-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathtest_jpeg.py
122 lines (89 loc) · 4.43 KB
/
test_jpeg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import os
import numpy as np
import imageio as io
import argparse
from helpers import plots
from skimage.measure import compare_psnr
from matplotlib import pylab as plt
from models.jpeg import DJPG
# Disable unimportant logging and import TF
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
DEFAULT_IMAGE = 'docs/schematic_overview.png'
def test_output(image, jpeg_quality=50, rounding_approximation=None):
jpg = DJPG(rounding_approximation=rounding_approximation)
print(jpg)
batch_x = np.expand_dims(image, 0)
batch_y = jpg.process(batch_x / 255, jpeg_quality)
n_images = batch_x.shape[0]
batch_j = np.zeros_like(batch_x)
for n in range(n_images):
io.imwrite('/tmp/patch_{}.jpg'.format(n), (batch_x[n].squeeze()).astype(np.uint8), quality=jpeg_quality, subsampling='4:4:4')
batch_j[n] = io.imread('/tmp/patch_{}.jpg'.format(n))
for n in range(n_images):
plt.subplot(n_images, 3, 1 + n*3)
plots.image(batch_x[n].squeeze() / np.max(np.abs(batch_x)), 'Input')
plt.subplot(n_images, 3, 2 + n*3)
plots.image(batch_y[n].squeeze() / np.max(np.abs(batch_y)), 'dJPEG Model')
plt.subplot(n_images, 3, 3 + n*3)
plots.image(batch_j[n].squeeze() / np.max(np.abs(batch_j)), 'libJPG Codec')
plt.show()
def test_quality(image, rounding_approximation=None, n_quality_levels=91):
jpg = DJPG(rounding_approximation=rounding_approximation)
print(jpg)
batch_x = np.expand_dims(image[0:1024, 0:1024, :], 0)
psnrs_y, psnrs_j = [], []
quality_levels = np.unique(np.round(np.linspace(10, 100, n_quality_levels)).astype(np.int32)).tolist()
print('Using quality levels: {}'.format(quality_levels))
for jpeg_quality in quality_levels:
batch_y = jpg.process(batch_x / 255, jpeg_quality)
batch_y = np.round(255 * batch_y) / 255
io.imwrite('/tmp/patch.jpg', (batch_x.squeeze()).astype(np.uint8), quality=jpeg_quality, subsampling='4:4:4')
batch_j = io.imread('/tmp/patch.jpg')
psnrs_y.append(compare_psnr(batch_x.squeeze(), 255 * batch_y.squeeze(), 255))
psnrs_j.append(compare_psnr(batch_x.squeeze(), batch_j.squeeze(), 255))
# Plot
plt.figure(figsize=(6,6))
plt.plot(psnrs_y, psnrs_j, 'bo', alpha=0.25)
plt.plot([30, 50], [30, 50], 'k:')
plt.xlabel('PSNR for dJPEG')
plt.ylabel('PSNR for libJPEG')
plt.xlim([30, 60])
plt.ylim([30, 50])
if rounding_approximation is None:
plt.title('dJPEG vs libJPEG quality (with standard rounding)'.format(rounding_approximation))
else:
plt.title('dJPEG vs libJPEG quality (with {} rounding approx.)'.format(rounding_approximation))
for i, q in enumerate(quality_levels):
if q % 10 == 0:
plt.plot(psnrs_y[i], psnrs_j[i], 'ko')
plt.text(psnrs_y[i]+1, psnrs_j[i]-0.25, 'Q{:02d}'.format(q))
plt.show()
def main():
parser = argparse.ArgumentParser(description='Test the dJPEG model')
parser.add_argument('mode', help='Test mode: output / quality')
parser.add_argument('--image', dest='image', action='store',
help='test image path')
parser.add_argument('--patch', dest='patch_size', action='store', type=int, default=256,
help='patch size (default 256)')
parser.add_argument('--quality', dest='quality', action='store', type=int, default=50,
help='the quality level or number of levels for evaluation')
parser.add_argument('--round', dest='round', action='store', default='soft',
help='rounding approximation mode: sin, soft, harmonic')
args = parser.parse_args()
args.image = args.image or DEFAULT_IMAGE
if not os.path.exists(args.image):
print('Error: file does not exist! {}'.format(args.image))
image = io.imread(args.image)
if image.shape[0] > args.patch_size or image.shape[1] > args.patch_size:
xx = (image.shape[1] - args.patch_size) // 2
yy = (image.shape[0] - args.patch_size) // 2
image = image[yy:yy+args.patch_size, xx:xx+args.patch_size, :]
print('Using image: {}x{} px'.format(*image.shape[:2]))
if args.mode == 'output':
test_output(image, jpeg_quality=int(args.quality), rounding_approximation=args.round)
elif args.mode == 'quality':
test_quality(image, n_quality_levels=int(args.quality), rounding_approximation=args.round)
if __name__ == "__main__":
main()