-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathtest_nip.py
executable file
·154 lines (121 loc) · 6.26 KB
/
test_nip.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import os
import sys
import json
import logging
import argparse
import numpy as np
from helpers import fsutil, dataset, metrics, plots, raw
from models import tfmodel, pipelines
# Setup logging
logging.basicConfig(level=logging.INFO)
log = logging.getLogger('test')
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
def develop_image(pipeline, camera=None, batch=None, image=None, patch_size=0, patches=2, root_dir='./data', pipeline_args=None):
"""
Display a patch developed by a neural imaging pipeline.
"""
if camera is not None:
supported_cameras = fsutil.listdir(os.path.join(root_dir, 'models', 'nip'), '.*')
if camera not in supported_cameras:
raise ValueError('Camera data not found ({})! Available cameras: {}'.format(camera, ', '.join(supported_cameras)))
root_dirname = os.path.join(root_dir, 'models', 'nip', camera)
data_dirname = os.path.join(root_dir, 'raw', 'training_data', camera)
if patch_size != 0 and (patch_size < 4 or patch_size > 2048):
raise ValueError('Patch size seems to be invalid!')
# Lazy imports to minimize delay for invalid command line parameters
import numpy as np
import imageio as io
import matplotlib.pyplot as plt
import tensorflow as tf
from models import pipelines
# Construct the NIP model ---------------------------------------------------------------------
if os.path.isdir(pipeline):
# Restore a NIP model from a training log
model = tfmodel.restore(pipeline, pipelines)
else:
# Construct the NIP model from class name (and optional arguments)
if pipeline_args is None:
model = getattr(pipelines, pipeline)()
else:
model = getattr(pipelines, pipeline)(**pipeline_args)
loaded_model = False
candidate_dirs = [os.path.join(root_dirname, model.model_code), os.path.join(root_dirname)]
for candidate in candidate_dirs:
if os.path.isdir(candidate):
model.load_model(candidate)
loaded_model = True
break
if not loaded_model:
raise FileNotFoundError(f'Could not find the corresponding model: {candidate_dirs}')
# Load image(s) -------------------------------------------------------------------------------
if image is None and batch is not None:
print('Loading a batch of {} images'.format(batch))
data = dataset.Dataset(data_dirname, n_images=0, v_images=batch, val_rgb_patch_size=patch_size or 256, val_n_patches=patches)
sample_x, sample_y = data.next_validation_batch(0, data.count_validation)
with open('config/cameras.json') as f:
cameras = json.load(f)
cfa, srgb = cameras[camera]['cfa'], np.array(cameras[camera]['srgb'])
elif image is not None:
print('Loading a RAW image {}'.format(image))
sample_x, cfa, srgb, _ = raw.unpack(image, expand=True)
sample_y = raw.process(image, brightness=None, expand=True)
if isinstance(model, pipelines.ClassicISP):
print('Configuring ISP to CFA: {} & sRGB {}'.format(cfa, srgb.round(2).tolist()))
model.set_cfa_pattern(cfa)
model.set_srgb_conversion(srgb)
sample_Y = model.process(sample_x).numpy()
if patch_size > 0:
xx = (sample_y.shape[2] - patch_size) // 2
yy = (sample_y.shape[1] - patch_size) // 2
sample_y = sample_y[:, yy:yy+patch_size, xx:xx+patch_size, :]
sample_Y = sample_Y[:, yy:yy+patch_size, xx:xx+patch_size, :]
psnrs = metrics.psnr(sample_y, sample_Y)
ssims = metrics.ssim(sample_y, sample_Y)
print('sample x: {}'.format(sample_x.shape))
print('sample y: {}'.format(sample_y.shape))
print('sample Y: {}'.format(sample_Y.shape))
# Plot images ---------------------------------------------------------------------------------
if len(sample_y) > 1:
sample_y = plots.thumbnails(sample_y, batch, True)
sample_Y = plots.thumbnails(sample_Y, batch, True)
else:
sample_y = sample_y.squeeze()
sample_Y = sample_Y.squeeze()
print('thumbnails: {}'.format(sample_y.shape))
ncols = 1 if sample_y.shape[1] > sample_y.shape[0] else 2
nrows = 2 if ncols == 1 else 1
fig, axes = plt.subplots(nrows, ncols)
plots.image(sample_Y, '{}, PSNR={:.1f} dB, SSIM={:.2f} : {{}}'.format(model.model_code, float(psnrs.mean()), float(ssims.mean())), axes=axes[0])
plots.image(sample_y, 'Target RGB images () : {}', axes=axes[1])
plt.show()
plt.close()
def main():
parser = argparse.ArgumentParser(description='Develops RAW images with a selected pipeline')
parser.add_argument('-n', '--nip', dest='nip', action='store', help='model name / path to a trained ISP model')
parser.add_argument('-i', '--image', dest='image', action='store', help='path to a RAW image')
parser.add_argument('-c', '--cam', dest='camera', action='store', help='camera')
parser.add_argument('-b', '--batch', dest='batch', action='store', default=8, type=int,
help='load a batch of images (batch size)')
parser.add_argument('-t', '--patches', dest='patches', action='store', default=3, type=int,
help='number of patches per image')
parser.add_argument('-p', '--patch', dest='patch', action='store', default=0, type=int,
help='patch size')
parser.add_argument('-r', '--dir', dest='dir', action='store', default='./data',
help='root directory with images and training data')
parser.add_argument('--ha', dest='hyperparams_args', default=None, help='Set hyper-parameters / override CSV settings if needed (JSON string)')
args = parser.parse_args()
if not args.nip:
print('Camera ISP not specified!')
parser.print_usage()
sys.exit(1)
try:
if args.hyperparams_args is not None:
args.hyperparams_args = json.loads(args.hyperparams_args.replace('\'', '"'))
except json.decoder.JSONDecodeError:
print('WARNING', 'JSON parsing error for: ', args.hyperparams_args.replace('\'', '"'))
sys.exit(2)
develop_image(args.nip, args.camera, args.batch, args.image, args.patch, args.patches, args.dir, args.hyperparams_args)
if __name__ == "__main__":
main()