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PMIX Fault events use cases
ULFM available in Open MPI 5.0
SUNY OSHMEM, and more
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ULFM provides targeted interfaces to empower recovery strategies with adequate options to restore 
communication capabilities and global consistency, at the necessary levels only.
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a consequence, the performance of the first post-Revoke col-
lective operation sustains some performance degradation re-
sulting from the network jitter associated with the circula-
tion of these tokens. This performance degradation is mod-
erate, with the latency approximately doubling. The jitter
noise is equally spread on the BMG topology, therefore, the
increased latency of the first (and the much reduced impact

) Barrier is also independent of the initia-

Although after the first post-Revoke Barrier, no new Re-
voke tokens are injected (when the first Barrier of plan B
completes, a Revoke token has been delivered at every rank,
thus every rank has already injected its reliable broadcast
tokens), the absorption of delayed tokens and the lost syn-
chrony resulting from the initial jitter combine to impact
slightly the Barrier performance. After the fifth Barrier (ap-

), the application is fully resynchronized,
and the Revoke reliable broadcast has terminated, therefore
leaving the application free from observable jitter.

Figure 4 presents the scalability of the Barrier (left) and
AllReduce (right) collective communications in the Revoke
benchmark. The first observation is that the performance
of post-Revoke collective communications follows the same
scalability trend as the pre-Revoke operations, even those
impacted by jitter. In the case of the AllReduce collec-
tive communication, aside from the 1 st post-Revoke AllRe-
duce communication, which still exhibit a moderate over-

post-Revoke AllReduce is only
AllReduce exhibit no signif-

erence from the failure free case, illustrating that
the jitter introduced by the reliable broadcast algorithm has
a lesser impact on this communication pattern. When the
number of processes increases, the impact o!itter —the

erence between the failure-free and the 1 st post-Revoke
operation— is almost constant (or slightly decreasing). If
this trend were to continue at larger scales, the impact of
jitter could become asymptotically negligible.
Last, while the implementations of the “ tuned ” collective

er in performance trends on this Cray machine
(for reasons outside of the scope of this work, but rooting in
the internal collective algorithm selection logic being tuned
for the Infiniband network), the performance of the revoked
operation is similar in both cases, illustrating that, as long
as MPI progress is triggered, the propagation latency of the
BMG reliable broadcast is independent from the communi-

4.4 AllReduce and Message Size
Figure 5 presents the latency of the AllReduce collective

communication when the message size varies. Focusing first
on the cost of the Revoked AllReduce operation, one can ob-
serve that the duration of the operation remains independent
of the message size until the message size increases to 1MB
or more. As the Revoked operation is interrupted before ex-
changing the entire communication volume, this behavior is
expected. For larger message sizes, however, the delivery of
the Revoke notification may be delayed by the granularity
of the ongoing reduction computation; as these computa-
tions are progressing, the MPI progress engine is managing
them with maximum priority, and thus does not consider
incoming fragments for that time duration. As soon as one
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Example use cases: continue without repair, repair in domains, 
respawn missing processes with ULFM MPI

MPI ULFM
Ø Detection and

propagation in the scope
of MPI_COMM_WORLD
and MPI process

Ø Need capability to handle
node failures and not
limited to any MPI

OpenSHMEM
Ø No fault tolerance model

in current code stack.

Ø Need failure detection
and propagation service
to trigger check-pointing
and restart.

DataSpaces and FTI
Ø Persistent data storage

services with check-
pointing feature.

Ø Need basic service for to
detect and report failures
of distributed storage
service.

MPI EREINIT
Ø Global-restart failure

recovery by fast re-
initialization of MPI

Ø In need of more efficient
and generic service

MOTIVATION



PMIx Fault Events Interface
FRONT END: PMIx Interface
• Control of the detection service through PMIx

interfaces
• Fault Events are presented as normal PMIx Events
• Very simple to hook into
• Compatible with non-ft builds (event is just not 

generated)

• PMIX_Register_event_handler(…,
PMIX_ERR_PROC_ABORTED, …)

• Opens the gate for efficient management of failures 
for an emerging field of libraries, programming 
models, and runtime systems operating on large-
scale systems.

• Well specified interface helps usability by multiple 
client types
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BACK END Capability integrated in PRTE 2.0, other LM/SMS can 
produce the same events using their own methodologies

FAILURE DETECTION COMPONENT
Node/PRTE servers failure detected 
with ping on a mendable ring
Minimal ping noise

RELIABLE EVENT PROPAGATION COMPONENT

Event Propagation along 
multiple binomial trees 
extracted from a circulant 
graph: fixed degree (log), 
fast and resilient

0

1

seq:1

2

seq:3

4

seq:5 seq:8

8

seq:7 seq:6

10

seq:4

11

seq:2

35 9 6

7

Dong Zhong, Aurelien Bouteiller, Xi Luo, and George Bosilca. 2019. Runtime Level 
Failure Detection and Propagation in HPC Systems. In 26th European MPI Users’ 
Group Meeting (EuroMPI 2019), September 11–13, 2019, Zürich, Switzerland. 
https://doi.org/10.1145/3343211.3343225



4Advantages in delegating detection to the 
PMIx runtime

• Accuracy of detection is very good (in the order of 
100ms can be achieved in practice at scale)

• False detection rate independent of the application 
communication pattern
• Prior MPI-based detector would produce false positive when 

application does not call MPI procedures

• Reusable in different programming models
4

Performance variability in GRAPH500 with
an active PMIx-PRRTE Failure detector
Left: MPI Right: OpenSHMEM

Gray area 
represents 
normal 
benchmark 
variability

Blue error bars 
show the 
variability as
measured with 
detection ON

Experiments performed on NERSC’s Cori: Cray XC40 supercomputer with Intel 
Xeon "Haswell" processors and the Cray "Aries" high speed inter-node network, 
32 cores per node, 32K processes total.



Fault Management in PMIx
What works, and Future Directions
• PMIx Event Handling proved to be a natural fit to disseminate fault events
• PMIx abstracts the ‘detector’, which lets application write portable fault-tolerant code that 

can operate on a variety of PMIx servers (including non-FT ones)
• PMIx servers have freedom of implementation behind the API curtain

Future Extensions
• Fault-events implemented only in PRTE at the moment (PRTE can be launched under 

Slurm/Jsrun/ALPS, etc., in managed mode, but not all have native support yet). 
• Current enabling of fault-detection/management is command-line based
• Can we move to a programmatic way to turn-on/turn-off resilient features?
• PRTE: Resilient overlay communication for commands/modex (reduce vulnerability to 

startup faults)
• Could user have fine-grain control over what operation (e.g., PMIx modex or Fence) are 

resilient, or not (performance optimization)?
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