-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcomputeGradient.py
159 lines (103 loc) · 4.74 KB
/
computeGradient.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
class Gradient :
def __init__(self, numDimensions = None) :
self.numDimensions = numDimensions
def gradientAt(self, location, derivativeVector) :
pass
class ComputeGradient :
'''
Compute the n-dimensional 1st derivative vector in center of a 2x2x2...x2 environment for a certain location
defined by the position of the RandomAccess
- param location : the top-left-front position for which to compute the derivative
- param derivativeVector : where to put the derivative vector [3]
'''
def gradientAt(self, location, derivativeVector) :
pass
class ComputeGradient2d(ComputeGradient) :
def __init__(self, image) :
self.image = image
def gradientAt(self, location, derivativeVector) :
# location = [x,y]
# image[y,x]
#p0 = self.image[ location[0], location[1] ]
#p1 = self.image[ location[0], location[1] + 1 ]
#p2 = self.image[ location[0] + 1, location[1] ]
#p3 = self.image[ location[0] + 1, location[1] + 1 ]
p0 = self.image[ location[1], location[0] ]
p1 = self.image[ location[1], location[0] + 1 ]
p2 = self.image[ location[1] + 1, location[0] ]
p3 = self.image[ location[1] + 1, location[0] + 1 ]
derivativeVector.append( ((p1+p3) - (p0+p2)) / 2.0 )
derivativeVector.append( ((p2+p3) - (p0+p1)) / 2.0 )
return derivativeVector
class ComputeGradient3d(ComputeGradient) :
def __init__(self, image) :
self.image = image
def gradientAt(self, location, derivativeVector):
# image[y,x,z]
p0 = self.image[ location[0], location[1], location[2] ]
p1 = self.image[ location[0], location[1] + 1, location[2] ]
p2 = self.image[ location[0] + 1, location[1], location[2] ]
p3 = self.image[ location[0] + 1, location[1] + 1, location[2] ]
p4 = self.image[ location[0], location[1], location[2] + 1 ]
p5 = self.image[ location[0], location[1] + 1, location[2] + 1]
p6 = self.image[ location[0] + 1, location[1], location[2] + 1]
p7 = self.image[ location[0] + 1, location[1] + 1, location[2] + 1]
derivativeVector.append( ((p1+p3+p5+p7) - (p0+p2+p4+p6)) / 4.0 )
derivativeVector.append( ((p2+p3+p6+p7) - (p0+p1+p4+p5)) / 4.0 )
derivativeVector.append( ((p4+p5+p6+p7) - (p0+p1+p2+p3)) / 4.0 )
return derivativeVector
class GradientOnDemand(Gradient) :
def __init__(self, image, numDimensions = None) :
self.image = image
self.numDimensions = len(image.shape)
if self.numDimensions == 2 :
self.computeGradient = ComputeGradient2d(image)
elif numDimensions == 3 :
self.computeGradient = ComputeGradient3d(image)
def gradientAt(self, location, derivativeVector):
# location = [x,y]
return self.computeGradient.gradientAt(location, derivativeVector)
class GradientPreCompute(Gradient) :
def __init__(self, image) :
self.n1 = image.ndim
self.n2 = self.n1 + 1
self.minIterate = []
self.maxIterate = []
self.tmp = []
self.gradient = self.preCompute(image)
def preCompute(self, image) :
import numpy as np
# 2-dimensional 의 경우. 3d의 경우 if문으로 추가해야됨.
derivatives = np.zeros((2, image.shape[0] - 1, image.shape[1] - 1))
god = GradientOnDemand(image)
dv = []
for y in range(image.shape[0] - 1) :
for x in range(image.shape[1] - 1 ) :
for z in range(2) :
derivatives[z, y, x] = god.gradientAt([x, y],dv)[z]
dv=[]
return derivatives
if __name__ == '__main__' :
import cv2
image_path = '/home/baejs/rsfish-project/resources/TestGauss2d_image.tif'
image = cv2.imread(image_path, -1)
god = GradientOnDemand(image)
print(god.numDimensions)
print(god.computeGradient)
dv = []
'''
# IndexError: index 256 is out of bounds for axis 1 with size 256
for i in range(256) :
for j in range(256) :
god.gradientAt([i,j],dv)
'''
import numpy as np
derivativeVector = np.zeros((2, image.shape[0] - 1, image.shape[1] - 1))
print(derivativeVector[1,0:9,0:10])
for y in range(image.shape[0] - 1) :
for x in range(image.shape[1] - 1 ) :
for z in range(2) :
derivativeVector[z, y, x] = god.gradientAt([x, y],dv)[z]
dv=[]
print(god.gradientAt([0,58],dv))
print(derivativeVector[0,0,:80])