
PMIx ASC Quarterly Meeting – 26.10.2021 
Isaías Comprés – TUM

Experiences with a Slurm and MPICH based 
Malleability Prototype

1



Motivation

2

• Algorithms with scalability ceilings that change during execution
• Holding underutilized or not utilized resources
• Increased scalability potential after launch

• Fixed allocations a limitation for schedulers
• Less degrees of freedom for node utilization system goals
• Idle nodes due to set of job requirements not fitting neatly



Code Structure

MPI Extension Overview

3

MPI_Init_adapt(…)
• Initializes the library in invasive mode

MPI_Probe_adapt(…)
• Probes the resource manager for adaptations

MPI_Comm_adapt_begin(…)
• Provides a set of helper communicators

MPI_Comm_adapt_commit(…)
• Sets adapted MPI_COMM_WORLD

MPI_Init_adapt(…, &status);

for (…){
MPI_Probe_adapt(&adapt,…);
if(adapt){

MPI_Comm_adapt_begin(…);
// redistribution code

MPI_Comm_adapt_commit(…);
}

// compute and MPI code
}



Adaptation Step 1

4



Adaptation Step 2

5



Adaptation Step 3

6



Adaptation Step 4

7



Adaptation Step 5

8



Adaptation Step 6

9



Adaptation Visualization Tool

10



• Process creation and bootstrap occurs multiple times
– In static allocations, it is only once

• Feedback and control mechanisms are necessary
– In the static case, once the application starts, it runs to completion
– In the malleable case, there is interaction between applications and RM 

components

• Malleability in multiple programming models
– Some programming models are static today, due to MPI dependency
– PMIx as a common interface with Tools and Workload Managers
– Drop the MPI dependency in some cases

PMIx Importance in Malleability 

11



• We are looking at this topic in the Tools WG
– Agreement in a transaction-like API so far
– RM-driven and application-driven malleability

§ In both cases the application initiates transactions to perform the resource 
exchange

§ The difference is only during negotiation

• Prototype implementations within the DEEP-SEA project
– Likely that the PMIx APIs are sufficient
– Slurm, Open PMIx, MPICH and Open MPI in the stack

Malleability in PMIx

12P. Lemarinier – DEEP-SEA – WP5 – 1st Consortium Meeting, 27/10/2021



Summary

13

Alternative to MPI Dynamic Processes:
• Initialization, probing for adaptations, and transacction
• Allows for latency hiding designs (from preexisting processes)
• Overheads dominated by domain redistribution

DEEP-SEA European research project:
• Up to date software stack: Slurm, Open PMIx, Open MPI and MPICH
• Follow developments of the MPI Sessions WG malleability efforts

References:
https://doi.org/10.1145/2966884.2966917
https://doi.org/10.1145/3075564.3075585

https://doi.org/10.1145/2966884.2966917
https://doi.org/10.1145/3075564.3075585

