-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAbstractModel.py
289 lines (188 loc) · 8.24 KB
/
AbstractModel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import numpy as np
import random
import sys
import copy
import statistics
from Points import *
class AbstractModel :
rnd = random.Random(69997)
def __init__(self, cost = sys.float_info.max) :
self.cost = cost
def betterThan(self, m) :
if self.cost < 0 : return False
else : return self.cost < m.cost
def set() :
pass
# inliers를 parameter로 받긴하는데 사용안하고 global variable만 사용함(tempInlier).. 다른 해결책 없나?
def test(self, candidates, inliers, epsilon, minInlierRatio, minNumInliers = None) :
if not minNumInliers :
minNumInliers = self.minNumPoints
global tempInliers
tempInliers.clear()
for m in candidates :
m.apply(self)
if m.distance < epsilon :
tempInliers.append(m)
ir = len(tempInliers) / len(candidates)
self.cost = max(0, min(1, 1 - ir))
return (( len(tempInliers) >= minNumInliers ) and ( ir > minInlierRatio ))
def test_for_test(self, candidates, inliers, epsilon, minInlierRatio, minNumInliers = None) :
if not minNumInliers :
minNumInliers = self.minNumPoints
inliers.clear()
for m in candidates :
m.apply(self)
if m.distance < epsilon :
inliers.append(m)
ir = len(inliers) / len(candidates)
self.cost = max(0, min(1, 1 - ir))
return (( len(inliers) >= minNumInliers ) and ( ir > minInlierRatio ))
def filter(self, candidates, inliers, maxTrust, minNumInliers) :
if len(candidates) < self.minNumPoints :
raise Exception(str(len(candidates)) + " data points are not enough to solve the Model, at least " + str(self.minNumPoints) + " data points required." )
# copy1, self = SymmetryCenter2D object
copy1 = copy.deepcopy(self)
# inliers, temp = PointFunctionMatch object list
inliers.clear()
inliers = copy.deepcopy(candidates)
temp = []
numInliers = None
while True :
temp.clear()
temp = copy.deepcopy(inliers)
numInliers = len(inliers)
try :
# copy1.xc & copy1.yc 값을 선택된 inliers를 사용해 갱신
copy1.fitFunction(inliers)
except :
return False
observer = []
for m in temp :
# temp.distance 값을, 갱신된 copy1.xc & copy1.xc 값을 이용해 갱신
# m = PointFunctionMatch object
m.apply(copy1)
observer.append(m.distance)
inliers.clear()
#t = observer.getMedian() * maxTrust
t = statistics.median(observer) * maxTrust
for m in temp :
if m.distance <= t :
inliers.append(m)
copy1.cost = statistics.mean(observer)
# break. like do-while
if numInliers <= len(inliers) :
break
if numInliers < self.minNumPoints :
return False
self = copy.deepcopy(copy1)
return self, inliers
def ransac(self,
candidates = None,
inliers = None,
iterations = None,
epsilon = None,
minInlierRatio = None,
minNumInliers = None) :
cost = sys.float_info.max
copy1 = copy.deepcopy(self)
m1 = copy.deepcopy(self)
if minNumInliers == None :
minNumInliers = self.minNumPoints
if len(candidates) < self.minNumPoints :
raise Exception(str(len(candidates)) + " data points are not enough to solve the Model, at least " + str(self.minNumPoints) + " data points required." )
inliers.clear()
i = 0
minMatches = set()
while i < iterations :
# goto
x=0
# PointMatch p를 minNumInliers 만큼 중복되지않게 뽑기
minMatches.clear()
for j in range(self.minNumPoints) :
while True :
# random index 생성
idx = np.random.uniform(0, len(candidates), 1)
idx = int(idx)
p = candidates[idx]
if p in minMatches :
continue
else :
minMatches.add(p)
break
try :
'''
minMatches_list = list(minMatches)
x1 = np.array([mM.p1.w[0] for mM in minMatches_list])
y1 = np.array([mM.p1.w[1] for mM in minMatches_list])
m1.m, m1.n = np.polyfit(x1, y1, 1).tolist()
'''
minMatches_list = list(minMatches)
m1.fitFunction(minMatches_list)
except :
i += 1
continue
global tempInliers
tempInliers = []
numInliers = 0
isGood = m1.test(candidates, tempInliers, epsilon, minInlierRatio) # test() --> 보류. 구현해야됨
while isGood and ( numInliers < len(tempInliers) ) :
numInliers = len(tempInliers)
try :
m1.fitFunction(tempInliers)
except :
# goto
i += 1
x = 'GoToFirstWhile'
break
isGood = m1.test(candidates, tempInliers, epsilon, minInlierRatio, minNumInliers)
# goto
if x == 'GotoFirstWhile' :
continue
if isGood and m1.betterThan(copy1) and ( len(tempInliers) >= minNumInliers ) :
copy1 = copy.deepcopy(m1)
inliers.clear()
inliers = copy.deepcopy(tempInliers)
i += 1
if len(inliers) == 0 :
return False
self = copy.deepcopy(copy1)
return self, inliers
def filterRansac(self,
candidates = None,
inliers = None,
iterations = None,
maxEpsilon = None,
minInlierRatio = None,
minNumInliers = None,
maxTrust = 4) :
temp = []
self_inliers = self.ransac(candidates,
temp,
iterations,
maxEpsilon,
minInlierRatio,
minNumInliers)
if not self_inliers : return False
self = self_inliers[0]
temp = self_inliers[1]
self_inliers = self.filter(temp, inliers, maxTrust, minNumInliers)
if not self_inliers : return False
return self_inliers
if __name__ == '__main__' :
from Center import *
points = []
points.append(Point([1.0]))
points.append(Point([3.0]))
points.append(Point([1.5]))
points.append(Point([0.8]))
candidates = []
inliers = []
inliers2 = []
for p in points :
candidates.append(PointFunctionMatch(p))
l = Center(Center.CenterMethod.MEAN)
l, inliers = l.ransac(candidates, inliers, 500, 1, 0.1) # 500 == RadialSymmetry.bsNumIterations
print(len(inliers))
print("p = " + str(l.p))
for p in inliers :
print(str(p.p1.l[0]),str(l.distanceTo(p.p1)))