-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLine.py
88 lines (58 loc) · 2.09 KB
/
Line.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import numpy as np
import math
import copy
import sys
from Points import *
from AbstractModel import *
class Line(AbstractModel) :
minNumPoints = 2
def __init__(self, n = None, m = None) :
self.n = n
self.m = m
self.cost = sys.float_info.max
def fitFunction(self, points) :
numPoints = len(points)
if numPoints < self.minNumPoints :
raise Exception("Not enough points, at least " + str(self.minNumPoints) + " are necessary.")
# compute matrices
delta = np.zeros(shape = (2, 2))
theta = np.zeros(shape = 2)
for p in points :
x = p.p1.w[0]
y = p.p1.w[1]
xx = x * x
xy = x * y
delta[0, 0] += xx
delta[0, 1] += x
delta[1, 0] += x
delta[1, 1] += 1
theta[0] += xy
theta[1] += y
delta = np.linalg.inv(delta)
self.m = delta[0, 0] * theta[0] + delta[0, 1] * theta[1]
self.n = delta[1, 0] * theta[0] + delta[1, 1] * theta[1]
def distanceTo(self, point) :
x1 = point.w[0]
y1 = point.w[1]
return abs(y1 - self.m * x1 - self.n) / (math.sqrt(self.m * self.m + 1))
if __name__ == '__main__' :
points = []
points.append(Point([1, -3.95132]))
points.append(Point([2, 6.51205]))
points.append(Point([3, 18.03612]))
points.append(Point([4, 28.65245]))
points.append(Point([5, 42.05581]))
points.append(Point([6, 54.01327]))
points.append(Point([7, 64.58747]))
points.append(Point([8, 76.48754]))
points.append(Point([9, 89.00033]))
candidates = []
inliers = []
for p in points :
candidates.append(PointFunctionMatch(p))
l = Line()
l, inliers = l.ransac( candidates, inliers, 100, 0.1, 0.5)
print(len(inliers))
print("y = " + str(l.m) + " x + " + str(l.n))
for p in inliers :
print(l.distanceTo(p.p1))