-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnormalizedGradient.py
115 lines (66 loc) · 3.09 KB
/
normalizedGradient.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
from computeGradient import *
from statistics import mean, median
class NormalizedGradient(Gradient) :
def __init__(self, gradient) :
self.n1 = gradient.numDimensions - 1
self.gradient = gradient
self.background = []
def computeBackground(self, gradientsPerDim, bkgrnd) :
pass
def isBoundaryPixel(self, l, spotInterval, n) :
# l = [x,y], spotInterval = [[min x, min y], [max x, max y]]
for d in range(n) :
p = l[d]
# spotInterval[0] = min 좌표, spotInterval[1] = max 좌표
if p == spotInterval[0][d] or p == spotInterval[1][d] :
return True
return False
def gradientAt(self, location, derivativeVector) :
# location = [x,y]
# -> location[1] = y , location[0] = x
# derivativeVector = [Z x Y x X] array (ex)..[2 x 255 x 255]
derivativeVector = self.gradient.gradient[ : , location[1], location[0]]
for d in range(self.n1) :
derivativeVector[d] -= self.background[d]
derivativeVector = derivativeVector.tolist()
return derivativeVector
# compute the median or mean of the bounding area in all dimensions.
def normalize(self, spotInterval) :
# the list of gradients on the boundary separated by dimension
gradientsPerDim = [ [], [] ]
# define a local region to iterate around the potential detection
v = []
x_interval = spotInterval[1][0] - spotInterval[0][0] + 1
y_interval = spotInterval[1][1] - spotInterval[0][1] + 1
for i in range(y_interval) :
for j in range(x_interval) :
x = j + spotInterval[0][0]
y = i + spotInterval[0][1]
if self.isBoundaryPixel([x,y], spotInterval, self.n1) :
for d in range(self.n1) :
v = self.gradient.gradient[d,y,x]
gradientsPerDim[d].append(v)
self.background = []
self.background = self.computeBackground(gradientsPerDim, self.background)
class NormalizedGradientAvearge(NormalizedGradient) :
def __init__(self, gradient) :
self.n1 = gradient.n1
self.gradient = gradient
self.background = []
def computeBackground(self, gradientsPerDim, bkgrnd) :
for d in range(self.n1) :
#bkgrnd[d] = mean(gradientsPerDim[d])
bkgrnd.append(mean(gradientsPerDim[d]))
return bkgrnd
class NormalizedGradientMedian(NormalizedGradient) :
def __init__(self, gradient) :
self.n1 = gradient.n1
self.gradient = gradient
self.background = []
def computeBackground(self, gradientsPerDim, bkgrnd) :
for d in self.n1 :
#bkgrnd[d] = median(gradientsPerDim[d])
bkgrnd.append(median(gradientsPerDim[d]))
return bkgrnd
if __name__ == '__main__' :
pass