forked from RetroCirce/Zero_Shot_Audio_Source_Separation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sed_model.py
358 lines (326 loc) · 15.5 KB
/
sed_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
# Ke Chen
# HTS-AT: A HIERARCHICAL TOKEN-SEMANTIC AUDIO TRANSFORMER FOR SOUND CLASSIFICATION AND DETECTION
# The Model Training Wrapper
import numpy as np
import librosa
import os
import sys
import math
import bisect
import pickle
from numpy.lib.function_base import average
from sklearn import metrics
import soundfile as sf
from sklearn.metrics import average_precision_score, roc_auc_score, accuracy_score
import tensorboard
import torch
import torchaudio
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as cp
import torch.optim as optim
from torch.nn.parameter import Parameter
import torch.distributed as dist
from torchlibrosa.stft import STFT, ISTFT, magphase
import pytorch_lightning as pl
from htsat_utils import do_mixup, get_mix_lambda, do_mixup_label, get_loss_func, d_prime
import random
from torchcontrib.optim import SWA
class SEDWrapper(pl.LightningModule):
def __init__(self, sed_model, config, dataset):
super().__init__()
self.sed_model = sed_model
self.config = config
self.dataset = dataset
self.loss_func = get_loss_func(config.loss_type)
def evaluate_metric(self, pred, ans):
ap = []
if self.config.dataset_type == "audioset":
mAP = np.mean(average_precision_score(ans, pred, average = None))
mAUC = np.mean(roc_auc_score(ans, pred, average = None))
dprime = d_prime(mAUC)
return {"mAP": mAP, "mAUC": mAUC, "dprime": dprime}
else:
acc = accuracy_score(ans, np.argmax(pred, 1))
return {"acc": acc}
def forward(self, x, mix_lambda = None):
output_dict = self.sed_model(x, mix_lambda)
return output_dict["clipwise_output"], output_dict["framewise_output"]
def inference(self, x):
self.device_type = next(self.parameters()).device
self.eval()
x = torch.from_numpy(x).float().to(self.device_type)
output_dict = self.sed_model(x, None, True)
for key in output_dict.keys():
output_dict[key] = output_dict[key].detach().cpu().numpy()
return output_dict
def training_step(self, batch, batch_idx):
self.device_type = next(self.parameters()).device
mix_lambda = torch.from_numpy(get_mix_lambda(0.5, len(batch["waveform"]))).to(self.device_type)
# Another Choice: also mixup the target, but AudioSet is not a perfect data
# so "adding noise" might be better than purly "mix"
# batch["target"] = do_mixup_label(batch["target"])
# batch["target"] = do_mixup(batch["target"], mix_lambda)
pred, _ = self(batch["waveform"], mix_lambda)
loss = self.loss_func(pred, batch["target"])
self.log("loss", loss, on_epoch= True, prog_bar=True)
return loss
def training_epoch_end(self, outputs):
# Change: SWA, deprecated
# for opt in self.trainer.optimizers:
# if not type(opt) is SWA:
# continue
# opt.swap_swa_sgd()
self.dataset.generate_queue()
def validation_step(self, batch, batch_idx):
pred, _ = self(batch["waveform"])
return [pred.detach(), batch["target"].detach()]
def validation_epoch_end(self, validation_step_outputs):
self.device_type = next(self.parameters()).device
pred = torch.cat([d[0] for d in validation_step_outputs], dim = 0)
target = torch.cat([d[1] for d in validation_step_outputs], dim = 0)
gather_pred = [torch.zeros_like(pred) for _ in range(dist.get_world_size())]
gather_target = [torch.zeros_like(target) for _ in range(dist.get_world_size())]
dist.barrier()
if self.config.dataset_type == "audioset":
metric_dict = {
"mAP": 0.,
"mAUC": 0.,
"dprime": 0.
}
else:
metric_dict = {
"acc":0.
}
dist.all_gather(gather_pred, pred)
dist.all_gather(gather_target, target)
if dist.get_rank() == 0:
gather_pred = torch.cat(gather_pred, dim = 0).cpu().numpy()
gather_target = torch.cat(gather_target, dim = 0).cpu().numpy()
if self.config.dataset_type == "scv2":
gather_target = np.argmax(gather_target, 1)
metric_dict = self.evaluate_metric(gather_pred, gather_target)
print(self.device_type, dist.get_world_size(), metric_dict, flush = True)
if self.config.dataset_type == "audioset":
self.log("mAP", metric_dict["mAP"] * float(dist.get_world_size()), on_epoch = True, prog_bar=True, sync_dist=True)
self.log("mAUC", metric_dict["mAUC"] * float(dist.get_world_size()), on_epoch = True, prog_bar=True, sync_dist=True)
self.log("dprime", metric_dict["dprime"] * float(dist.get_world_size()), on_epoch = True, prog_bar=True, sync_dist=True)
else:
self.log("acc", metric_dict["acc"] * float(dist.get_world_size()), on_epoch = True, prog_bar=True, sync_dist=True)
dist.barrier()
def time_shifting(self, x, shift_len):
shift_len = int(shift_len)
new_sample = torch.cat([x[:, shift_len:], x[:, :shift_len]], axis = 1)
return new_sample
def test_step(self, batch, batch_idx):
self.device_type = next(self.parameters()).device
preds = []
# cancel the time shifting optimization because to speed up
shift_num = 1
for i in range(shift_num):
pred, pred_map = self(batch["waveform"])
preds.append(pred.unsqueeze(0))
batch["waveform"] = self.time_shifting(batch["waveform"], shift_len = 100 * (i + 1))
preds = torch.cat(preds, dim=0)
pred = preds.mean(dim = 0)
if self.config.fl_local:
return [
pred.detach().cpu().numpy(),
pred_map.detach().cpu().numpy(),
batch["audio_name"],
batch["real_len"].cpu().numpy()
]
else:
return [pred.detach(), batch["target"].detach()]
def test_epoch_end(self, test_step_outputs):
self.device_type = next(self.parameters()).device
if self.config.fl_local:
pred = np.concatenate([d[0] for d in test_step_outputs], axis = 0)
pred_map = np.concatenate([d[1] for d in test_step_outputs], axis = 0)
audio_name = np.concatenate([d[2] for d in test_step_outputs], axis = 0)
real_len = np.concatenate([d[3] for d in test_step_outputs], axis = 0)
heatmap_file = os.path.join(self.config.heatmap_dir, self.config.test_file + "_" + str(self.device_type) + ".npy")
save_npy = [
{
"audio_name": audio_name[i],
"heatmap": pred_map[i],
"pred": pred[i],
"real_len":real_len[i]
}
for i in range(len(pred))
]
np.save(heatmap_file, save_npy)
else:
self.device_type = next(self.parameters()).device
pred = torch.cat([d[0] for d in test_step_outputs], dim = 0)
target = torch.cat([d[1] for d in test_step_outputs], dim = 0)
gather_pred = [torch.zeros_like(pred) for _ in range(dist.get_world_size())]
gather_target = [torch.zeros_like(target) for _ in range(dist.get_world_size())]
dist.barrier()
if self.config.dataset_type == "audioset":
metric_dict = {
"mAP": 0.,
"mAUC": 0.,
"dprime": 0.
}
else:
metric_dict = {
"acc":0.
}
dist.all_gather(gather_pred, pred)
dist.all_gather(gather_target, target)
if dist.get_rank() == 0:
gather_pred = torch.cat(gather_pred, dim = 0).cpu().numpy()
gather_target = torch.cat(gather_target, dim = 0).cpu().numpy()
if self.config.dataset_type == "scv2":
gather_target = np.argmax(gather_target, 1)
metric_dict = self.evaluate_metric(gather_pred, gather_target)
print(self.device_type, dist.get_world_size(), metric_dict, flush = True)
if self.config.dataset_type == "audioset":
self.log("mAP", metric_dict["mAP"] * float(dist.get_world_size()), on_epoch = True, prog_bar=True, sync_dist=True)
self.log("mAUC", metric_dict["mAUC"] * float(dist.get_world_size()), on_epoch = True, prog_bar=True, sync_dist=True)
self.log("dprime", metric_dict["dprime"] * float(dist.get_world_size()), on_epoch = True, prog_bar=True, sync_dist=True)
else:
self.log("acc", metric_dict["acc"] * float(dist.get_world_size()), on_epoch = True, prog_bar=True, sync_dist=True)
dist.barrier()
def configure_optimizers(self):
optimizer = optim.AdamW(
filter(lambda p: p.requires_grad, self.parameters()),
lr = self.config.learning_rate,
betas = (0.9, 0.999), eps = 1e-08, weight_decay = 0.05,
)
# Change: SWA, deprecated
# optimizer = SWA(optimizer, swa_start=10, swa_freq=5)
def lr_foo(epoch):
if epoch < 3:
# warm up lr
lr_scale = self.config.lr_rate[epoch]
else:
# warmup schedule
lr_pos = int(-1 - bisect.bisect_left(self.config.lr_scheduler_epoch, epoch))
if lr_pos < -3:
lr_scale = max(self.config.lr_rate[0] * (0.98 ** epoch), 0.03 )
else:
lr_scale = self.config.lr_rate[lr_pos]
return lr_scale
scheduler = optim.lr_scheduler.LambdaLR(
optimizer,
lr_lambda=lr_foo
)
return [optimizer], [scheduler]
class Ensemble_SEDWrapper(pl.LightningModule):
def __init__(self, sed_models, config, dataset):
super().__init__()
self.sed_models = nn.ModuleList(sed_models)
self.config = config
self.dataset = dataset
def evaluate_metric(self, pred, ans):
if self.config.dataset_type == "audioset":
mAP = np.mean(average_precision_score(ans, pred, average = None))
mAUC = np.mean(roc_auc_score(ans, pred, average = None))
dprime = d_prime(mAUC)
return {"mAP": mAP, "mAUC": mAUC, "dprime": dprime}
else:
acc = accuracy_score(ans, np.argmax(pred, 1))
return {"acc": acc}
def forward(self, x, sed_index, mix_lambda = None):
self.sed_models[sed_index].eval()
preds = []
pred_maps = []
# cancel the time shifting optimization because to speed up
shift_num = 1
for i in range(shift_num):
pred, pred_map = self.sed_models[sed_index](x)
pred_maps.append(pred_map.unsqueeze(0))
preds.append(pred.unsqueeze(0))
x = self.time_shifting(x, shift_len = 100 * (i + 1))
preds = torch.cat(preds, dim=0)
pred_maps = torch.cat(pred_maps, dim = 0)
pred = preds.mean(dim = 0)
pred_map = pred_maps.mean(dim = 0)
return pred, pred_map
def time_shifting(self, x, shift_len):
shift_len = int(shift_len)
new_sample = torch.cat([x[:, shift_len:], x[:, :shift_len]], axis = 1)
return new_sample
def test_step(self, batch, batch_idx):
self.device_type = next(self.parameters()).device
if self.config.fl_local:
pred = torch.zeros(len(batch["waveform"]), self.config.classes_num).float().to(self.device_type)
pred_map = torch.zeros(len(batch["waveform"]), 1024, self.config.classes_num).float().to(self.device_type)
for j in range(len(self.sed_models)):
temp_pred, temp_pred_map = self(batch["waveform"], j)
pred = pred + temp_pred
pred_map = pred_map + temp_pred_map
pred = pred / len(self.sed_models)
pred_map = pred_map / len(self.sed_models)
return [
pred.detach().cpu().numpy(),
pred_map.detach().cpu().numpy(),
batch["audio_name"],
batch["real_len"].cpu().numpy()
]
else:
pred = torch.zeros(len(batch["waveform"]), self.config.classes_num).float().to(self.device_type)
for j in range(len(self.sed_models)):
temp_pred, _ = self(batch["waveform"], j)
pred = pred + temp_pred
pred = pred / len(self.sed_models)
return [
pred.detach(),
batch["target"].detach(),
]
def test_epoch_end(self, test_step_outputs):
self.device_type = next(self.parameters()).device
if self.config.fl_local:
pred = np.concatenate([d[0] for d in test_step_outputs], axis = 0)
pred_map = np.concatenate([d[1] for d in test_step_outputs], axis = 0)
audio_name = np.concatenate([d[2] for d in test_step_outputs], axis = 0)
real_len = np.concatenate([d[3] for d in test_step_outputs], axis = 0)
heatmap_file = os.path.join(self.config.heatmap_dir, self.config.test_file + "_" + str(self.device_type) + ".npy")
print(pred.shape)
print(pred_map.shape)
print(real_len.shape)
save_npy = [
{
"audio_name": audio_name[i],
"heatmap": pred_map[i],
"pred": pred[i],
"real_len":real_len[i]
}
for i in range(len(pred))
]
np.save(heatmap_file, save_npy)
else:
pred = torch.cat([d[0] for d in test_step_outputs], dim = 0)
target = torch.cat([d[1] for d in test_step_outputs], dim = 0)
gather_pred = [torch.zeros_like(pred) for _ in range(dist.get_world_size())]
gather_target = [torch.zeros_like(target) for _ in range(dist.get_world_size())]
dist.barrier()
if self.config.dataset_type == "audioset":
metric_dict = {
"mAP": 0.,
"mAUC": 0.,
"dprime": 0.
}
else:
metric_dict = {
"acc":0.
}
dist.all_gather(gather_pred, pred)
dist.all_gather(gather_target, target)
if dist.get_rank() == 0:
gather_pred = torch.cat(gather_pred, dim = 0).cpu().numpy()
gather_target = torch.cat(gather_target, dim = 0).cpu().numpy()
if self.config.dataset_type == "scv2":
gather_target = np.argmax(gather_target, 1)
metric_dict = self.evaluate_metric(gather_pred, gather_target)
print(self.device_type, dist.get_world_size(), metric_dict, flush = True)
if self.config.dataset_type == "audioset":
self.log("mAP", metric_dict["mAP"] * float(dist.get_world_size()), on_epoch = True, prog_bar=True, sync_dist=True)
self.log("mAUC", metric_dict["mAUC"] * float(dist.get_world_size()), on_epoch = True, prog_bar=True, sync_dist=True)
self.log("dprime", metric_dict["dprime"] * float(dist.get_world_size()), on_epoch = True, prog_bar=True, sync_dist=True)
else:
self.log("acc", metric_dict["acc"] * float(dist.get_world_size()), on_epoch = True, prog_bar=True, sync_dist=True)
dist.barrier()