pints.readthedocs.io/en/latest/mcmc_samplers/hamiltonian_mcmc.html)." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.7.5 64-bit ('venv': venv)", + "language": "python", + "name": "python37564bitvenvvenvd90f37b0ba2d4c088dc4ac74e8b7e700" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.5-final" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} \ No newline at end of file diff --git a/pints/__init__.py b/pints/__init__.py index f9f8153848..382504f66f 100644 --- a/pints/__init__.py +++ b/pints/__init__.py @@ -219,6 +219,7 @@ def version(formatted=False): from ._mcmc._mala import MALAMCMC from ._mcmc._metropolis import MetropolisRandomWalkMCMC from ._mcmc._monomial_gamma_hamiltonian import MonomialGammaHamiltonianMCMC +from ._mcmc._neal_langevin import NealLangevinMCMC from ._mcmc._population import PopulationMCMC from ._mcmc._rao_blackwell_ac import RaoBlackwellACMC from ._mcmc._relativistic import RelativisticMCMC diff --git a/pints/_mcmc/_neal_langevin.py b/pints/_mcmc/_neal_langevin.py new file mode 100644 index 0000000000..f2fb30097a --- /dev/null +++ b/pints/_mcmc/_neal_langevin.py @@ -0,0 +1,505 @@ +# +# Horowitz Langenvin MCMC method +# +# This file is part of PINTS (https://github.com/pints-team/pints/) which is +# released under the BSD 3-clause license. See accompanying LICENSE.md for +# copyright notice and full license details. +# +from __future__ import absolute_import, division +from __future__ import print_function, unicode_literals +import pints +import numpy as np + + +class NealLangevinMCMC(pints.SingleChainMCMC): + r""" + Implements the Neal Langevin MCMC algorithm as described in [1]_. + + Similar to MALA and HMC, this method uses a physical analogy of a particle + moving across a landscape under Hamiltonian dynamics to aid efficient + exploration of parameter space. The key differences are a persistent + momentum after Horowitz [2]_, and clustered sequences of proposal + rejections, which leads to better ergodicity properties. + + It introduces an auxilary variable -- the momentum :math:`p_i` of a + particle moving in dimension :math:`i` of negative log posterior space -- + which supplements the position :math:`q_i` of the particle in parameter + space. The particle's motion is dictated by solutions to Hamilton's + equations, + + .. math:: + dq_i/dt &= \partial H/\partial p_i\\ + dp_i/dt &= - \partial H/\partial q_i. + + The Hamiltonian is given by, + + .. math:: + H(q,p) &= U(q) + KE(p)\\ + &= -\text{log}(p(q|X)p(q)) + \Sigma_{i=1}^{d} p_i^2/2m_i, + + where :math:`d` is the dimensionality of the model and :math:`m_i` is the + 'mass' assigned to each particle (often chosen to be 1 as default). + + To numerically integrate Hamilton's equations, it is essential to use a + sympletic discretisation routine, of which the most typical approach is + the leapfrog method, + + .. math:: + p_i(t + \epsilon/2) &= p_i(t) - (\epsilon/2) d U(q_i(t))/dq_i\\ + q_i(t + \epsilon) &= q_i(t) + \epsilon p_i(t + \epsilon/2) / m_i\\ + p_i(t + \epsilon) &= p_i(t + \epsilon/2) - + (\epsilon/2) d U(q_i(t + \epsilon))/dq_i + + In this method each iteration performs exactly one integrational step and + is therefore in this regard equivalent to MALA or HMC with only one + leapfrog step. + + Proposals :math:`(q', p')=(q(t + \epsilon), p(t + \epsilon))` are accepted + if + + .. math:: + u < \text{exp}(-H(q', p')) / \text{exp}(-H(q, p)), + + where :math:`\text{p}(q,p)\propto \text{exp}(-H(q', p'))` is the + probability of the phase space position :math:`(q, p)`. Here + :math:`u=|v|` is updated at each MCMC iteration by an increment + :math:`\delta \sim \mathcal{N}(\bar \delta, \sigma _{\delta})` and + reflected off at the boundaries 1 and -1, such that :math:`u\in [0,1]`. + This in contrast to MALA and HMC, where :math:`u` is uniformly drawn from + :math:`[0, 1]` at each iteration. The gradual updating of :math:`u` leads + to a clustering of rejections, which overall improves the ergodicity of the + sampler. See [1]_ for more details. + + If the proposal is rejected, the :math:`(q,p)` is set to the last sampled + values and the momentum negated. If the proposal is accepted + :math:`(q,p) \leftarrow (q',p')` and the momentum is NOT negated. + + At the beginning of each MCMC iteration the current momentum is updated by + a random variable + :math:`\Delta p \sim \mathcal{N}(0, \mathbb{1})` + + .. math:: + p \leftarrow \alpha ^ 2p + \sqrt{1-\alpha ^ 2}\Delta p. + + This leads to a persistance of the momentum for accepted proposals, + which avoids Random Walk behaviour in heavily peaked regions of the + landscape. + + Setting :math:`\alpha = 0` turns the persistance of the momentum off. + + See references + + Extends :class:`SingleChainMCMC`. + + References + ---------- + .. [1] "Non-reversibly updating a uniform [0,1] value for Metropolis + accept/reject decisions". Radford M. Neal, 2020 + https://arxiv.org/abs/2001.11950v1. + .. [2] "A generalized guided Monte Carlo algorithm", Alan M. Horowitz, + Physics Letters B, Volume 268, Issue 2, 1991. + """ + def __init__(self, x0, sigma0=None): + super(NealLangevinMCMC, self).__init__(x0, sigma0) + + # Set initial state + self._running = False + self._ready_for_tell = False + + # Current point in the Markov chain + self._current = None # Aka current_q in the chapter + self._current_energy = None # Aka U(current_q) = -log_pdf + self._current_gradient = None + self._current_momentum = None # Aka current_p + + # Current point in the leapfrog iterations + self._momentum = None # Aka p in the chapter + self._position = None # Aka q in the chapter + self._gradient = None # Aka grad_U(q) in the chapter + + # Iterations, acceptance monitoring, and leapfrog iterations + self._mcmc_iteration = 0 + self._mcmc_acceptance = 0 + + # Default integration step size for leapfrog algorithm + self._epsilon = 0.1 + self._step_size = None + self.set_leapfrog_step_size(np.diag(self._sigma0)) + + # Default weighting of momentum update + self._alpha = 0.9 # Default: high persistance of momentum + + # Default acceptance ratio parameters + self._v = None + self._delta = 0.05 # Default: slow updating of v + self._sigma_delta = self._delta * 0.1 # Default: moderate noise + + # Divergence checking + # Create a vector of divergent iterations + self._divergent = np.asarray([], dtype='int') + + # Default threshold for Hamiltonian divergences + # (currently set to match Stan) + self._hamiltonian_threshold = 10**3 + + def alpha(self): + r""" + Returns the weight of the momentum updates. + + Momentum updates before integration are performed according to + :math:`p' = \alpha ^2 p_i - \sqrt{1 - \alpha ^2}\Delta p`, + where :math:`\Delta p \sim \mathcal{N}(0,\mathbb{1})`. + """ + return self._alpha + + def ask(self): + """ See :meth:`SingleChainMCMC.ask()`. """ + # Check ask/tell pattern + if self._ready_for_tell: + raise RuntimeError('Ask() called when expecting call to tell().') + + # Initialise on first call + if not self._running: + self._running = True + + # Notes: + # Ask is responsible for updating the position, which is the point + # returned to the user + # Tell is then responsible for updating the momentum, which uses the + # gradient at this new point + # The MCMC step happens in tell, and does not require any new + # information (it uses the log_pdf and gradient of the final point + # in the leapfrog run). + + # Very first iteration + if self._current is None: + + # Ask for the pdf and gradient of x0 + self._ready_for_tell = True + return np.array(self._x0, copy=True) + + # First leapfrog step in chain + if self._mcmc_iteration == 1: + + # Sample random initial momentum using identity cov + self._current_momentum = np.random.multivariate_normal( + np.zeros(self._n_parameters), np.eye(self._n_parameters)) + + # Step 1 in ref [1] p. 5 + # Sample random adjustment of current momentum using identity cov + delta_momentum = np.random.multivariate_normal( + np.zeros(self._n_parameters), np.eye(self._n_parameters)) + + # Compute new momentum with a weighted update + self._current_momentum = self._alpha ** 2 * self._current_momentum \ + + np.sqrt(1 - self._alpha ** 2) * delta_momentum + + # Starting leapfrog position is the current sample in the chain + self._position = np.array(self._current, copy=True) + self._gradient = np.array(self._current_gradient, copy=True) + self._momentum = np.array(self._current_momentum, copy=True) + + # Start of step 2 in ref [1] p. 5. (ends in tell) + # Perform first half of leapfrog step for the momentum + self._momentum -= self._scaled_epsilon * self._gradient * 0.5 + + # Perform a leapfrog step for the position + self._position += self._scaled_epsilon * self._momentum + + # Ask for the pdf and gradient of the current leapfrog position + # Using this, the leapfrog step for the momentum is performed in tell() + self._ready_for_tell = True + return np.array(self._position, copy=True) + + def current_log_pdf(self): + """ See :meth:`SingleChainMCMC.current_log_pdf()`. """ + return -self._current_energy + + def divergent_iterations(self): + """ + Returns the iteration number of any divergent iterations + """ + return self._divergent + + def delta(self): + r""" + Returns the mean :math:`\bar \delta` and standard deviation + :math:`\sigma_{\delta}` of the updates + :math:`\delta \sim \mathcal{N(\bar \delta, \sigma_{\delta})}` of + the acceptance ratio :math:`u`. + """ + return [self._delta, self._sigma_delta] + + def epsilon(self): + """ + Returns epsilon used in leapfrog algorithm + """ + return self._epsilon + + def hamiltonian_threshold(self): + """ + Returns threshold difference in Hamiltonian value from one iteration to + next which determines whether an iteration is divergent. + """ + return self._hamiltonian_threshold + + def leapfrog_step_size(self): + """ + Returns the step size for the leapfrog algorithm. + """ + return self._step_size + + def _log_init(self, logger): + """ See :meth:`Loggable._log_init()`. """ + logger.add_float('Accept.') + + def _log_write(self, logger): + """ See :meth:`Loggable._log_write()`. """ + logger.log(self._mcmc_acceptance) + + def n_hyper_parameters(self): + """ See :meth:`TunableMethod.n_hyper_parameters()`. """ + return 4 + + def name(self): + """ See :meth:`pints.MCMCSampler.name()`. """ + return 'Neal Langevin MCMC' + + def needs_sensitivities(self): + """ See :meth:`pints.MCMCSampler.needs_sensitivities()`. """ + return True + + def scaled_epsilon(self): + """ + Returns scaled epsilon used in leapfrog algorithm + """ + return self._scaled_epsilon + + def set_alpha(self, alpha): + r""" + Sets the weight of the momentum updates. + + Momentum updates before integration are performed according to + :math:`p' = \alpha ^2 p_i - \sqrt{1 - \alpha ^2}\Delta p`, + where :math:`\Delta p \sim \mathcal{N}(0,\mathbb{1})`. + """ + if alpha < 0 or alpha > 1: + raise ValueError('Alpha must lie in the interval [0,1].') + self._alpha = alpha + + def set_delta(self, mean, sigma=None): + r""" + Sets the mean :math:`\bar \delta` and standard deviation + :math:`\sigma_{\delta}` of the updates + :math:`\delta \sim \mathcal{N(\bar \delta, \sigma_{\delta})}` of + the acceptance ratio :math:`u`. If ``sigma`` is ``None`` or ``0``, the + updates will be deterministic. If no value for ``sigma`` is provided, + it is set to ``None``. + """ + self._delta = mean + + if sigma: + if sigma <= 0: + raise ValueError( + 'The standard deviation of delta can only take non-' + 'negative values.') + if sigma > 0: + self._sigma_delta = sigma + else: + self._sigma_delta = None + + def _set_scaled_epsilon(self): + """ + Rescales epsilon along the dimensions of step_size + """ + self._scaled_epsilon = np.zeros(self._n_parameters) + for i in range(self._n_parameters): + self._scaled_epsilon[i] = self._epsilon * self._step_size[i] + + def set_epsilon(self, epsilon): + """ + Sets epsilon for the leapfrog algorithm + """ + epsilon = float(epsilon) + if epsilon <= 0: + raise ValueError('epsilon must be positive for leapfrog algorithm') + self._epsilon = epsilon + self._set_scaled_epsilon() + + def set_hamiltonian_threshold(self, hamiltonian_threshold): + """ + Sets threshold difference in Hamiltonian value from one iteration to + next which determines whether an iteration is divergent. + """ + if hamiltonian_threshold < 0: + raise ValueError('Threshold for divergent iterations must be ' + + 'non-negative.') + self._hamiltonian_threshold = hamiltonian_threshold + + def set_hyper_parameters(self, x): + """ + The hyper-parameter vector is ``[alpha, step_size, mean_delta, + std_delta]``. + + See :meth:`TunableMethod.set_hyper_parameters()`. + """ + self.set_alpha(x[0]) + self.set_leapfrog_step_size(x[1]) + if len(x) < 4: + self.set_delta(mean=x[2]) + else: + self.set_delta(mean=x[2], sigma=x[3]) + + def set_leapfrog_step_size(self, step_size): + """ + Sets the step size for the leapfrog algorithm. + """ + a = np.atleast_1d(step_size) + if len(a[a < 0]) > 0: + raise ValueError( + 'Step size for leapfrog algorithm must' + + 'be greater than zero.' + ) + if len(a) == 1: + step_size = np.repeat(step_size, self._n_parameters) + elif not len(step_size) == self._n_parameters: + raise ValueError( + 'Step size should either be of length 1 or equal to the' + + 'number of parameters' + ) + self._step_size = step_size + self._set_scaled_epsilon() + + def tell(self, reply): + """ See :meth:`pints.SingleChainMCMC.tell()`. """ + if not self._ready_for_tell: + raise RuntimeError('Tell called before proposal was set.') + self._ready_for_tell = False + + # Unpack reply + energy, gradient = reply + + # Check reply, copy gradient + energy = float(energy) + gradient = pints.vector(gradient) + assert(gradient.shape == (self._n_parameters, )) + + # Energy = -log_pdf, so flip both signs! + energy = -energy + gradient = -gradient + + # Very first call + if self._current is None: + + # Check first point is somewhere sensible + if not np.isfinite(energy): + raise ValueError( + 'Initial point for MCMC must have finite logpdf.') + + # Set current sample, energy, and gradient + self._current = self._x0 + self._current_energy = energy + self._current_gradient = gradient + + # Increase iteration count + self._mcmc_iteration += 1 + + # Set rejection threshold (no default in paper) + self._v = 0.5 + + # Mark current as read-only, so it can be safely returned + self._current.setflags(write=False) + + # Return first point in chain + return self._current + + # Set gradient of current leapfrog position + self._gradient = gradient + + # Perform second (final) half of leapfrog step for the momentum + self._momentum -= self._scaled_epsilon * self._gradient * 0.5 + + # End of step 2 in ref [1] p. 5 + # Negation of momentum + self._momentum *= -1 + + # Before starting accept/reject procedure, check if the leapfrog + # procedure has led to a finite momentum and logpdf. If not, reject. + accept = 0 + if np.isfinite(energy) and np.all(np.isfinite(self._momentum)): + + # Evaluate potential and kinetic energies at start and end of + # leapfrog trajectory + current_U = self._current_energy + current_K = np.sum(self._current_momentum**2 / 2) + proposed_U = energy + proposed_K = np.sum(self._momentum**2 / 2) + + # Check for divergent iterations by testing whether the + # Hamiltonian difference is above a threshold + div = proposed_U + proposed_K - (self._current_energy + current_K) + if np.abs(div) > self._hamiltonian_threshold: # pragma: no cover + self._divergent = np.append( + self._divergent, self._mcmc_iteration) + self._momentum = self._position = self._gradient = None + + # Step 4 in ref [1] p. 5 (dealt with as if rejected in step 3) + # Negate current momentum + self._current_momentum *= -1 + + # Update MCMC iteration count + self._mcmc_iteration += 1 + + # Update acceptance rate (only used for output!) + self._mcmc_acceptance = ( + (self._mcmc_iteration * self._mcmc_acceptance + accept) / + (self._mcmc_iteration + 1)) + self._current.setflags(write=False) + return self._current + + # Accept/reject + else: + # Step 3 in ref [1] p. 5 + r = np.exp(current_U - proposed_U + current_K - proposed_K) + + # Eq. (1) in ref [1] p. 2 + # Update rejection threshold # TODO: which noise? + noise = 0 + if self._sigma_delta: + noise = np.random.normal(0, self._sigma_delta) + + self._v += self._delta + noise + + # Make sure theta v is in [-1, 1] + while self._v > 1: + self._v -= 2 + while self._v < -1: + self._v += 2 + + if abs(self._v) < r: + accept = 1 + self._current = self._position + self._current_momentum = self._momentum + self._current_energy = energy + self._current_gradient = gradient + + # Mark current as read-only, so it can be safely returned + self._current.setflags(write=False) + + # Reset leapfrog mechanism + self._momentum = self._position = self._gradient = None + + # Step 4 in ref [1] p. 5 + # Negate current momentum + self._current_momentum *= -1 + + # Update MCMC iteration count + self._mcmc_iteration += 1 + + # Update acceptance rate (only used for output!) + self._mcmc_acceptance = ( + (self._mcmc_iteration * self._mcmc_acceptance + accept) / + (self._mcmc_iteration + 1)) + + # Return current position as next sample in the chain + return self._current diff --git a/pints/tests/test_mcmc_neal_langevin.py b/pints/tests/test_mcmc_neal_langevin.py new file mode 100755 index 0000000000..c1753f69d3 --- /dev/null +++ b/pints/tests/test_mcmc_neal_langevin.py @@ -0,0 +1,237 @@ +#!/usr/bin/env python3 +# +# Tests the basic methods of the Neal Langevin MCMC routine. +# +# This file is part of PINTS (https://github.com/pints-team/pints/) which is +# released under the BSD 3-clause license. See accompanying LICENSE.md for +# copyright notice and full license details. +# +import unittest +import numpy as np + +import pints +import pints.toy + +from shared import StreamCapture + + +class TestNealLangevinMCMC(unittest.TestCase): + """ + Tests the basic methods of the NealLangevin MCMC routine. + """ + + def test_method(self): + + # Create log pdf + log_pdf = pints.toy.GaussianLogPDF([5, 5], [[4, 1], [1, 3]]) + + # Create mcmc + x0 = np.array([2, 2]) + sigma = [[3, 0], [0, 3]] + mcmc = pints.NealLangevinMCMC(x0, sigma) + + # This method needs sensitivities + self.assertTrue(mcmc.needs_sensitivities()) + + # Set number of steps + number_steps = 1000 + + # Perform short run + chain = [] + for i in range(number_steps): + x = mcmc.ask() + fx, gr = log_pdf.evaluateS1(x) + sample = mcmc.tell((fx, gr)) + if i >= 0.5 * number_steps and sample is not None: + chain.append(sample) + if np.all(sample == x): + self.assertEqual(mcmc.current_log_pdf(), fx) + + chain = np.array(chain) + self.assertEqual(chain.shape[0], 0.5 * number_steps) + self.assertEqual(chain.shape[1], len(x0)) + + # Perform short run with negative steps + + # Create mcmc + x0 = np.array([2, 2]) + sigma = [[3, 0], [0, 3]] + mcmc = pints.NealLangevinMCMC(x0, sigma) + + # set delta + mcmc.set_delta(mean=-0.1) + + # run + chain = [] + for i in range(number_steps): + x = mcmc.ask() + fx, gr = log_pdf.evaluateS1(x) + sample = mcmc.tell((fx, gr)) + if i >= 0.5 * number_steps and sample is not None: + chain.append(sample) + if np.all(sample == x): + self.assertEqual(mcmc.current_log_pdf(), fx) + + chain = np.array(chain) + self.assertEqual(chain.shape[0], 0.5 * number_steps) + self.assertEqual(chain.shape[1], len(x0)) + + def test_logging(self): + # Test logging includes name and custom fields. + + log_pdf = pints.toy.GaussianLogPDF([5, 5], [[4, 1], [1, 3]]) + x0 = [np.array([2, 2]), np.array([8, 8])] + + mcmc = pints.MCMCController( + log_pdf, 2, x0, method=pints.NealLangevinMCMC) + mcmc.set_max_iterations(5) + with StreamCapture() as c: + mcmc.run() + text = c.text() + + self.assertIn('Neal Langevin MCMC', text) + self.assertIn(' Accept.', text) + + def test_flow(self): + + log_pdf = pints.toy.GaussianLogPDF([5, 5], [[4, 1], [1, 3]]) + x0 = np.array([2, 2]) + + # Test initial proposal is first point + mcmc = pints.NealLangevinMCMC(x0) + self.assertTrue(np.all(mcmc.ask() == mcmc._x0)) + + # Repeated asks + self.assertRaises(RuntimeError, mcmc.ask) + + # Tell without ask + mcmc = pints.NealLangevinMCMC(x0) + self.assertRaises(RuntimeError, mcmc.tell, 0) + + # Repeated tells should fail + x = mcmc.ask() + mcmc.tell(log_pdf.evaluateS1(x)) + self.assertRaises(RuntimeError, mcmc.tell, log_pdf.evaluateS1(x)) + + # Bad starting point + mcmc = pints.NealLangevinMCMC(x0) + mcmc.ask() + self.assertRaises( + ValueError, mcmc.tell, (float('-inf'), np.array([1, 1]))) + + def test_set_hyper_parameters(self): + # Tests the parameter interface for this sampler. + + x0 = np.array([2, 2]) + mcmc = pints.NealLangevinMCMC(x0) + + # Test default alpha + default_alpha = 0.9 + self.assertEqual(mcmc.alpha(), default_alpha) + + # Test setting alpha + alpha = 0.1 + mcmc.set_alpha(alpha) + self.assertEqual(mcmc.alpha(), alpha) + + # Test setting invalid alpha: alpha > 1 + self.assertRaisesRegex( + ValueError, + r'Alpha must lie in the interval \[0\,1\]\.', + mcmc.set_alpha, + 2 + ) + + # Test setting invalid alpha: alpha < 0 + self.assertRaisesRegex( + ValueError, + r'Alpha must lie in the interval \[0\,1\]\.', + mcmc.set_alpha, + -1 + ) + + # Test leapfrog parameters + d = mcmc.leapfrog_step_size() + self.assertTrue(len(d) == mcmc._n_parameters) + + mcmc.set_leapfrog_step_size(0.5) + self.assertEqual(mcmc.leapfrog_step_size()[0], 0.5) + self.assertRaises(ValueError, mcmc.set_leapfrog_step_size, -1) + + mcmc.set_epsilon(0.4) + self.assertEqual(mcmc.epsilon(), 0.4) + self.assertRaises(ValueError, mcmc.set_epsilon, -0.1) + mcmc.set_leapfrog_step_size(1) + self.assertEqual(len(mcmc.scaled_epsilon()), 2) + self.assertEqual(mcmc.scaled_epsilon()[0], 0.4) + self.assertEqual(len(mcmc.divergent_iterations()), 0) + self.assertRaises(ValueError, mcmc.set_leapfrog_step_size, [1, 2, 3]) + + mcmc.set_leapfrog_step_size([1.5, 3]) + self.assertEqual(mcmc.leapfrog_step_size()[0], 1.5) + self.assertEqual(mcmc.leapfrog_step_size()[1], 3) + + # Test u updating parameters + + # Default values + mean, std = mcmc.delta() + self.assertEqual(mean, 0.05) + self.assertAlmostEqual(std, 0.005) + + # Check setting values + mcmc.set_delta(mean=1) + mean, std = mcmc.delta() + self.assertEqual(mean, 1) + self.assertEqual(std, None) + + mcmc.set_delta(mean=1, sigma=0) + mean, std = mcmc.delta() + self.assertEqual(mean, 1) + self.assertEqual(std, None) + + mcmc.set_delta(mean=-0.5, sigma=0.1) + mean, std = mcmc.delta() + self.assertEqual(mean, -0.5) + self.assertEqual(std, 0.1) + + # Check invalid sigmas + self.assertRaisesRegex( + ValueError, + r'The standard deviation of delta can only take non-negative' + r' values\.', + mcmc.set_delta, + 1, + -1 + ) + + # Test hyper parameters + self.assertEqual(mcmc.n_hyper_parameters(), 4) + + mcmc.set_hyper_parameters([0.5, 2, 3]) + mean, std = mcmc.delta() + self.assertEqual(mcmc.alpha(), 0.5) + self.assertEqual(mcmc.leapfrog_step_size()[0], 2) + self.assertEqual(mean, 3) + self.assertEqual(std, None) + + mcmc.set_hyper_parameters([0.5, 2, 3, 4]) + mean, std = mcmc.delta() + self.assertEqual(mcmc.alpha(), 0.5) + self.assertEqual(mcmc.leapfrog_step_size()[0], 2) + self.assertEqual(mean, 3) + self.assertEqual(std, 4) + + def test_other_setters(self): + # Tests other setters and getters. + x0 = np.array([2, 2]) + mcmc = pints.NealLangevinMCMC(x0) + self.assertRaises(ValueError, mcmc.set_hamiltonian_threshold, -0.3) + threshold1 = mcmc.hamiltonian_threshold() + self.assertEqual(threshold1, 10**3) + threshold2 = 10 + mcmc.set_hamiltonian_threshold(threshold2) + self.assertEqual(mcmc.hamiltonian_threshold(), threshold2) + + +if __name__ == '__main__': + unittest.main()