forked from olvrhhn/audio_super_resolution
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
224 lines (200 loc) · 8.06 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import os, pathlib, glob
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from argparse import ArgumentParser
from datetime import datetime
from tqdm import tqdm
from loss.super_res import MSE
from datasets.dataset import SingleSpeaker, Sonata32Dataset
from utils.metrics import *
from models.audiounet import AudioUNet
from models.tfilmunet import TFILMUNet
def main(opts):
time_stamp = datetime.now().strftime('%Y_%m_%d_%H_%M_%S')
print(f"Current training run {time_stamp} has started!")
# Add tensorboard writer and checkpoints results directory
writer = SummaryWriter(log_dir=os.path.join(opts.runs_root, time_stamp))
pathlib.Path(opts.checkpoints_root).mkdir(parents=True, exist_ok=True)
checkpoints_path = os.path.join(opts.checkpoints_root,
time_stamp + ".pth")
# Setup Metricsa and Device
meter = averageMeter()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Setup dataset
if opts.dataset_type == "vctk-single":
train_dataset = SingleSpeaker(root=opts.dataset_root)
val_dataset = SingleSpeaker(root=opts.dataset_root.replace("-train.", "-val."))
elif opts.dataset_type == "piano":
train_dataset = Sonata32Dataset(root='datasets/music_dataset/data/',
target_type='train',
sr=16000,
scale=4,
dimension=8192,
stride=4096)
val_dataset = Sonata32Dataset(root='datasets/music_dataset/data/',
target_type='valid',
sr=16000,
scale=4,
dimension=8192,
stride=4096)
try:
train_loader = DataLoader(train_dataset,
batch_size=opts.batch_size,
shuffle=True,
num_workers=opts.num_workers)
val_loader = DataLoader(val_dataset,
batch_size=1,
shuffle=False,
num_workers=opts.num_workers)
except UnboundLocalError:
print("No dataset specified.")
return
# Setup model
model = TFILMUNet()
if opts.resume:
if os.path.exists(opts.checkpoints_root):
checkpoint = max(glob.glob(os.path.join(opts.checkpoints_root, opts.checkpoint)), key=os.path.getctime)
model.load_state_dict(torch.load(checkpoint, map_location=device), strict=True)
else:
raise ValueError(f"Checkpoints directory {opts.checkpoints_root} does not exist")
model = model.to(device)
# Setup lr scheduler, optimizer and loss
optimizer = torch.optim.Adam(model.parameters(),
lr=opts.lr)
criterion = MSE().to(device)
# Training
start = 0
if opts.resume: start = int(os.path.split(checkpoint)[-1][-6:-4])
for epoch in tqdm(range(start, opts.num_epochs)):
print("\nEpoch: ", epoch)
loss_train_epoch, loss_val_epoch = 0, 0
for train_idx, train_sample in enumerate(train_loader):
# Put img and gt on GPU if available
inpt_train, gt_train = train_sample[0].to(device), train_sample[2].to(device)
# Zero the parameter gradients
optimizer.zero_grad()
# Forward pass, backward pass and optimization
out_train = model(inpt_train)
loss_train = criterion(out_train, gt_train)
loss_train_epoch += loss_train
loss_train.backward()
optimizer.step()
# Determine current lr
writer_idx = train_idx + len(train_loader)*epoch
# Add current loss to tensorboard
writer.add_scalar("training_loss_step",
loss_train,
writer_idx)
writer.add_scalar("learning_rate",
optimizer.param_groups[0]['lr'],
writer_idx)
# Add mean epoch loss to tensorboard
writer.add_scalar("training_loss_epoch",
loss_train_epoch/len(train_loader),
epoch)
# Validation
if epoch >= opts.validation_start and epoch % opts.validation_step == 0:
model.eval()
with torch.no_grad():
for val_idx, val_sample in enumerate(val_loader):
# Put img and gt on GPU if available
in_val, gt_val = val_sample[0].to(device), val_sample[2].to(device)
# Forward pass and loss calculation
out_val = model(in_val)
loss_val = criterion(out_val, gt_val)
loss_val_epoch += loss_val
# Update iou meter
meter.update(np.array(gt_val.cpu()), np.array(out_val.cpu()), opts.batch_size)
model.train()
# Update metrics, add to tensorboard and reset
snr, lsd = meter.get_score()
print("\nSignal to Noise Ratio (SNR): {} \nLog-spectral distance (LSD): {}".format(round(float(snr), 4), round(float(lsd), 4)))
writer.add_scalar("snr", snr, epoch)
writer.add_scalar("lsd", lsd, epoch)
meter.reset()
# Add loss to tensorboard
writer.add_scalar("validation_loss", loss_val_epoch/len(val_loader), epoch)
# Save model
if epoch == opts.validation_start or (opts.resume == True and epoch == start):
mean_snr_best = snr
mean_lsd_best = lsd
mean_snr_epoch = snr
mean_lsd_epoch = lsd
if mean_snr_epoch >= mean_snr_best and mean_lsd_epoch <= mean_lsd_best:
if os.path.exists(checkpoints_path):
os.remove(checkpoints_path)
print("Saving Checkpoint ...")
torch.save(model.state_dict(), checkpoints_path)
mean_snr_best = mean_snr_epoch
mean_lsd_best = mean_lsd_epoch
if epoch != 0 and epoch%50 == 0:
print("Saving Checkpoint ...")
torch.save(model.state_dict(), checkpoints_path.replace(".pth","_epoch_"+str(epoch)+".pth"))
if __name__ == '__main__':
parser = ArgumentParser()
# Then input here the dataset-root as the path to ../dataset/split
parser.add_argument(
"--dataset-type",
type=str,
default="vctk-single"
),
parser.add_argument(
"--dataset-root",
type=str,
default=os.path.join(os.getcwd(), "datasets", "vctk", "vctk-speaker1-train.4.16000.8192.4096.h5")
)
parser.add_argument(
"--checkpoints-root",
type=str,
default=os.path.join(os.getcwd(), "checkpoints", "runs")
)
parser.add_argument(
"--runs-root",
type=str,
default=os.path.join(os.getcwd(), "runs")
)
parser.add_argument(
"--num-epochs",
type=int,
default=50
)
parser.add_argument(
"--validation-start",
type=int,
default=0
)
parser.add_argument(
"--validation-step",
type=int,
default=1
)
# Batch size at least 2 for torchvision DeepLab Batchnorm layers
parser.add_argument(
"--batch-size",
type=int,
default=16
)
parser.add_argument(
"--num-workers",
type=int,
default=6
)
# Optimizer
parser.add_argument(
"--lr",
type=float,
default=3*10e-4
)
parser.add_argument(
"--checkpoint",
type=str,
default="2021_06_17_12_54_13_epoch_50.pth"
)
parser.add_argument(
"--resume",
action="store_true",
help="Train on from Checkpoint -> Need to provide Checkpoint Name"
)
clargs = parser.parse_args()
print(clargs)
main(clargs)