-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathModelViz.py
563 lines (495 loc) · 23.9 KB
/
ModelViz.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
#!/bin/python
import xarray as xr
import matplotlib.pyplot as plt
import matplotlib as mpl
import tqdm
import cartopy.crs as ccrs
from cartopy.feature import NaturalEarthFeature
import numpy as np
import pandas as pd
import pathlib
import tslearn as ts
import tslearn.clustering
import glob
from sklearn.cluster import KMeans
import matplotlib.gridspec as gridspec
class ModelViz:
"""
A class for visualizing and analyzing ocean model data.
Attributes:
cluster_vars (list): List of variables for clustering.
time_var (str): Name of the time variable.
x_strip (slice): Slice for x-dimension cropping.
y_strip (slice): Slice for y-dimension cropping.
n_clusters (int): Number of clusters.
norm (bool): Whether to normalize the data.
seed (int): Seed for random initialization.
n_init (int): Number of initializations for KShape clustering.
"""
def __init__(self):
"""
Initialize ModelViz with default values for attributes.
"""
self.cluster_vars = ['N1_p', 'N3_n', 'N4_n', 'N5_s', 'O2_o', 'B1_c', 'O3_c', 'O3_TA', 'O3_pH', 'Phytoplankton',
'Zooplankton', 'DOM', 'POM']
self.time_var = 'time_counter'
self.x_strip = slice(10, -10)
self.y_strip = slice(10, -10)
self.n_clusters = 6
self.norm = True # other options None and stdev
self.seed = 950
self.n_init = 3
def load_data(self, file_path):
"""
Load model data from a NetCDF file.
Args:
file_path (str): Path to the NetCDF file.
Returns:
None
"""
self.ds = xr.open_dataset(file_path).drop_dims('axis_nbounds', errors='ignore')
if 'deptht' in self.ds.dims:
self.ds = self.ds.squeeze(dim=['deptht'])
def load_mfdata(self, file_glob):
"""
Load model data from multiple NetCDF files using a glob pattern.
Args:
file_glob (str): Glob pattern for NetCDF files.
Returns:
None
"""
files = glob.glob(file_glob)
self.ds = xr.open_mfdataset(files).drop_dims('axis_nbounds', errors='ignore')
if 'deptht' in self.ds.dims:
self.ds = self.ds.squeeze(dim=['deptht'])
def load_grid(self, file_path, var_name = False, crop_baltic = True):
"""
Load grid information from a NetCDF file.
Args:
file_path (str): Path to the NetCDF file containing grid information.
var_name (str): If a data file is being used as a mask, this contains the name
of the variable to use for the mask. Otherwise, set to False.
crop_baltic (bool): Whether to crop the Baltic region of data, between lats
55-60 and where longitude is greater than 10.
Returns:
None
"""
self.grd = xr.open_dataset(file_path).isel(x=self.x_strip, y=self.y_strip)
if 't' in self.grd.dims:
if len(self.grd['t'])>1:
self.grd = self.grd.isel(t=0)
else:
self.grd = self.grd.squeeze(dim=['t'])
self.dim_x = self.grd.x
self.dim_y = self.grd.y
if var_name != False:
# when using a data file to mask, choose which variable to mask with
self.mask = xr.where(np.isfinite(self.grd[var_name]),1,0)
else:
if 'bottom_level' in self.grd.variables:
# NEMO 4.0 mask with bottom level
self.mask = xr.where(self.grd.bottom_level > 0, 1, 0)
if 'tmask' in self.grd.variables:
# NEMO 3.6 mask with tmask
self.mask = xr.where(self.grd.tmask.isel(z=0)==1,1,0)
if 'time' in self.mask.coords:
self.mask = self.mask.drop_vars('time')
### cropping to remove area to the right of Denmark
if crop_baltic == True:
# longitude less than 10
mask1 = xr.where(self.grd.nav_lon < 10 , 1, 0)
# latitude less than 60
mask2 = xr.where(self.grd.nav_lat > 60, 1, 0)
# latitude greater than 55
mask3 = xr.where(self.grd.nav_lat < 55, 1, 0)
mask = mask1 + mask2 + mask3
self.mask = xr.where(mask > 0, self.mask, 0)
def save_data(self, file_path):
"""
Save the current dataset to a NetCDF file.
Args:
file_path (str): Path to save the NetCDF file.
Returns:
None
"""
self.ds.to_netcdf(file_path)
def summarise_features(self, sum_vars=None):
"""
Summarize specified variables by creating new variables in the dataset.
Args:
sum_vars (dict): Dictionary specifying variables to be summarized.
Returns:
None
"""
if sum_vars is None:
sum_vars = {
'Phytoplankton': ['P1_c', 'P2_c', 'P3_c', 'P4_c'],
'Zooplankton': ['Z4_c', 'Z5_c', 'Z6_c'],
'DOM': ['R1_c', 'R2_c', 'R3_c'],
'POM': ['R4_c', 'R6_c', 'R8_c']
}
for v in sum_vars:
self.ds[v] = self.ds[sum_vars[v]].to_array(dim='sum').sum(dim='sum', skipna=False)
def preprocess(self, do_slice=True):
"""
Preprocess the dataset, including variable selection and normalization.
Args:
do_slice (bool) : Whether data needs trimming e.g. in the case of NEMO AMM7 model output the 10 outermost cells are usually discarded.
Returns:
None
"""
self.ds = self.ds[self.cluster_vars]
if do_slice == True:
self.ds = self.ds.isel(x=self.x_strip, y=self.y_strip)
if self.time_var in self.ds.dims:
if self.time_var != "time":
self.ds = self.ds.rename({self.time_var:'time'})
else:
self.ds = self.ds.expand_dims(dim = {"time":np.asarray([1])})
self.ds = self.ds.where(self.mask==1) #,drop=True)
if self.norm in [True, 'magnitude']:
# Global normalisation by magnitude of variable for all data
self.norm_factor = {}
for v in self.cluster_vars:
self.norm_factor[v] = np.sqrt((self.ds[v] * self.ds[v]).sum())
self.ds[v] = self.ds[v]/self.norm_factor[v]
if self.norm == 'stdev':
# Global normalisation by magnitude and variability for point data
for v in self.cluster_vars:
self.ds[v] = (self.ds[v]-self.ds[v].mean())/self.ds[v].std()
def make_tsds(self, is_3D=False, save=False, file_path='dataset.csv'):
"""
Create a time series dataset from the current dataset.
2D: (num of lat x num of lons, # time points x # variables)
3D: (num of lat x # lons, # time points, # variables)
Args:
save (bool): Whether to save the time series dataset to a CSV file.
file_path (str): Path to save the CSV file.
is_3D (bool): Whether to output a 2D or 3D dataset
Returns:
None
"""
# not sure why I currently need to mask again here - but I do
ds_stack = self.ds.stack(Npts=('x', 'y')).where(self.mask.stack(Npts=('x','y')) == 1, drop=True)
self.index = ds_stack.Npts
if is_3D == True:
self.tsds = ds_stack.to_stacked_array('var', sample_dims=['Npts','time']).transpose('Npts','time','var')
else:
ds_stack = ds_stack.to_stacked_array('z', sample_dims=['Npts'])
self.tsds = pd.DataFrame(ds_stack.variable, index=self.index, columns=ds_stack.time)
if save:
self.tsds.to_csv(pathlib.Path(file_path))
def load_tsds(self, file_path):
"""
Load a time series dataset from a CSV file.
Args:
file_path (str): Path to the CSV file.
Returns:
None
"""
self.tsds = pd.read_csv(file_path)
self.index = self.tsds.index
def train(self, tsds=None, n_clusters=6, method='quantile', verbose=True, save=True, file_path='model.ks', model_name='kshape'):
"""
Train the clustering model using either KShape (for time series data) or KMeans (for single time point data).
Args:
tsds (pd.DataFrame): Time series dataset.
n_clusters (int): Number of clusters.
method (str): Initialization method ('quantile' or 'random').
verbose (bool): Whether to print verbose output.
save (bool): Whether to save the trained model to a file.
file_path (str): Path to save the model file.
model_name (str): which clustering method to use. Current options are 'kmeans', 'kshape'
Returns:
None
"""
if tsds is None:
tsds = self.tsds
self.n_clusters = n_clusters
if model_name == 'kmeans':
self.model = KMeans(init="k-means++", n_clusters=n_clusters, n_init=self.n_init, random_state=self.seed)
if model_name == 'kshape':
if method == 'quantile':
print('Initialising using quantiles')
quantiles = np.arange(1 / (2 * n_clusters), 1,1 / n_clusters)
self.model = ts.clustering.KShape(n_clusters=n_clusters,
verbose=verbose,
init=tsds.quantile(q=quantiles).values[:, :, np.newaxis],
n_init = 1
)
elif method == 'random':
print('Initialising using random, seed = ', self.seed)
self.model = ts.clustering.KShape(n_clusters=n_clusters,
verbose=verbose,
random_state=self.seed,
n_init = self.n_init
)
else:
print('Unrecognised initialisation method')
return
self.model.fit(tsds)
if save:
# this does not work with kmeans
self.model.to_json(file_path)
def load_model(self, file_path):
"""
Load a trained model from a JSON file.
Args:
file_path (str): Path to the JSON file containing the model.
Returns:
None
"""
self.model = ts.clustering.KShape.from_json(file_path)
def predict(self):
"""
Predict cluster labels for the time series dataset.
Returns:
None
"""
self.labels = self.model.predict(self.tsds)
predictions = pd.DataFrame(self.labels, index=self.index, columns=['Clusters'])
predictions.index = pd.MultiIndex.from_tuples(predictions.index, names=('x', 'y'))
# Restore original dimensions:
if len(predictions.index.get_level_values(0).unique()) != len(self.dim_x):
for idx in np.setdiff1d(self.dim_x, predictions.index.get_level_values(0).unique()):
predictions.loc[(idx, 0), :] = np.nan
if len(predictions.index.get_level_values(1).unique()) != len(self.dim_y):
for idx in np.setdiff1d(self.dim_y, predictions.index.get_level_values(1).unique()):
predictions.loc[(0, idx), :] = np.nan
self.predictions = predictions.to_xarray()
def get_cluster_info(self, save=False, file_path='Predicted_TS.nc'):
"""
Compute and save cluster information including class maps and time series.
Args:
save (bool): Whether to save the computed information to a NetCDF file.
file_path (str): Path to save the NetCDF file.
Returns:
None
"""
w = self.predictions.Clusters
self.cluster_ds = xr.Dataset(data_vars={'class_map': (['y', 'x'], w.values.T)},
coords={'lon': (['y', 'x'], self.grd.nav_lon.values),
'lat': (['y', 'x'], self.grd.nav_lat.values)})
self.cluster_ds = self.cluster_ds.assign_coords({'var': self.cluster_vars,
'vclass': np.arange(self.model.n_clusters),
'time': self.ds.time.values})
self.cluster_ds['class_TS'] = (['var', 'vclass', 'time'],
np.zeros((len(self.cluster_vars), self.model.n_clusters, len(self.ds.time))))
self.cluster_ds['class_TS_std'] = (['var', 'vclass', 'time'],
np.zeros((len(self.cluster_vars), self.model.n_clusters, len(self.ds.time))))
self.cluster_ds['IQR'] = (['var'], np.zeros((len(self.cluster_vars))))
self.ds = self.ds.chunk(dict(time=-1))
for v, var in enumerate(self.cluster_vars):
print('Processing ' + var)
self.cluster_ds['IQR'][v] = self.ds[var].quantile([0.75, 0.25]).diff('quantile').values[0]
for x in tqdm.tqdm(np.arange(self.n_clusters)):
self.cluster_ds['class_TS'][v, x, :] = self.ds[var].where((w == x)).mean(['x', 'y'])
self.cluster_ds['class_TS_std'][v, x, :] = self.ds[var].where((w == x)).std(['x', 'y'])
if save:
self.cluster_ds.to_netcdf(file_path)
def load_cluster_info(self, file_path):
"""
Load cluster information from a NetCDF file.
Args:
file_path (str): Path to the NetCDF file containing cluster information.
Returns:
None
"""
self.cluster_ds = xr.open_dataset(file_path)
def plot_map(self, savefig=None, file_path='class_map.png', hex_list = None):
"""
Plot the spatial distribution of the clusters on a map and save the figure.
Args:
savefig (bool): Whether to save the figure.
file_path (str): Path to save the figure.
hex_list (list): List the same length as the number of clusters of hex values for the colour scheme
Returns:
None
"""
if hex_list == None:
self.cmap = plt.get_cmap('Set3')
else:
self.cmap = self.make_cmap(hex_list)
f = plt.figure(figsize=(8, 8))
ax = plt.axes(projection=ccrs.PlateCarree())
plt.pcolormesh(self.cluster_ds.lon, self.cluster_ds.lat, self.cluster_ds.class_map, cmap=self.cmap)
ax.add_feature(NaturalEarthFeature(category="physical", facecolor=[0.9, 0.9, 0.9], name="coastline", scale="50m"),
edgecolor="gray")
gl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=True, linewidth=0.5, color="gray", linestyle="-")
gl.top_labels = False
gl.bottom_labels = True
gl.right_labels = False
gl.left_labels = True
ax.set_aspect("auto")
if savefig is not None:
plt.savefig(file_path)
def plot_ts(self, plot_vars={'N3_n': 'Nitrate', 'Phytoplankton': 'Phyto', 'DOM': 'DOM', 'POM': 'POM'}, rescale=False,
savefig=None, file_path='cluster_ts.png'):
"""
Plot time series of variables with a new plot for each cluster.
Args:
plot_vars (dict): Dictionary specifying variables to be plotted.
rescale (bool): Whether to rescale the variables.
savefig (bool): Whether to save the figures.
file_path (str): Path to save the figures.
Returns:
None
"""
self.line_colors = [p['color'] for p in plt.rcParams['axes.prop_cycle']]
self.cmap = plt.get_cmap('Set3')
self.cmap_discrete = self.cmap(np.linspace(0, 1, self.model.n_clusters))
for i in range(self.model.n_clusters):
f = plt.figure(figsize=(8, 3))
ax = plt.axes()
for v, var in enumerate(plot_vars):
scale = self.norm_factor[var] if rescale else 1
xbar = scale * self.cluster_ds.class_TS.sel(var=var, vclass=i)
xstd = scale * self.cluster_ds.class_TS_std.sel(var=var, vclass=i)
ax.plot(self.cluster_ds.time, xbar, label=plot_vars[var], c=self.line_colors[v])
ax.fill_between(self.cluster_ds.time, xbar - xstd, xbar + xstd, alpha=0.1,
facecolor=self.line_colors[v])
ax.set_xlim([self.cluster_ds.time[0], self.cluster_ds.time[-1]])
ax.tick_params(axis='x', labelrotation=45)
ax.legend(loc='upper right', ncol=2)
xmin, xmax = plt.gca().get_xlim()
xdiff = xmax - xmin
ymin, ymax = plt.gca().get_ylim()
ydiff = ymax - ymin
ax.add_patch(
mpl.patches.Rectangle((xmin + 0.01 * xdiff, ymin + 0.82 * ydiff), 0.05 * xdiff, 0.15 * ydiff,
facecolor=self.cmap_discrete[i]))
if savefig is not None:
p = pathlib.Path(file_path)
plt.savefig(p.with_stem(f"{p.stem}_{i}"))
def plot_ts_2(self, legend_names, plot_vars={'N3_n': 'Nitrate', 'Phytoplankton': 'Phyto', 'DOM': 'DOM', 'POM': 'POM'}, rescale=False,
savefig=None, file_path='cluster_ts.png', hex_list=None):
"""
Plot time series for each variable with a new figure for each variable to compare differences between clusters.
Args:
legend_names (list): List of labels for the different clusters e.g. ['1','2'..
plot_vars (dict): Dictionary specifying variables to be plotted.
rescale (bool): Whether to rescale the variables.
savefig (bool): Whether to save the figures.
file_path (str): Path to save the figures.
hex_list (list): List the same length as the number of clusters of hex values for the colour scheme
Returns:
None
"""
if hex_list == None:
self.cmap = plt.get_cmap('Set3')
self.cmap_discrete = self.cmap(np.linspace(0,1,self.model.n_clusters))
else:
self.cmap_discrete = hex_list
for v, var in enumerate(plot_vars):
f = plt.figure(figsize=(8, 3))
ax = plt.axes()
for i in range(self.model.n_clusters):
scale = self.norm_factor[var] if rescale else 1
xbar = scale * self.cluster_ds.class_TS.sel(var=var, vclass=i)
xstd = scale * self.cluster_ds.class_TS_std.sel(var=var, vclass=i)
ax.plot(self.cluster_ds.time, xbar, label=legend_names[i], c=self.cmap_discrete[i])
ax.fill_between(self.cluster_ds.time, xbar - xstd, xbar + xstd, alpha=0.1,
facecolor=self.cmap_discrete[i])
ax.set_xlim([self.cluster_ds.time[0], self.cluster_ds.time[-1]])
bottom, top = ax.get_ylim()
if bottom < 0.0001:
ax.set_ylim(bottom = 0)
ax.tick_params(axis='x', labelrotation=45)
ax.legend(loc='upper right', ncol=2)
ax.set_title(plot_vars[var])
if savefig is not None:
p = pathlib.Path(file_path)
plt.savefig(p.with_stem(f"{p.stem}_{plot_vars[var]}"))
def plot_vars(self, plot_vars={'N3_n':'Nitrate','Phytoplankton':'Phyto', 'DOM':'DOM', 'POM':'POM'}, rescale=False, savefig=None, file_path='cluster_ts.png'):
"""
Plot mean and stdev of each variable with each cluster in a different subplot.
Args:
plot_vars (dict): Dictionary specifying variables to be plotted.
rescale (bool): Whether to rescale the variables.
savefig (bool): Whether to save the figures.
file_path (str): Path to save the figures.
Returns:
None
"""
self.line_colors = [p['color'] for p in plt.rcParams['axes.prop_cycle']]
self.cmap = plt.get_cmap('Set3')
self.cmap_discrete = self.cmap(np.linspace(0,1,self.model.n_clusters))
gs = gridspec.GridSpec(self.model.n_clusters, 1)
f = plt.figure(figsize=(8,3*self.model.n_clusters))
for i in range(self.model.n_clusters):
ax = f.add_subplot(gs[i])
x_tick_labels = np.asarray([])
for v,var in enumerate(plot_vars):
scale = self.norm_factor[var] if rescale else 1
xbar = scale*self.cluster_ds.class_TS.sel(var=var,vclass=i)
xstd = scale*self.cluster_ds.class_TS_std.sel(var=var,vclass=i)
ax.plot(v+1,xbar,'o',label=plot_vars[var],c=self.line_colors[v])
ax.errorbar(v+1,xbar,xstd,alpha=0.5,color=self.line_colors[v])
x_tick_labels = np.append(x_tick_labels,[plot_vars[var]])
ax.set_xlim([0,v+2])
ax.set_xticks(range(1,v+2),x_tick_labels,fontsize=14)
xmin,xmax = plt.gca().get_xlim()
xdiff = xmax-xmin
ymin,ymax = plt.gca().get_ylim()
ydiff = ymax-ymin
ax.add_patch(mpl.patches.Rectangle((xmin+0.01*xdiff,ymin+0.82*ydiff),0.05*xdiff,0.15*ydiff,facecolor=self.cmap_discrete[i]))
gs.tight_layout(f)
if savefig is not None:
print('Saving figures')
p = pathlib.Path(file_path)
plt.savefig(p.with_stem(f"{p.stem}"), bbox_inches='tight')
def plot_vars_2(self, plot_vars={'N3_n':'Nitrate','Phytoplankton':'Phyto', 'DOM':'DOM', 'POM':'POM'}, rescale=False, savefig=None, file_path='cluster_ts.png', hex_list=None):
"""
Plot mean and stdev of each variable for each cluster.
Plots all clusters in one figure so differences between variable values are clearer.
Args:
plot_vars (dict): Dictionary specifying variables to be plotted.
rescale (bool): Whether to rescale the variables.
savefig (bool): Whether to save the figures.
file_path (str): Path to save the figures.
hex_list (list): List the same length as the number of clusters of hex values for the colour scheme
Returns:
None
"""
if hex_list == None:
self.cmap = plt.get_cmap('Set3')
self.cmap_discrete = self.cmap(np.linspace(0,1,self.model.n_clusters))
else:
self.cmap_discrete = hex_list
f = plt.figure(figsize=(8,3))
plt.hlines(0,0,len(plot_vars)+2,linestyle='--',color='black')
for i in range(self.model.n_clusters):
x_tick_labels = np.asarray([])
increment = 0.8*(i-self.model.n_clusters/2)/self.model.n_clusters
for v,var in enumerate(plot_vars):
scale = self.norm_factor[var] if rescale else 1
xbar = scale*self.cluster_ds.class_TS.sel(var=var,vclass=i)
xstd = scale*self.cluster_ds.class_TS_std.sel(var=var,vclass=i)
plt.plot(v+1+increment,xbar,'o',label=plot_vars[var],c=self.cmap_discrete[i])
plt.errorbar(v+1+increment,xbar,xstd,alpha=0.5,color=self.cmap_discrete[i])
x_tick_labels = np.append(x_tick_labels,[plot_vars[var]])
plt.xlim([0,v+2])
plt.xticks(range(1,v+2),x_tick_labels,fontsize=14)
plt.tight_layout()
if savefig is not None:
print('Saving figures')
p = pathlib.Path(file_path)
plt.savefig(p.with_stem(f"{p.stem}"), bbox_inches='tight')
def make_cmap(self,cmap_colors):
"""
Build a custom colormap for plotting from a list of input HTML hex colour codes.
Parameters
----------
cmap_colors : array_like[shape=(N),dtype=object]
A list of HTML hex colour codes. (-)
Returns
-------
cmap : matplotlib.colors.Colormap
Matplotlib colormap instance generated from the input codes. (-)
"""
from matplotlib.colors import LinearSegmentedColormap
from matplotlib.colors import to_rgb
cmap = \
LinearSegmentedColormap.from_list( 'my_list',[to_rgb(c1) for c1 in \
cmap_colors])
return cmap