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PMIX Fault events use cases
ULFM available in Open MPI 5.0
SUNY OSHMEM, and more

MOTIVATION

MPI ULFM

» Detection and
propagation in the scope
of MPI_COMM_WORLD
and MPI process

» Need capability to handle
node failures and not
limited to any MPI

OpenSHMEM

> No fault tolerance model
in current code stack.

» Need failure detection
and propagation service
to trigger check-pointing
and restart.

MPI EREINIT

> Global-restart failure
recovery by fast re-
initialization of MPI

» In need of more efficient
and generic service

Continue across Errors
In ULFM, failures do not alter the state of MPI communicators.
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DataSpaces and FTI

» Persistent data storage
services with check-
pointing feature.

» Need basic service for to
detect and report failures

of distributed storage
service.
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Full-Capability Recovery

Allowing collective operations to operate on damaged MPI objects
(communicators, RMA windows, or files) would incur unacceptable
overhead. The MPI_Comm_shrink routine builds a replacement
communicator—excluding failed processes—that can be used to resume
collective operations in malleable applications, spawn replacement

processes in non-moldable applications, and rebuild RMA windows and files.
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Example use cases: continue without repair, repair in domains,

respawn missing processes with ULFM MPI
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PMIx Fault Events Interface

FRONT END: PMIx Interface

* Control of the detection service through PMIx
interfaces

* Fault Events are presented as normal PMIx Events
* Very simple to hook into

* Compatible with non-ft builds (event is just not
generated)

 PMIX_Register_event_handler(...,
PMIX_ERR_PROC_ABORTED, ...

* Opens the gate for efficient management of failures
for an emeging field of libraries, programming
models, and runtime systems operating on large-
scale systems.

* Well specified interface helps usability by multiple
client types
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Failure Detection and Propagation in HPC Systems. In 26th European MPI Users’
Group Meeting (EuroMPI 2019), September 11-13, 2019, Zurich, Switzerland.
https://doi.org/10.1145/3343211.3343225

BACK END Capability integrated in PRTE 2.0, other LM/SMS can
produce the same events using their own methodologies

FAILURE DETECTION COMPONENT
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fast and resilient
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Advantages In delegating detection to the ;
PMIx runtime o |
Performance variability in GRAPH500 with
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* Reusable in different programming models 32 cores per node, 32K processes total.




Fault Management in PMIXx
What works, and Future Directions

PMIx Event Handling proved to be a natural fit to disseminate fault events

PMIx abstracts the ‘detector’, which lets application write portable fault-tolerant code that
can operate on a variety of PMIx servers (including non-FT ones)

PMIx servers have freedom of implementation behind the API curtain

Future Extensions

Fault-events implemented only in PRTE at the moment (PRTE can be launched under
Slurm/Jsrun/ALPS, etc., in managed mode, but not all have native support yet).

Current enabling of fault-detection/management is command-line based
Can we move to a programmatic way to turn-on/turn-off resilient features?

PRTE: Resilient overlay communication for commands/modex (reduce vulnerability to
startup faults)

Could user have fine-grain control over what operation (e.g., PMIx modex or Fence) are
resilient, or not (performance optimization)?

ICl

INNOVATIVE

COMPUTING LABORATORY

T

THE UNIVERSITY OF

TENNESSEE

KNOXVILLE



= =1n
-~ INNOVATIVE TENNESSEE

& VCDI\/IPUTING LABORATORY KNOXVILLE



