forked from gmum/few-shot-hypernets-public
-
Notifications
You must be signed in to change notification settings - Fork 1
/
hypermaml.py
642 lines (482 loc) · 25.5 KB
/
hypermaml.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
from collections import defaultdict
from copy import deepcopy
from time import time
import numpy as np
import torch
from torch import nn as nn
from torch.autograd import Variable
from torch.nn import functional as F
import backbone
from methods.hypernets.utils import get_param_dict, accuracy_from_scores, kl_diag_gauss_with_standard_gauss, reparameterize
from methods.maml import MAML
class HyperNet(nn.Module):
def __init__(self, hn_hidden_size, n_way, embedding_size, feat_dim, out_neurons, params):
super(HyperNet, self).__init__()
self.hn_head_len = params.hn_head_len
head = [nn.Linear(embedding_size, hn_hidden_size), nn.ReLU()]
if self.hn_head_len > 2:
for i in range(self.hn_head_len - 2):
head.append(nn.Linear(hn_hidden_size, hn_hidden_size))
head.append(nn.ReLU())
self.head = nn.Sequential(*head)
tail_mean = [nn.Linear(hn_hidden_size, out_neurons)]
tail_logvar = [nn.Linear(hn_hidden_size, out_neurons)]
self.tail_mean = nn.Sequential(*tail_mean)
self.tail_logvar = nn.Sequential(*tail_logvar)
def forward(self, x):
out = self.head(x)
out_mean = self.tail_mean(out)
out_logvar = self.tail_logvar(out)
return out_mean, out_logvar
class HyperMAML(MAML):
def __init__(self, model_func, n_way, n_support, n_query, params=None, approx = False):
super(HyperMAML, self).__init__(model_func, n_way, n_support, n_query, params=params)
self.loss_fn = nn.CrossEntropyLoss()
self.loss_kld = kl_diag_gauss_with_standard_gauss
self.kl_w = params.hm_kl_w
self.weight_set_num_train = params.hm_weight_set_num_train
self.weight_set_num_test = params.hm_weight_set_num_test if params.hm_weight_set_num_test != 0 else None
self.hn_tn_hidden_size = params.hn_tn_hidden_size
self.hn_tn_depth = params.hn_tn_depth
self._init_classifier()
self.enhance_embeddings = params.hm_enhance_embeddings
self.n_task = 4
self.task_update_num = 5
self.train_lr = 0.01
self.approx = approx # first order approx.
self.hn_sup_aggregation = params.hn_sup_aggregation
self.hn_hidden_size = params.hn_hidden_size
self.hm_lambda = params.hm_lambda
self.hm_save_delta_params = params.hm_save_delta_params
self.hm_use_class_batch_input = params.hm_use_class_batch_input
self.hn_adaptation_strategy = params.hn_adaptation_strategy
self.hm_support_set_loss = params.hm_support_set_loss
self.hm_maml_warmup = params.hm_maml_warmup
self.hm_maml_warmup_epochs = params.hm_maml_warmup_epochs
self.hm_maml_warmup_switch_epochs = params.hm_maml_warmup_switch_epochs
self.hm_maml_update_feature_net = params.hm_maml_update_feature_net
self.hm_update_operator = params.hm_update_operator
self.hm_load_feature_net = params.hm_load_feature_net
self.hm_feature_net_path = params.hm_feature_net_path
self.hm_detach_feature_net = params.hm_detach_feature_net
self.hm_detach_before_hyper_net = params.hm_detach_before_hyper_net
self.hm_set_forward_with_adaptation = params.hm_set_forward_with_adaptation
self.hn_val_lr = params.hn_val_lr
self.hn_val_epochs = params.hn_val_epochs
self.hn_val_optim = params.hn_val_optim
self.alpha = 0
self.hn_alpha_step = params.hn_alpha_step
if self.hn_adaptation_strategy == 'increasing_alpha' and self.hn_alpha_step < 0:
raise ValueError('hn_alpha_step is not positive!')
self.single_test = False
self.epoch = -1
self.start_epoch = -1
self.stop_epoch = -1
self.calculate_embedding_size()
self._init_hypernet_modules(params)
self._init_feature_net()
# print(self)
def _init_feature_net(self):
if self.hm_load_feature_net:
print(f'loading feature net model from location: {self.hm_feature_net_path}')
model_dict = torch.load(self.hm_feature_net_path)
self.feature.load_state_dict(model_dict['state'])
def _init_classifier(self):
assert self.hn_tn_hidden_size % self.n_way == 0, f"hn_tn_hidden_size {self.hn_tn_hidden_size} should be the multiple of n_way {self.n_way}"
layers = []
for i in range(self.hn_tn_depth):
in_dim = self.feat_dim if i == 0 else self.hn_tn_hidden_size
out_dim = self.n_way if i == (self.hn_tn_depth - 1) else self.hn_tn_hidden_size
linear = backbone.Linear_fw(in_dim, out_dim)
linear.bias.data.fill_(0)
layers.append(linear)
self.classifier = nn.Sequential(*layers)
def _init_hypernet_modules(self, params):
target_net_param_dict = get_param_dict(self.classifier)
target_net_param_dict = {
name.replace(".", "-"): p
# replace dots with hyphens bc torch doesn't like dots in modules names
for name, p in target_net_param_dict.items()
}
self.target_net_param_shapes = {
name: p.shape
for (name, p)
in target_net_param_dict.items()
}
self.hypernet_heads = nn.ModuleDict()
for name, param in target_net_param_dict.items():
if self.hm_use_class_batch_input and (name[-4:] == 'bias' or name[-7:] == 'bias_mu'):
continue
if name[-2:] == 'mu':
self.hypernet_heads[name] = None
continue
bias_size = param.shape[0] // self.n_way
head_in = self.embedding_size
head_out = (param.numel() // self.n_way) + bias_size if self.hm_use_class_batch_input else param.numel()
self.hypernet_heads[name] = HyperNet(self.hn_hidden_size, self.n_way, head_in, self.feat_dim, head_out, params)
def calculate_embedding_size(self):
n_classes_in_embedding = 1 if self.hm_use_class_batch_input else self.n_way
n_support_per_class = 1 if self.hn_sup_aggregation == 'mean' else self.n_support
single_support_embedding_len = self.feat_dim + self.n_way + 1 if self.enhance_embeddings else self.feat_dim
self.embedding_size = n_classes_in_embedding * n_support_per_class * single_support_embedding_len
def apply_embeddings_strategy(self, embeddings):
if self.hn_sup_aggregation == 'mean':
new_embeddings = torch.zeros(self.n_way, *embeddings.shape[1:])
for i in range(self.n_way):
lower = i * self.n_support
upper = (i + 1) * self.n_support
new_embeddings[i] = embeddings[lower:upper, :].mean(dim=0)
return new_embeddings.cuda()
return embeddings
def get_support_data_labels(self):
return torch.from_numpy(np.repeat(range(self.n_way), self.n_support)).cuda() # labels for support data
def get_hn_delta_params(self, support_embeddings):
if self.hm_detach_before_hyper_net:
support_embeddings = support_embeddings.detach()
if self.hm_use_class_batch_input:
delta_params_list = []
for name, param_net in self.hypernet_heads.items():
if name[-2:] == 'mu':
delta_params_list.append([None, None])
delta_params_list.append([None, None])
continue
support_embeddings_resh = support_embeddings.reshape(
self.n_way, -1
)
delta_params_mean, params_logvar = param_net(support_embeddings_resh)
bias_neurons_num = self.target_net_param_shapes[name][0] // self.n_way
if self.hn_adaptation_strategy == 'increasing_alpha' and self.alpha < 1:
delta_params_mean = delta_params_mean * self.alpha
params_logvar = params_logvar * self.alpha
weights_delta_mean = delta_params_mean[:, :-bias_neurons_num]
bias_delta_mean = delta_params_mean[: ,-bias_neurons_num:].flatten()
weights_logvar = params_logvar[:, :-bias_neurons_num]
bias_logvar = params_logvar[: ,-bias_neurons_num:].flatten()
delta_params_list.append([weights_delta_mean, weights_logvar])
delta_params_list.append([bias_delta_mean, bias_logvar])
return delta_params_list
else:
delta_params_list = []
for name, param_net in self.hypernet_heads.items():
if name[-2:] == 'mu':
delta_params_list.append([None, None])
continue
flattened_embeddings = support_embeddings.flatten()
delta_mean, logvar = param_net(flattened_embeddings)
if name in self.target_net_param_shapes.keys():
delta_mean = delta_mean.reshape(self.target_net_param_shapes[name])
logvar = logvar.reshape(self.target_net_param_shapes[name])
if self.hn_adaptation_strategy == 'increasing_alpha' and self.alpha < 1:
delta_mean = self.alpha * delta_mean
logvar = self.alpha * logvar
delta_params_list.append([delta_mean, logvar])
return delta_params_list
def _update_weight(self, weight, update_mean, logvar, train_stage = False):
if update_mean is None or logvar is None:
return
weight.mu_fast = weight.mu + update_mean
weight.logvar = logvar
weight.fast = []
if train_stage:
for _ in range(self.weight_set_num_train): # sample fast parameters
weight.fast.append(reparameterize(weight.mu_fast, weight.logvar))
else:
if self.weight_set_num_test is not None:
for _ in range(self.weight_set_num_test): # sample fast parameters
weight.fast.append(reparameterize(weight.mu_fast, weight.logvar))
else:
weight.fast.append(weight.mu_fast) # return expected value
# def _get_p_value(self):
# if self.epoch < self.hm_maml_warmup_epochs:
# return 1.0
# elif self.hm_maml_warmup_epochs <= self.epoch < self.hm_maml_warmup_epochs + self.hm_maml_warmup_switch_epochs:
# return (self.hm_maml_warmup_switch_epochs + self.hm_maml_warmup_epochs - self.epoch) / (self.hm_maml_warmup_switch_epochs + 1)
# return 0.0
def _update_network_weights(self, delta_params_list, support_embeddings, support_data_labels, train_stage = False):
# if self.hm_maml_warmup and not self.single_test:
# p = self._get_p_value()
# if p > 0.0:
# fast_parameters = []
# if self.hm_maml_update_feature_net:
# fet_fast_parameters = list(self.feature.parameters())
# for weight in self.feature.parameters():
# weight.fast = None
# self.feature.zero_grad()
# fast_parameters = fast_parameters + fet_fast_parameters
# clf_fast_parameters = list(self.classifier.parameters())
# for weight in self.classifier.parameters():
# weight.fast = None
# self.classifier.zero_grad()
# fast_parameters = fast_parameters + clf_fast_parameters
# for task_step in range(self.task_update_num):
# scores = self.classifier(support_embeddings)
# set_loss = self.loss_fn(scores, support_data_labels)
# grad = torch.autograd.grad(set_loss, fast_parameters, create_graph=True, allow_unused=True) #build full graph support gradient of gradient
# if self.approx:
# grad = [ g.detach() for g in grad ] #do not calculate gradient of gradient if using first order approximation
# if self.hm_maml_update_feature_net:
# # update weights of feature networ
# for k, weight in enumerate(self.feature.parameters()):
# update_value = self.train_lr * p * grad[k]
# self._update_weight(weight, update_value)
# classifier_offset = len(fet_fast_parameters) if self.hm_maml_update_feature_net else 0
# if p == 1:
# # update weights of classifier network by adding gradient
# for k, weight in enumerate(self.classifier.parameters()):
# update_value = (self.train_lr * grad[classifier_offset + k])
# self._update_weight(weight, update_value)
# elif 0.0 < p < 1.0:
# # update weights of classifier network by adding gradient and output of hypernetwork
# for k, weight in enumerate(self.classifier.parameters()):
# update_value = ((self.train_lr * p * grad[classifier_offset + k]) + ((1 - p) * delta_params_list[k]))
# self._update_weight(weight, update_value)
# else:
# for k, weight in enumerate(self.classifier.parameters()):
# update_value = delta_params_list[k]
# self._update_weight(weight, update_value)
# else:
for k, weight in enumerate(self.classifier.parameters()):
update_mean, logvar = delta_params_list[k]
self._update_weight(weight, update_mean, logvar, train_stage)
def _get_list_of_delta_params(self, maml_warmup_used, support_embeddings, support_data_labels):
# if not maml_warmup_used:
if self.enhance_embeddings:
with torch.no_grad():
logits = self.classifier.forward(support_embeddings).detach()
logits = F.softmax(logits, dim=1)
labels = support_data_labels.view(support_embeddings.shape[0], -1)
support_embeddings = torch.cat((support_embeddings, logits, labels), dim=1)
for weight in self.parameters():
weight.fast = None
self.zero_grad()
support_embeddings = self.apply_embeddings_strategy(support_embeddings)
delta_params = self.get_hn_delta_params(support_embeddings)
if self.hm_save_delta_params and len(self.delta_list) == 0:
self.delta_list = [{'delta_params': delta_params}]
return delta_params
# else:
# return [torch.zeros(*i).cuda() for (_, i) in self.target_net_param_shapes.items()]
def forward(self, x):
out = self.feature.forward(x)
if self.hm_detach_feature_net:
out = out.detach()
scores = self.classifier.forward(out)
return scores
def set_forward(self, x, is_feature = False, train_stage = False):
assert is_feature == False, 'MAML do not support fixed feature'
x = x.cuda()
x_var = Variable(x)
support_data = x_var[:, :self.n_support, :, :, :].contiguous().view(self.n_way * self.n_support, *x.size()[2:]) # support data
query_data = x_var[:, self.n_support:, :, :, :].contiguous().view(self.n_way * self.n_query, *x.size()[2:]) # query data
support_data_labels = self.get_support_data_labels()
support_embeddings = self.feature(support_data)
if self.hm_detach_feature_net:
support_embeddings = support_embeddings.detach()
maml_warmup_used = ((not self.single_test) and self.hm_maml_warmup and (self.epoch < self.hm_maml_warmup_epochs))
delta_params_list = self._get_list_of_delta_params(maml_warmup_used, support_embeddings, support_data_labels)
self._update_network_weights(delta_params_list, support_embeddings, support_data_labels, train_stage)
if self.hm_set_forward_with_adaptation and not train_stage:
scores = self.forward(support_data)
return scores, None
else:
if self.hm_support_set_loss and train_stage and not maml_warmup_used:
query_data = torch.cat((support_data, query_data))
scores = self.forward(query_data)
# sum of delta params for regularization
if self.hm_lambda != 0:
total_delta_sum = sum([delta_params.pow(2.0).sum() for delta_params in delta_params_list])
return scores, total_delta_sum
else:
return scores, None
def set_forward_adaptation(self, x, is_feature = False): #overwrite parrent function
raise ValueError('MAML performs further adapation simply by increasing task_upate_num')
def set_forward_loss(self, x):
scores, total_delta_sum = self.set_forward(x, is_feature = False, train_stage = True)
query_data_labels = Variable(torch.from_numpy( np.repeat(range(self.n_way), self.n_query))).cuda()
if self.hm_support_set_loss:
support_data_labels = torch.from_numpy(np.repeat(range(self.n_way), self.n_support)).cuda()
query_data_labels = torch.cat((support_data_labels, query_data_labels))
reduction = 1 / query_data_labels.size(dim = 0)
loss_ce = self.loss_fn(scores, query_data_labels)
loss_kld = 0
for name, weight in self.classifier.named_parameters():
if name[-2:] == 'mu':
continue
loss_kld = loss_kld + self.kl_w * reduction * self.loss_kld(weight.mu_fast, weight.logvar)
loss = loss_ce + loss_kld
if self.hm_lambda != 0:
loss = loss + self.hm_lambda * total_delta_sum
topk_scores, topk_labels = scores.data.topk(1, 1, True, True)
topk_ind = topk_labels.cpu().numpy().flatten()
y_labels = query_data_labels.cpu().numpy()
top1_correct = np.sum(topk_ind == y_labels)
task_accuracy = (top1_correct / len(query_data_labels)) * 100
return loss, loss_ce, loss_kld, task_accuracy
def set_forward_loss_with_adaptation(self, x):
scores, _ = self.set_forward(x, is_feature = False, train_stage = False)
support_data_labels = Variable( torch.from_numpy( np.repeat(range(self.n_way), self.n_support))).cuda()
reduction = 1 / support_data_labels.size(dim = 0)
loss_ce = self.loss_fn(scores, support_data_labels)
loss_kld = 0
for name, weight in self.classifier.named_parameters():
if name[-2:] == 'mu':
continue
loss_kld = loss_kld + self.kl_w * reduction * self.loss_kld(weight.mu_fast, weight.logvar)
loss = loss_ce + loss_kld
topk_scores, topk_labels = scores.data.topk(1, 1, True, True)
topk_ind = topk_labels.cpu().numpy().flatten()
y_labels = support_data_labels.cpu().numpy()
top1_correct = np.sum(topk_ind == y_labels)
task_accuracy = (top1_correct / len(support_data_labels)) * 100
return loss, task_accuracy
def train_loop(self, epoch, train_loader, optimizer): #overwrite parrent function
print_freq = 10
avg_loss=0
task_count = 0
loss_all = []
loss_ce_all = []
loss_kld_all = []
acc_all = []
optimizer.zero_grad()
self.delta_list = []
#train
for i, (x,_) in enumerate(train_loader):
self.n_query = x.size(1) - self.n_support
assert self.n_way == x.size(0), "MAML do not support way change"
loss, loss_ce, loss_kld, task_accuracy = self.set_forward_loss(x)
avg_loss = avg_loss+loss.item()#.data[0]
loss_all.append(loss)
loss_ce_all.append(loss_ce.item())
loss_kld_all.append(loss_kld.item())
acc_all.append(task_accuracy)
task_count += 1
if task_count == self.n_task: #MAML update several tasks at one time
loss_q = torch.stack(loss_all).sum(0)
loss_q.backward()
optimizer.step()
task_count = 0
loss_all = []
optimizer.zero_grad()
if i % print_freq==0:
print('Epoch {:d}/{:d} | Batch {:d}/{:d} | Loss {:f}'.format(self.epoch, self.stop_epoch, i, len(train_loader), avg_loss/float(i+1)))
acc_all = np.asarray(acc_all)
acc_mean = np.mean(acc_all)
metrics = {"accuracy/train": acc_mean}
loss_ce_all = np.asarray(loss_ce_all)
loss_ce_mean = np.mean(loss_ce_all)
metrics["loss_ce"] = loss_ce_mean
loss_kld_all = np.asarray(loss_kld_all)
loss_kld_mean = np.mean(loss_kld_all)
metrics["loss_kld"] = loss_kld_mean
if self.hn_adaptation_strategy == 'increasing_alpha':
metrics['alpha'] = self.alpha
if self.hm_save_delta_params and len(self.delta_list) > 0:
delta_params = {"epoch": self.epoch, "delta_list": self.delta_list}
metrics['delta_params'] = delta_params
if self.alpha < 1:
self.alpha += self.hn_alpha_step
return metrics
def test_loop(self, test_loader, return_std = False, return_time: bool = False): #overwrite parrent function
acc_all = []
self.delta_list = []
acc_at = defaultdict(list)
iter_num = len(test_loader)
eval_time = 0
if self.hm_set_forward_with_adaptation:
for i, (x,_) in enumerate(test_loader):
self.n_query = x.size(1) - self.n_support
assert self.n_way == x.size(0), "MAML do not support way change"
s = time()
acc_task, acc_at_metrics = self.set_forward_with_adaptation(x)
t = time()
for (k, v) in acc_at_metrics.items():
acc_at[k].append(v)
acc_all.append(acc_task)
eval_time += (t -s)
else:
for i, (x,_) in enumerate(test_loader):
#print(x.shape)
self.n_query = x.size(1) - self.n_support
assert self.n_way == x.size(0), f"MAML do not support way change, {self.n_way=}, {x.size(0)=}"
s = time()
correct_this, count_this = self.correct(x)
t = time()
acc_all.append(correct_this/ count_this *100 )
eval_time += (t -s)
metrics = {
k: np.mean(v) if len(v) > 0 else 0
for (k,v) in acc_at.items()
}
num_tasks = len(acc_all)
acc_all = np.asarray(acc_all)
acc_mean = np.mean(acc_all)
acc_std = np.std(acc_all)
print('%d Test Acc = %4.2f%% +- %4.2f%%' %(iter_num, acc_mean, 1.96* acc_std/np.sqrt(iter_num)))
print("Num tasks", num_tasks)
ret = [acc_mean]
if return_std:
ret.append(acc_std)
if return_time:
ret.append(eval_time)
ret.append(metrics)
return ret
def set_forward_with_adaptation(self, x: torch.Tensor):
self_copy = deepcopy(self)
# deepcopy does not copy "fast" parameters so it should be done manually
for param1, param2 in zip(self.parameters(), self_copy.parameters()):
if hasattr(param1, 'fast'):
if param1.fast is not None:
param2.fast = param1.fast.clone()
else:
param2.fast = None
if hasattr(param1, 'mu'):
if param1.mu is not None:
param2.mu = param1.mu.clone()
else:
param2.mu = None
if hasattr(param1, 'logvar'):
if param1.logvar is not None:
param2.logvar = param1.logvar.clone()
else:
param2.logvar = None
if hasattr(param1, 'mu_fast'):
if param1.mu_fast is not None:
param2.mu_fast = param1.mu_fast.clone()
else:
param2.mu_fast = None
metrics = {
"accuracy/val@-0": self_copy.query_accuracy(x)
}
val_opt_type = torch.optim.Adam if self.hn_val_optim == "adam" else torch.optim.SGD
val_opt = val_opt_type(self_copy.parameters(), lr=self.hn_val_lr)
if self.hn_val_epochs > 0:
for i in range(1, self.hn_val_epochs + 1):
self_copy.train()
val_opt.zero_grad()
loss, val_support_acc = self_copy.set_forward_loss_with_adaptation(x)
loss.backward()
val_opt.step()
self_copy.eval()
metrics[f"accuracy/val_support_acc@-{i}"] = val_support_acc
metrics[f"accuracy/val_loss@-{i}"] = loss.item()
metrics[f"accuracy/val@-{i}"] = self_copy.query_accuracy(x)
# free CUDA memory by deleting "fast" parameters
for param in self_copy.parameters():
param.fast = None
param.mu_fast = None
param.logvar = None
return metrics[f"accuracy/val@-{self.hn_val_epochs}"], metrics
def query_accuracy(self, x: torch.Tensor) -> float:
scores, _ = self.set_forward(x, train_stage=True)
return 100 * accuracy_from_scores(scores, n_way=self.n_way, n_query=self.n_query)
def get_logits(self, x):
self.n_query = x.size(1) - self.n_support
logits, _ = self.set_forward(x)
return logits
def correct(self, x):
scores, _ = self.set_forward(x)
y_query = np.repeat(range( self.n_way ), self.n_query)
topk_scores, topk_labels = scores.data.topk(1, 1, True, True)
topk_ind = topk_labels.cpu().numpy()
top1_correct = np.sum(topk_ind[:,0] == y_query)
return float(top1_correct), len(y_query)