PMIx Fault Events Detection
and Dissemination use case:
Fault-Tolerance in Open MPI 5

and more

Aurelien Bouteiller, Zhong Dong, George Bosilca |C|

INNOVATIVE

PMIX Fault events use cases
ULFM available in Open MPI 5.0
SUNY OSHMEM, and more

MOTIVATION

MPI ULFM

» Detection and
propagation in the scope
of MPI_COMM_WORLD
and MPI process

» Need capability to handle
node failures and not
limited to any MPI

OpenSHMEM

> No fault tolerance model
in current code stack.

» Need failure detection
and propagation service
to trigger check-pointing
and restart.

MPI EREINIT

> Global-restart failure
recovery by fast re-
initialization of MPI

» In need of more efficient
and generic service

Continue across Errors
In ULFM, failures do not alter the state of MPI communicators.

Recv (ANY)
Detected W1

Master
Point-to-point operations can continue undisturbed between non-faulty \]
processes. ULFM imposes no recovery cost on simple communication wi %
patterns that can proceed despite failures.
, |
Wn
. . . . Recv(P1): failure
Exceptions in Contained Domains P1 S{ &%W 7] ca(lls)Revoke
A process can use MPI_[Comm,Win,File]_revoke to propagate an error p2 —
notification on the entire group, and could, for example, interrupt other : & =
ranks to join a coordinated recovery. P3 . o — §
“ “ (]
N 3 >
P - =

= -
]

DataSpaces and FTI

» Persistent data storage
services with check-
pointing feature.

» Need basic service for to
detect and report failures

of distributed storage
service.

\

Full-Capability Recovery

Allowing collective operations to operate on damaged MPI objects
(communicators, RMA windows, or files) would incur unacceptable
overhead. The MPI_Comm_shrink routine builds a replacement
communicator—excluding failed processes—that can be used to resume
collective operations in malleable applications, spawn replacement

processes in non-moldable applications, and rebuild RMA windows and files.

P1

P2

P3

Pn

%H

Example use cases: continue without repair, repair in domains,

respawn missing processes with ULFM MPI

—

- e U

PMIx Fault Events Interface

FRONT END: PMIx Interface

* Control of the detection service through PMIx
interfaces

* Fault Events are presented as normal PMIx Events
* Very simple to hook into

* Compatible with non-ft builds (event is just not
generated)

 PMIX_Register_event_handler(...,
PMIX_ERR_PROC_ABORTED, ...

* Opens the gate for efficient management of failures
for an emeging field of libraries, programming
models, and runtime systems operating on large-
scale systems.

* Well specified interface helps usability by multiple
client types

o

Failure Detection and Propagation in HPC Systems. In 26th European MPI Users’
Group Meeting (EuroMPI 2019), September 11-13, 2019, Zurich, Switzerland.
https://doi.org/10.1145/3343211.3343225

BACK END Capability integrated in PRTE 2.0, other LM/SMS can
produce the same events using their own methodologies

FAILURE DETECTION COMPONENT

@ O Node/PRTE servers failure detected
() "@ (&~ ®) with ping on a mendable ring
o) Q

8 03 ©

Minimal ping noise

Event Propagation along

multiple binomial trees

™ extracted from a circulant
graph: fixed degree (log),

fast and resilient

Dong Zhong, Aurelien Bouteiller, Xi Luo, and George Bosilca. 2019. Runtime Level

Advantages In delegating detection to the ;
PMIx runtime o |
Performance variability in GRAPH500 with

2001 g » RDAEMON?* daemon failure an active PMIx-PRRTE Failure detector
RDAEMON false Left: MPI Right: OpenSHMEM

positive present

. A Heartbeat -°
2 Timeout 7 _ Gray area
E P : r ‘ represents
> , : G £ 40
é 100 - ,/ A g normal
T 801 ~ i 2 oo benchmark

60 - 7 " 8 on 5 2% variability

VY ‘% & i -a.0%
40_ (, 6 " 01 0-(.1-1 0.001 §-60‘%
¢ A Heartbeat period (s} f_f 1 01 0.01 0.001

Heartbeat period (s)

Figure 17: Overhead for generating BFS running mge test ssmple when using

/77777 : s vl o o s, | T kst g S e o e o
20 30 40 50 100 g 'g'::‘y"xu lc;v:;:\u:!l:clnl:v;lr:::l:;:'hn of |hc‘h‘¢2m;h‘:|:‘t§. o e
Heartbeat period (ms) ~ - = + - Blue error bars
. : T T show the
* Accuracy of detection is very good (in the order of === criability as
100ms can be achieved in practice at scale) measured with
: : ... §am 1 1 detection ON
» False detection rate independent of the application T dom o § ..o |- HOR
communication pattern Pt Qe s oy o evepeiosin
normal variability of the Benchmark) Figure 20: Overhead for validating BFS running graph$00.shmem.one. sided
* Prior MPIl-based detector would produce false positive when e PRTE s i s v PR (2 O P e E

THE UNIVERSITY OF

appl ication does not call MPI pr ocedures Experiments performed on NERSC'’s Cori: Cray XC40 supercomputer with Intel TENNESSEE
Xeon "Haswell" processors and the Cray "Aries" high speed inter-node network, KNOXVILLE

* Reusable in different programming models 32 cores per node, 32K processes total.

Fault Management in PMIXx
What works, and Future Directions

PMIx Event Handling proved to be a natural fit to disseminate fault events

PMIx abstracts the ‘detector’, which lets application write portable fault-tolerant code that
can operate on a variety of PMIx servers (including non-FT ones)

PMIx servers have freedom of implementation behind the API curtain

Future Extensions

Fault-events implemented only in PRTE at the moment (PRTE can be launched under
Slurm/Jsrun/ALPS, etc., in managed mode, but not all have native support yet).

Current enabling of fault-detection/management is command-line based
Can we move to a programmatic way to turn-on/turn-off resilient features?

PRTE: Resilient overlay communication for commands/modex (reduce vulnerability to
startup faults)

Could user have fine-grain control over what operation (e.g., PMIx modex or Fence) are
resilient, or not (performance optimization)?

ICl

INNOVATIVE

COMPUTING LABORATORY

T

THE UNIVERSITY OF

TENNESSEE

KNOXVILLE

= =1n
-~ INNOVATIVE TENNESSEE

& VCDI\/IPUTING LABORATORY KNOXVILLE

