
Integrating
storage APIs into
PMIx

Shane Snyder
PMIx ASC Q3 meeting
7/22/20

Storage WG mission

Extend PMIx standard to support application, I/O middleware, and WLM/RM interaction with

HPC storage hierarchies

● Discover available storage resources and learn about their characteristics/state

○ Query API

○ Event notification API

● Direct storage systems to accomplish some task, perhaps in coordination with other

storage system layers

○ PMIx storage API

Challenge: Identifying suitable abstractions of key storage concepts as HPC storage ecosystem

becomes more diverse

● Traditional file storage vs object storage (e.g., Lustre vs DAOS)

Existing
PMIx APIs

New
PMIx API

Storage WG status

Approach: Add storage system support to existing PMIx APIs, allowing us to iterate and refine

storage constructs, before moving on to a more storage-centric API

● Discover available storage resources and learn about their characteristics/state

○ Query API

○ Event notification API

● Direct storage systems to accomplish some task, perhaps in coordination with other

storage system layers

○ PMIx storage API

In progress, first reading
@ Q4 meeting

Not started

PMIx query API

An ability to query capabilities, characteristics, and state of storage systems enables PMIx users

to learn more about available storage hierarchies in a portable manner

● What storage resources are available?

● How do we access a specific storage resource (e.g., where is a file system mounted)?

● What are the capabilities of the storage device (e.g., peak bandwidth, persistence model,

etc.)?

● What is the current state of the storage system (e.g., available capacity, file/object

existence)?

Motivation

PMIx query API
Overview

Input: pmix_query_t
structure array
describing set of
queries to run

PMIx query API
Overview

Input: pmix_query_t
structure array
describing set of
queries to run

Output: pmix_info_t
structure array
describing the results
of the input queries

PMIx query API
Overview - query input

A pmix_query_t describes input
parameters of a query:

● Keys: attributes (strings) describing
the types of queries to perform

○ e.g.,PMIX_TIME_REMAINING,
to query job’s remaining
walltime

● Qualifiers: key-value constraints
(pmix_info_ts) on the query(ies) to
restrict scope of responses

○ PMIX_PROC_ID=1234, to query
info for process 1234

PMIx query API
Overview - query output

A pmix_info_t describes the output of a
query using a key-value type:

● Key: input attribute that was queried
(e.g.,PMIX_TIME_REMAINING)

● Value: abstract value type allowing
return of various types of data
(strings, arrays, integers, etc.)

PMIx query API

Before considering storage system query attributes, it’s helpful to consider what types of new

qualifiers are required to describe storage requests:

Storage qualifiers (new)

PMIX_STORAGE_ID is
fundamental for storage
queries, specifying a unique ID
for the specific storage system
to be queried

● E.g., ‘lustre-fs0’ and
‘lustre-fs1’ to distinguish
between 2 available
Lustre deployments

● Could be set manually be
admins or generated by
the PMIx server

Qualifier Data type Description

PMIX_STORAGE_ID char * Qualifier to limit the query
to a particular storage ID

PMIX_STORAGE_PATH char * Qualifier to limit the query
to a particular storage path

PMIX_STORAGE_TYPE* char * Qualifier to limit the query
to a particular storage type
(e.g., lustre, DAOS, PFS,
burst buffer, …)

PMIx query API
Storage qualifiers (new)

PMIX_STORAGE_PATH qualifier
is a convenience attribute for
file systems to perform queries
in terms of mount points or file
paths, instead of PMIx storage
IDs

● More natural for users
who might have a file of
interest and want to learn
more about the storage
system managing it

Before considering storage system query attributes, it’s helpful to consider what types of new

qualifiers are required to describe storage requests:

Qualifier Data type Description

PMIX_STORAGE_ID char * Qualifier to limit the query
to a particular storage ID

PMIX_STORAGE_PATH char * Qualifier to limit the query
to a particular storage path

PMIX_STORAGE_TYPE* char * Qualifier to limit the query
to a particular storage type
(e.g., lustre, DAOS, PFS,
burst buffer, …)

Qualifier Data type Description

PMIX_STORAGE_ID char * Qualifier to limit the query
to a particular storage ID

PMIX_STORAGE_PATH char * Qualifier to limit the query
to a particular storage path

PMIX_STORAGE_TYPE* char * Qualifier to limit the query
to a particular storage type
(e.g., lustre, DAOS, PFS,
burst buffer, …)

PMIx query API
Storage qualifiers (new)

Before considering storage system query attributes, it’s helpful to consider what types of new

qualifiers are required to describe storage requests:

PMIX_STORAGE_TYPE qualifier
is to indicate the type of
underlying storage provided by
the system

● Envisioned to orient users
around what types of
storage resources they
have available (e.g., users
might use node local NVM
devices differently than a
PFS)

PMIx query API
Storage qualifiers (new)

Before considering storage system query attributes, it’s helpful to consider what types of new

qualifiers are required to describe storage requests:

We haven’t been able to decide
exactly what types of types
makes sense to support for
PMIx storage types:

● Specific things like
“Lustre” and “DAOS”?

● Generic things like “PFS”,
“node-local”, “SSD” ?.

Qualifier Data type Description

PMIX_STORAGE_ID char * Qualifier to limit the query
to a particular storage ID

PMIX_STORAGE_PATH char * Qualifier to limit the query
to a particular storage path

PMIX_STORAGE_TYPE* char * Qualifier to limit the query
to a particular storage type
(e.g., lustre, DAOS, PFS,
burst buffer, …)

PMIx query API

Some existing PMIx qualifiers can likely be reused for storage queries:

Storage qualifiers (existing)

Qualifier Data type Description

PMIX_USERID uid_t Qualifier to limit the query to a
particular user ID

PMIX_GRPID gid_t Qualifier to limit the query to a
particular group ID

PMIX_HOSTNAME* char * Qualifier to limit the query to a
particular storage host

PMIX_PROCID* pmix_proc_t Qualifier to limit the query to a
particular storage process

PMIX_USERID and
PMIX_GRPID qualifiers are used
to execute queries in terms of a
specific users or groups
(projects), rather than the entire
system

● User and project quotas
more relevant to users
than system totals

● Sanity check with Lustre
proof-of-concept for these
qualifiers

PMIx query API

Some existing PMIx qualifiers can likely be reused for storage queries:

Storage qualifiers (existing)

Qualifier Data type Description

PMIX_USERID uid_t Qualifier to limit the query to a
particular user ID

PMIX_GRPID gid_t Qualifier to limit the query to a
particular group ID

PMIX_HOSTNAME* char * Qualifier to limit the query to a
particular storage host

PMIX_PROCID* pmix_proc_t Qualifier to limit the query to a
particular storage process

PMIX_HOSTNAME and
PMIX_PROCID qualifiers are
used to execute queries in terms
of specific storage nodes or
processes

● Measure storage capacity
of storage server node X

● Measure bandwidth of
storage server process Y

PMIx query API

Some existing PMIx qualifiers can likely be reused for storage queries:

Storage qualifiers (existing)

Qualifier Data type Description

PMIX_USERID uid_t Qualifier to limit the query to a
particular user ID

PMIX_GRPID gid_t Qualifier to limit the query to a
particular group ID

PMIX_HOSTNAME* char * Qualifier to limit the query to a
particular storage host

PMIX_PROCID* pmix_proc_t Qualifier to limit the query to a
particular storage process

But, are these the right
qualifiers to use? Or do we need
to add new ones?

● HOSTNAME is probably
generic enough given it’s
just a string, but PROCID
might not be appropriate
for storage servers that
are likely not running
PMIx?

PMIx query API
Attributes

Attribute Value
type

Description Qualifiers

PMIX_QUERY_STORAGE_LIST char * Comma-delimited list of
identifiers for all available
storage systems (e.g,
“gpfs-mirafs0, lus-
thetafs0”)

PMIX_STORAGE_TYPE

With suitable qualifiers defined, we can now enumerate new attribute keys needed to support

storage system queries:

Applications can use this call to learn about available storage systems on a platform, and use

subsequent queries to learn more about characteristics and capabilities of those systems.

PMIX_STORAGE_TYPE qualifier used to limit list to specific types of storage.

PMIx query API

Attribute Value
type

Description Qualifiers

PMIX_STORAGE_CAPACITY_LIMIT uint64_t Overall capacity (in
Megabytes[base2]) of
specified storage system

PMIX_STORAGE_ID
PMIX_STORAGE_PATH
PMIX_STORAGE_TYPE
PMIX_USERID
PMIX_GRPID
PMIX_HOST
PMIX_PROCID

PMIX_STORAGE_CAPACITY_FREE uint64_t Used capacity (in
Megabytes[base2]) of
specified storage system

Attributes

With suitable qualifiers defined, we can now enumerate new attribute keys needed to support

storage system queries:

These queries require qualifiers to select specific storage systems (via identifier of path) or

storage system types

PMIx query API

Attribute Value
type

Description Qualifiers

PMIX_STORAGE_CAPACITY_LIMIT uint64_t Overall capacity (in
Megabytes[base2]) of
specified storage system

PMIX_STORAGE_ID
PMIX_STORAGE_PATH
PMIX_STORAGE_TYPE
PMIX_USERID
PMIX_GRPID
PMIX_HOST
PMIX_PROCID

PMIX_STORAGE_CAPACITY_FREE uint64_t Used capacity (in
Megabytes[base2]) of
specified storage system

Attributes

With suitable qualifiers defined, we can now enumerate new attribute keys needed to support

storage system queries:

Being able to qualify these queries with specific users or groups (projects) is necessary for

shared HPC storage systems

PMIx query API

Attribute Value
type

Description Qualifiers

PMIX_STORAGE_CAPACITY_LIMIT uint64_t Overall capacity (in
Megabytes[base2]) of
specified storage system

PMIX_STORAGE_ID
PMIX_STORAGE_PATH
PMIX_STORAGE_TYPE
PMIX_USERID
PMIX_GRPID
PMIX_HOST
PMIX_PROCID

PMIX_STORAGE_CAPACITY_FREE uint64_t Used capacity (in
Megabytes[base2]) of
specified storage system

Attributes

With suitable qualifiers defined, we can now enumerate new attribute keys needed to support

storage system queries:

Further qualifying these queries with specific storage servers or storage processes allows for

learning more about storage systems at finer granularities (e.g., specific Lustre OSS or OST)

PMIx query API

Attribute Value
type

Description Qualifiers

PMIX_STORAGE_OBJECT_LIMIT uint64_t Overall limit on number of
objects (e.g., inodes) of
specified storage system

PMIX_STORAGE_ID
PMIX_STORAGE_PATH
PMIX_STORAGE_TYPE
PMIX_USERID
PMIX_GRPID
PMIX_HOST
PMIX_PROCID

PMIX_STORAGE_OBJECTS_FREE uint64_t Number of used objects
(e.g., inodes) of specified
storage system

Attributes

With suitable qualifiers defined, we can now enumerate new attribute keys needed to support

storage system queries:

Standardize on objects, not files

Qualifiers same as previous capacity attributes

PMIx query API

Attribute Value
type

Description Qualifiers

PMIX_STORAGE_XFER_SIZE uint64_t Optimal transfer size (in
Kilobytes[base2]) of
specified storage system

PMIX_STORAGE_ID
PMIX_STORAGE_PATH
PMIX_STORAGE_TYPE

Attributes

With suitable qualifiers defined, we can now enumerate new attribute keys needed to support

storage system queries:

Motivated by file system block sizes, where optimal I/O transfer sizes are typically multiples of

the block size used

Similar concepts likely exist in object stores.

PMIx query API

Previous storage capacity, object,

and transfer size attributes

motivated by generalizing

traditional statfs() syscalls

● Simplifies implementing

query support for various

POSIX file systems for

storage system-wide

queries

● Per-user and per-project

quotas could be

implemented by PMIx

storage system plugins

Attributes

PMIx query API

Previous storage capacity, object,

and transfer size attributes

motivated by generalizing

traditional statfs() syscalls

● Simplifies implementing

query support for various

POSIX file systems for

storage system-wide

queries

● Per-user and per-project

quotas could be

implemented by PMIx

storage system plugins

Attributes

We have already implemented this support for

POSIX file systems, using a “common” file

system storage plugin

Opens possibility of PMIx server

autodiscovering available file systems (e.g.,

PFS, node-local storage, tmpfs) by iterating the

currently mounted systems and providing

generic queries for these systems

PMIx query API

Previous storage capacity, object,

and transfer size attributes

motivated by generalizing

traditional statfs() syscalls

● Simplifies implementing

query support for various

POSIX file systems for

storage system-wide

queries

● Per-user and per-project

quotas could be

implemented by PMIx

storage system plugins

Attributes

We are attempting to investigate this

particular functionality using a Lustre PMIx

storage plugin, as Lustre has internal

capabilities for determining user/project

quotas

PMIx query API

Attribute Value type Description Qualifiers

PMIX_STORAGE_BW_LIMIT float Overall b/w limit (in
Megabytes[base2]/sec) of
specified storage system

PMIX_STORAGE_ID
PMIX_STORAGE_PATH
PMIX_STORAGE_TYPE
PMIX_HOST
PMIX_PROCIDPMIX_STORAGE_BW float Observed b/w (in

Megabytes[base2]/sec) of
specified storage system

Attributes

With suitable qualifiers defined, we can now enumerate new attribute keys needed to support

storage system queries:

Provide users with some expectations of peak and observed storage system bandwidth

PMIX_STORAGE_TYPE could potentially communicate this type of information, but that would

require us to come up with pretty specific tags

PMIx query API

Attribute Value type Description Qualifiers

PMIX_STORAGE_ID char * Storage ID corresponding to a
given path

PMIX_STORAGE_PATH
PMIX_STORAGE_TYPE

PMIX_STORAGE_PATH char * Mount point corresponding to a
specified storage ID

PMIX_STORAGE_ID
PMIX_STORAGE_TYPE

PMIX_STORAGE_TYPE char * Type of storage system given by
given ID or path

PMIX_STORAGE_ID
PMIX_STORAGE_PATH

Attributes

With suitable qualifiers defined, we can now enumerate new attribute keys needed to support

storage system queries:

Translate between previously defined qualifiers by using them as queriable attributes

PMIx event notification API

While queries are useful for learning more about the storage hierarchy on a given system, PMIx

clients may also wish to respond to storage events of interest generated by storage-aware RMs

● Storage system failures (global failures, or node-specific or storage server-specific)

● Storage capacity getting low

● Storage servers idle/overloaded

Motivation

PMIx event notification API
Overview

Input: pmix_status_t value
indicating type of PMIx error
event to report

PMIx event notification API
Overview

Input: pmix_status_t value
indicating type of PMIx error
event to report

Input: pmix_info_t structure
array describing additional
details (i.e., key-vals) of the
event being reported

PMIx event notification API
Overview

Input: pmix_status_t value
indicating type of PMIx error
event to report

Input: pmix_info_t structure
array describing additional
details (i.e., key-vals) of the
event being reported

Approach: define new status
codes for storage events of
interest, and determine
necessary attributes to
describe event details

PMIx event notification API

We are still investigating the storage events we want to support, but generally view the event

notification API as a way of communicating critical information to users (storage errors, nearing

storage capacity limit, etc.) rather than more mundane details of storage systems

At a glance, the qualifiers we have defined for storage queries can mostly be reused to help

describe storage-related events:

● PMIX_STORAGE_ID to communicate the storage system generating the event

● PMIX_HOST, PMIX_PROCID for providing higher granularity information on the event

(i.e., this storage server process just went down, or this storage target is running out of

space)

● May also add new attributes to better describe storage events (i.e., an attribute

describing storage capacity remaining if it is getting low)

Storage events

Next steps

Process for formally reading query & event notification work in Q4 meeting

● Create Issue for discussion

● Create PR to submit proposed changes

● Add straw poll and pass at least 2 weeks ahead of Q4 meeting

Start storage API work

● Need to try to loop in Cray (DataWarp) and potentially someone from OLCF (Spectral)

If you or anyone you know is interested in participating, we could definitely use more input:

● Every other Tuesday (next meeting August 4th), 4PM CST

● https://groups.google.com/forum/#!forum/pmix-forum-wg-storage for meeting invites,

notes, and other updates

https://groups.google.com/forum/

Questions? Comments?

