-
Notifications
You must be signed in to change notification settings - Fork 90
/
validation.py
executable file
·960 lines (797 loc) · 29.8 KB
/
validation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
#!/usr/bin/env python3
import os
import sys
import pathlib
import argparse
import random
import functools
import itertools
import concurrent.futures
import time
import numpy as np
import tskit
import msprime
# Work around an issue on systems with large numbers of cores.
# https://github.com/cggh/scikit-allel/issues/285
os.environ["NUMEXPR_MAX_THREADS"] = f"{os.cpu_count()}"
import allel # noqa: E402
import matplotlib # noqa: E402
matplotlib.use("Agg") # don't try to use $DISPLAY
import matplotlib.pyplot as plt # noqa: E402
from matplotlib.backends.backend_pdf import PdfPages # noqa: E402
import stdpopsim # noqa: E402
import stdpopsim.cli # noqa: E402
def warning(msg):
"""
Print a warning, with output less ugly than that of warnings.warn().
"""
print(f"WARNING: {msg}", file=sys.stderr)
def irradiate(contig, x=20):
"""
Increase mutation rate by a factor of `x`.
"""
return stdpopsim.Contig(
recombination_map=contig.recombination_map,
bacterial_recombination=contig.bacterial_recombination,
gene_conversion_fraction=contig.gene_conversion_fraction,
gene_conversion_length=contig.gene_conversion_length,
mutation_rate=x * contig.mutation_rate,
genetic_map=contig.genetic_map,
)
#
# Simulation functions.
#
def _onepop_PC(engine_id, out_dir, seed, N0=1000, *size_changes, **sim_kwargs):
species = stdpopsim.get_species("CanFam")
contig = species.get_contig("chr35", right=265e3) # ~265 kb
contig = irradiate(contig)
model = stdpopsim.PiecewiseConstantSize(N0, *size_changes)
model.generation_time = species.generation_time
samples = {"pop_0": 100}
engine = stdpopsim.get_engine(engine_id)
t0 = time.perf_counter()
ts = engine.simulate(model, contig, samples, seed=seed, **sim_kwargs)
t1 = time.perf_counter()
out_file = out_dir / f"{seed}.trees"
ts.dump(out_file)
return out_file, t1 - t0
def onepop_constantN_msprime1(out_dir, seed):
"""
Single population with constant population size.
"""
return _onepop_PC("msprime", out_dir, seed)
def onepop_constantN_slim1(out_dir, seed):
"""
Single population with constant population size.
"""
return _onepop_PC("slim", out_dir, seed)
def onepop_constantN_slim2(out_dir, seed):
"""
Single population with constant population size.
Burn-in is disabled and since there are no demographic_events, SLiM exits
immediately. Tree sequences are constructed via recapitation.
"""
return _onepop_PC("slim", out_dir, seed, slim_burn_in=0)
def onepop_constantN_slim3(out_dir, seed):
"""
Single population with constant population size.
Time and Ne are rescaled by a factor of 10.
"""
return _onepop_PC("slim", out_dir, seed, slim_scaling_factor=10)
def onepop_bottleneck_msprime1(out_dir, seed):
"""
Single population with bottleneck and recovery.
"""
return _onepop_PC("msprime", out_dir, seed, 5000, (800, 100), (1000, 1000))
def onepop_bottleneck_slim1(out_dir, seed):
"""
Single population with bottleneck and recovery.
"""
return _onepop_PC("slim", out_dir, seed, 5000, (800, 100), (1000, 1000))
def onepop_bottleneck_slim2(out_dir, seed):
"""
Single population with bottleneck and recovery.
Burn-in is disabled.
"""
return _onepop_PC(
"slim", out_dir, seed, 5000, (800, 100), (1000, 1000), slim_burn_in=0
)
def onepop_bottleneck_slim3(out_dir, seed):
"""
Single population with bottleneck and recovery.
Time and Ne are rescaled by a factor of 10.
"""
return _onepop_PC(
"slim", out_dir, seed, 5000, (800, 100), (1000, 1000), slim_scaling_factor=10
)
class _PiecewiseSize(stdpopsim.DemographicModel):
"""
A copy of stdpopsim.PiecewiseConstantSize that permits growth rates.
"""
def __init__(self, N0, growth_rate, *args):
model = msprime.Demography.isolated_model(
initial_size=[N0], growth_rate=[growth_rate]
)
for t, initial_size, growth_rate in args:
model.add_population_parameters_change(
time=t, initial_size=initial_size, growth_rate=growth_rate
)
super().__init__(
id="Piecewise",
description="Piecewise size population model"
"over multiple epochs that permits a growth rate.",
citations=[],
long_description="",
model=model,
generation_time=1,
)
def _onepop_expgrowth(engine_id, out_dir, seed, N0=5000, N1=500, T=1000, **sim_kwargs):
growth_rate = -np.log(N1 / N0) / T
species = stdpopsim.get_species("DroMel")
contig = species.get_contig("chr2R", right=250e3) # ~250 kb
contig = irradiate(contig)
model = _PiecewiseSize(N0, growth_rate, (T, N1, 0))
model.generation_time = species.generation_time
samples = {"pop_0": 100}
engine = stdpopsim.get_engine(engine_id)
t0 = time.perf_counter()
ts = engine.simulate(model, contig, samples, seed=seed, **sim_kwargs)
t1 = time.perf_counter()
out_file = out_dir / f"{seed}.trees"
ts.dump(out_file)
return out_file, t1 - t0
def onepop_expgrowth_msprime1(out_dir, seed):
"""
Single population with exponential population size growth.
"""
return _onepop_expgrowth("msprime", out_dir, seed)
def onepop_expgrowth_slim1(out_dir, seed):
"""
Single population with exponential population size growth.
"""
return _onepop_expgrowth("slim", out_dir, seed)
def onepop_expgrowth_slim2(out_dir, seed):
"""
Single population with exponential population size growth.
Burn-in is disabled.
"""
return _onepop_expgrowth("slim", out_dir, seed, slim_burn_in=0)
def onepop_expgrowth_slim3(out_dir, seed):
"""
Single population with exponential population size growth.
Time and Ne are rescaled by a factor of 10.
"""
return _onepop_expgrowth("slim", out_dir, seed, slim_scaling_factor=10)
def _twopop_IM(
engine_id,
out_dir,
seed,
NA=1000,
N1=500,
N2=5000,
T=1000,
M12=0,
M21=0,
pulse=None,
samples=None,
**sim_kwargs,
):
species = stdpopsim.get_species("AraTha")
contig = species.get_contig("chr5", right=270e3) # ~270 kb
contig = irradiate(contig)
model = stdpopsim.IsolationWithMigration(NA=NA, N1=N1, N2=N2, T=T, M12=M12, M21=M21)
if pulse is not None:
model.model.events.append(pulse)
model.model.events.sort(key=lambda x: x.time)
# XXX: AraTha has species.generation_time == 1, but there is the potential
# for this to mask bugs related to generation_time scaling, so we use 3 here.
model.generation_time = 3
if samples is None:
samples = {"pop1": 50, "pop2": 50, "ancestral": 0}
engine = stdpopsim.get_engine(engine_id)
t0 = time.perf_counter()
ts = engine.simulate(model, contig, samples, seed=seed, **sim_kwargs)
t1 = time.perf_counter()
out_file = out_dir / f"{seed}.trees"
ts.dump(out_file)
return out_file, t1 - t0
def twopop_no_migration_msprime1(out_dir, seed):
"""
Two populations with different sizes and no migrations.
"""
return _twopop_IM("msprime", out_dir, seed)
def twopop_no_migration_slim1(out_dir, seed):
"""
Two populations with different sizes and no migrations.
"""
return _twopop_IM("slim", out_dir, seed)
def twopop_no_migration_slim2(out_dir, seed):
"""
Two populations with different sizes and no migrations.
Burn-in is disabled. Time and Ne are rescaled by a factor of 10.
"""
return _twopop_IM("slim", out_dir, seed, slim_burn_in=0, slim_scaling_factor=10)
def twopop_asymmetric_migration_msprime1(out_dir, seed):
"""
Two populations with different sizes and migrations from pop2 to pop1.
"""
return _twopop_IM("msprime", out_dir, seed, M12=0, M21=0.001)
def twopop_asymmetric_migration_slim1(out_dir, seed):
"""
Two populations with different sizes and migrations from pop2 to pop1.
"""
return _twopop_IM("slim", out_dir, seed, M12=0, M21=0.001)
def twopop_asymmetric_migration_slim2(out_dir, seed):
"""
Two populations with different sizes and migrations from pop2 to pop1.
Burn-in is disabled. Time and Ne are rescaled by a factor of 10.
"""
return _twopop_IM(
"slim", out_dir, seed, M12=0, M21=0.001, slim_burn_in=0, slim_scaling_factor=10
)
_pulse_m21 = msprime.MassMigration(time=20, proportion=0.1, source=1, destination=0)
def twopop_pulse_migration_msprime1(out_dir, seed):
"""
Two populations with different sizes and introgression from pop2 to pop1.
"""
return _twopop_IM("msprime", out_dir, seed, pulse=_pulse_m21)
def twopop_pulse_migration_slim1(out_dir, seed):
"""
Two populations with different sizes and introgression from pop2 to pop1.
"""
return _twopop_IM("slim", out_dir, seed, pulse=_pulse_m21)
def twopop_pulse_migration_slim2(out_dir, seed):
"""
Two populations with different sizes and introgression from pop2 to pop1.
Burn-in is disabled. Time and Ne are rescaled by a factor of 10.
"""
return _twopop_IM(
"slim", out_dir, seed, pulse=_pulse_m21, slim_burn_in=0, slim_scaling_factor=10
)
_ancient_samples = 50 * [
msprime.SampleSet(num_samples=1, population="pop1", time=0, ploidy=2),
msprime.SampleSet(num_samples=1, population="pop2", time=500, ploidy=2),
]
def twopop_ancient_samples_msprime1(out_dir, seed):
"""
Two populations, with ancient sampling of the second population.
"""
return _twopop_IM("msprime", out_dir, seed, samples=_ancient_samples)
def twopop_ancient_samples_slim1(out_dir, seed):
"""
Two populations, with ancient sampling of the second population.
"""
return _twopop_IM("slim", out_dir, seed, samples=_ancient_samples)
def twopop_ancient_samples_slim2(out_dir, seed):
"""
Two populations, with ancient sampling of the second population.
Burn-in is disabled. Time and Ne are rescaled by a factor of 10.
"""
return _twopop_IM(
"slim",
out_dir,
seed,
samples=_ancient_samples,
slim_burn_in=0,
slim_scaling_factor=10,
)
def do_cmd(cmd, out_dir, seed):
cmd = cmd.split()
assert "-o" not in cmd and "--output" not in cmd
assert "-s" not in cmd and "--seed" not in cmd
out_file = out_dir / f"{seed}.trees"
full_cmd = cmd + f" -o {out_file} -s {seed}".split()
t0 = time.perf_counter()
stdpopsim.cli.stdpopsim_main(full_cmd)
t1 = time.perf_counter()
assert os.path.exists(out_file)
return out_file, t1 - t0
_homsap_250k = " HomSap -c chr1 -l 0.001 "
def Africa_1T12_msprime1(out_dir, seed):
cmd = "-e msprime" + _homsap_250k + "-d Africa_1T12 100"
return do_cmd(cmd, out_dir, seed)
def Africa_1T12_slim1(out_dir, seed):
cmd = "-e slim" + _homsap_250k + "-d Africa_1T12 100"
return do_cmd(cmd, out_dir, seed)
def OutOfAfrica_3G09_msprime1(out_dir, seed):
samples = 3 * " 33"
cmd = "-e msprime" + _homsap_250k + "-d OutOfAfrica_3G09" + samples
return do_cmd(cmd, out_dir, seed)
def OutOfAfrica_3G09_slim1(out_dir, seed):
samples = 3 * " 33"
cmd = "-e slim" + _homsap_250k + "-d OutOfAfrica_3G09" + samples
return do_cmd(cmd, out_dir, seed)
def AmericanAdmixture_4B11_msprime1(out_dir, seed):
samples = 4 * " 25"
cmd = "-e msprime" + _homsap_250k + "-d AmericanAdmixture_4B11" + samples
return do_cmd(cmd, out_dir, seed)
def AmericanAdmixture_4B11_slim1(out_dir, seed):
samples = 4 * " 25"
cmd = "-e slim" + _homsap_250k + "-d AmericanAdmixture_4B11" + samples
return do_cmd(cmd, out_dir, seed)
def AncientEurasia_9K19_msprime1(out_dir, seed):
samples = 8 * " 12"
cmd = "-e msprime" + _homsap_250k + "-d AncientEurasia_9K19" + samples
return do_cmd(cmd, out_dir, seed)
def AncientEurasia_9K19_slim1(out_dir, seed):
samples = 8 * " 12"
cmd = "-e slim" + _homsap_250k + "-d AncientEurasia_9K19" + samples
return do_cmd(cmd, out_dir, seed)
#
# Stats functions.
#
def tmrca(ts):
"""
Time to most recent common ancestor of sample, aka tree height.
"""
tmrcas = [tree.time(tree.root) for tree in ts.trees()]
min_, median, max_ = np.quantile(tmrcas, (0, 0.5, 1))
return {
"min(tmrca)": min_,
"median(tmrca)": median,
"max(tmrca)": max_,
}
def ts_properties(ts):
"""
TreeSequence properties.
"""
return {
"num_trees": ts.num_trees,
"num_edges": ts.num_edges,
"num_nodes": ts.num_nodes,
"num_sites": ts.num_sites,
}
def pooled_pop_stats(ts):
"""
Population statistics, with samples pooled from all populations.
"""
n = ts.num_samples // 2
samples = list(itertools.chain(*(ts.samples(i) for i in range(ts.num_populations))))
sample_sets = [samples[:n], samples[n:]]
return {
"diversity": ts.diversity(),
"Tajimas_D": ts.Tajimas_D(),
"$f_2$": ts.f2(sample_sets),
"$Y_2$": ts.Y2(sample_sets),
"segregating_sites": ts.segregating_sites(),
}
def pairwise_pop_stats(ts):
"""
Pairwise population statistics, calculated for all pairs of populations.
"""
pops = [i for i in range(ts.num_populations) if len(ts.samples(i)) > 0]
if len(pops) < 2:
return None
sample_sets = [ts.samples(i) for i in pops]
indexes = list(itertools.combinations(range(len(pops)), 2))
f2 = ts.f2(sample_sets, indexes)
Y2 = ts.Y2(sample_sets, indexes)
stats = dict()
for i, (j, k) in enumerate(indexes):
stats[f"$f_2$[{pops[j]},{pops[k]}]"] = f2[i]
stats[f"$Y_2$[{pops[j]},{pops[k]}]"] = Y2[i]
return stats
def linkage_disequilibrium(
ts, span=40000, bins=20, min_obs_per_bin=8, max_sequence_length=1e6
):
"""
R^2 as a function of site-separation distance, for `bins` bins up to a
site-separation distance of `span` bp.
"""
if ts.sequence_length > max_sequence_length:
ts = ts.keep_intervals([(0, max_sequence_length)], record_provenance=False)
position = [site.position for site in ts.sites()]
num_sites = len(position)
assert num_sites == int(ts.num_sites)
nans = np.full(bins, np.nan)
if num_sites >= min_obs_per_bin:
gts = np.expand_dims(ts.genotype_matrix(), axis=-1)
gn = allel.GenotypeArray(gts, dtype="i1").to_n_alt()
ld = allel.rogers_huff_r(gn) ** 2
assert len(ld) == num_sites * (num_sites - 1) // 2
# Bin the pairwise site R^2 in `ld` by site separation distance.
r2 = np.zeros(bins)
n = np.zeros(bins)
i = 0
for j in range(num_sites):
for k in range(j + 1, num_sites):
distance = position[k] - position[j]
if distance >= span:
break
index = int(distance * bins / span)
if not np.isnan(ld[i]):
r2[index] += ld[i]
n[index] += 1
i += 1
# Divide `r2` by `n`, but return NaN where n has insufficient observations.
r2 = np.divide(r2, n, out=nans, where=n >= min_obs_per_bin)
else:
# Too few segregating sites to do anything meaningful.
# LD plots may be blank.
r2 = nans
return {
f"$\Delta$bp$\in[{span*k/bins/1000:.0f}\,$k$," # NOQA
f"{span*(k+1)/bins/1000:.0f}\,$k$)$": r2[k] # NOQA
for k in range(bins)
}
def allele_frequency_spectrum(ts, bins=20):
"""
Allele frequency spectrum for `bins` allele frequency bins.
Values are log(1+counts) for each bin.
"""
full_afs = ts.allele_frequency_spectrum(span_normalise=False, polarised=True)
afs = np.zeros(bins)
for j in range(1, len(full_afs)):
index = int((j - 1) * bins / (len(full_afs) - 1))
afs[index] += full_afs[j]
afs = np.log(1 + afs)
return {
f"AF$\in$[{k/bins:.2f},{(k+1)/bins:.2f})": afs[k] for k in range(bins) # NOQA
}
def node_arity(ts):
"""
The number of children for internal nodes of each marginal tree.
In msprime with the hudson simulation model, this is always 2.
In SLiM, this might be more than 2, particularly with small population sizes.
"""
max_arity = 0
non_binary = 0
for tree in ts.trees():
for node in tree.nodes():
if tree.is_internal(node):
num_children = len(tree.children(node))
if num_children > max_arity:
max_arity = num_children
if num_children > 2:
non_binary += 1
return {
"max(node_arity)": max_arity,
"count(node_arity>2)": non_binary,
}
_simulation_functions = [
onepop_constantN_msprime1,
onepop_constantN_slim1,
onepop_constantN_slim2,
onepop_constantN_slim3,
onepop_bottleneck_msprime1,
onepop_bottleneck_slim1,
onepop_bottleneck_slim2,
onepop_bottleneck_slim3,
onepop_expgrowth_msprime1,
onepop_expgrowth_slim1,
onepop_expgrowth_slim2,
onepop_expgrowth_slim3,
twopop_no_migration_msprime1,
twopop_no_migration_slim1,
twopop_no_migration_slim2,
twopop_asymmetric_migration_msprime1,
twopop_asymmetric_migration_slim1,
twopop_asymmetric_migration_slim2,
twopop_pulse_migration_msprime1,
twopop_pulse_migration_slim1,
twopop_pulse_migration_slim2,
twopop_ancient_samples_msprime1,
twopop_ancient_samples_slim1,
twopop_ancient_samples_slim2,
Africa_1T12_msprime1,
Africa_1T12_slim1,
OutOfAfrica_3G09_msprime1,
OutOfAfrica_3G09_slim1,
AmericanAdmixture_4B11_msprime1,
AmericanAdmixture_4B11_slim1,
AncientEurasia_9K19_msprime1,
AncientEurasia_9K19_slim1,
]
_stats_functions = [
ts_properties,
tmrca,
pooled_pop_stats,
pairwise_pop_stats,
linkage_disequilibrium,
allele_frequency_spectrum,
# Node arity stats are disabled as they're only relevant in special cases.
# node_arity,
]
_default_comparisons = [
(onepop_constantN_msprime1, onepop_constantN_slim1),
(onepop_constantN_msprime1, onepop_constantN_slim2),
(onepop_constantN_msprime1, onepop_constantN_slim3),
(onepop_bottleneck_msprime1, onepop_bottleneck_slim1),
(onepop_bottleneck_msprime1, onepop_bottleneck_slim2),
(onepop_bottleneck_msprime1, onepop_bottleneck_slim3),
(onepop_expgrowth_msprime1, onepop_expgrowth_slim1),
(onepop_expgrowth_msprime1, onepop_expgrowth_slim2),
(onepop_expgrowth_msprime1, onepop_expgrowth_slim3),
(twopop_no_migration_msprime1, twopop_no_migration_slim1),
(twopop_no_migration_msprime1, twopop_no_migration_slim2),
(twopop_asymmetric_migration_msprime1, twopop_asymmetric_migration_slim1),
(twopop_asymmetric_migration_msprime1, twopop_asymmetric_migration_slim2),
(twopop_pulse_migration_msprime1, twopop_pulse_migration_slim1),
(twopop_pulse_migration_msprime1, twopop_pulse_migration_slim2),
(twopop_ancient_samples_msprime1, twopop_ancient_samples_slim1),
(twopop_ancient_samples_msprime1, twopop_ancient_samples_slim2),
(Africa_1T12_msprime1, Africa_1T12_slim1),
(OutOfAfrica_3G09_msprime1, OutOfAfrica_3G09_slim1),
(AmericanAdmixture_4B11_msprime1, AmericanAdmixture_4B11_slim1),
(AncientEurasia_9K19_msprime1, AncientEurasia_9K19_slim1),
]
stats_functions = {f.__name__: f for f in _stats_functions}
simulation_functions = {f.__name__: f for f in _simulation_functions}
default_comparisons = [(t[0].__name__, t[1].__name__) for t in _default_comparisons]
def do_simulations(rng, path, num_replicates, executor, key):
out_dir = path / "trees" / key
out_dir.mkdir(parents=True, exist_ok=True)
func = functools.partial(simulation_functions[key], out_dir)
seeds = (rng.randrange(1, 2**32) for _ in range(num_replicates))
res = list(executor.map(func, seeds))
files, times = zip(*res)
# dump timing info to a file
np.savetxt(out_dir / "times.txt", times)
return files, times
def find_simulations(path, key):
out_dir = path / "trees" / key
files = list(out_dir.glob("*.trees"))
if len(files) == 0:
raise RuntimeError(f"{out_dir}: no *.trees found.")
times_file = out_dir / "times.txt"
if times_file.exists():
times = np.loadtxt(times_file)
else:
warning(f"No times.txt found for {key}")
times = []
return files, times
def compute_stats(ts_file):
st = dict()
ts = tskit.load(ts_file)
for key, func in stats_functions.items():
try:
res = func(ts)
except Exception:
# Print the filename so it's easier to trace problems.
warning(f"{ts_file} triggered exception")
raise
if res is not None:
st[key] = res
return st
def custom_violinplot(ax, data, labels):
"""
Violin plot with a colour scheme shown in the matplotlib gallery.
https://matplotlib.org/3.1.3/gallery/statistics/customized_violin.html
"""
inds = list(range(1, len(labels) + 1))
quartile1, medians, quartile3 = np.percentile(data, [25, 50, 75], axis=1)
parts = ax.violinplot(data, vert=False)
collections = [parts[x] for x in parts.keys() if x != "bodies"] + parts["bodies"]
for pc in collections:
pc.set_facecolor("#D43F3A")
pc.set_edgecolor("black")
pc.set_alpha(1)
ax.scatter(medians, inds, marker="o", fc="white", ec="black", s=30, zorder=3)
ax.hlines(inds, quartile1, quartile3, color="k", linestyle="-", lw=5)
ax.set_yticks(inds)
ax.set_yticklabels(labels)
def do_plots(path, sim_key1, sim_key2, times, stats):
plotdir = path / "plots"
plotdir.mkdir(parents=True, exist_ok=True)
cmap = plt.get_cmap("tab10")
markers = "oXdPvp*"
scale = 1.25
fig_w, fig_h = plt.figaspect(9.0 / 16.0)
figsize = (scale * fig_w, scale * fig_h)
times1, times2 = times[sim_key1], times[sim_key2]
stats1, stats2 = stats[sim_key1], stats[sim_key2]
pdf = PdfPages(plotdir / f"{sim_key1}__{sim_key2}.pdf")
# plot run times
if len(times1) > 0 and len(times2) > 0:
fig, ax = plt.subplots(figsize=figsize)
label1 = sim_key1
label2 = sim_key2
f1 = simulation_functions.get(sim_key1)
f2 = simulation_functions.get(sim_key2)
if f1 is not None and f1.__doc__:
label1 += "\n" + f1.__doc__
if f2 is not None and f2.__doc__:
label2 += "\n" + f2.__doc__
custom_violinplot(ax, [times1, times2], [label1, label2])
ax.set_title("Run time.")
ax.set_xlabel("time (seconds)")
ax.set_xlim(left=min(ax.get_xlim()[0], 0))
fig.tight_layout()
pdf.savefig(figure=fig)
plt.close(fig)
# QQ plots for each statistic
quantiles = np.linspace(0, 1, 101) # Use 101 to include 0.5.
for stat_key in stats_functions.keys():
if stat_key not in stats1[0]:
continue
inner_keys = stats1[0][stat_key].keys()
assert inner_keys == stats2[0][stat_key].keys()
ncols = int(np.ceil(np.sqrt(len(inner_keys))))
nrows = int(np.ceil(len(inner_keys) / ncols))
share = False
if stat_key in ("linkage_disequilibrium", "allele_frequency_spectrum"):
share = True
shared_min = 1e9
shared_max = -1e9
fig, axs = plt.subplots(
nrows=nrows,
ncols=ncols,
figsize=figsize,
sharex="all" if share is True else "none",
sharey="all" if share is True else "none",
)
axs = np.array(axs).reshape(-1)
assert len(axs) >= len(inner_keys)
imarker = itertools.cycle(markers)
icolour = itertools.cycle(cmap.colors)
save_fig = False
for ax, inner_key in zip(axs, inner_keys):
x = [d[stat_key][inner_key] for d in stats1]
y = [d[stat_key][inner_key] for d in stats2]
assert len(x) > 0 and len(y) > 0
if np.all(np.isnan(x)) or np.all(np.isnan(y)):
continue
xq = np.nanquantile(x, quantiles)
yq = np.nanquantile(y, quantiles)
# Tails of the distribution are distinguished using open markers,
# as opposed to solid/closed markers for the body. `hi` has +1 to
# get equal numbers of points in each tail.
lo, median, hi = 5, 50, 95 + 1
colour = next(icolour)
marker = next(imarker)
ax.scatter(xq[:lo], yq[:lo], ec=colour, fc="none", marker=marker)
ax.scatter(xq[hi:], yq[hi:], ec=colour, fc="none", marker=marker)
ax.scatter(xq[lo:hi], yq[lo:hi], ec=colour, fc=colour, marker=marker)
ax.scatter(xq[median], yq[median], ec="black", fc="black", marker=marker)
ax.set_title(inner_key)
# draw a diagonal line
min_ = min(np.min(xq), np.min(yq))
max_ = max(np.max(xq), np.max(yq))
if share:
shared_min = min(min_, shared_min)
shared_max = max(max_, shared_max)
else:
ax.plot(
[min_, max_], [min_, max_], c="lightgray", ls="--", lw=1, zorder=-10
)
save_fig = True
if not save_fig:
plt.close(fig)
continue
for i, ax in enumerate(axs):
if not share and len(axs) > 15:
# reduce clutter by hiding labels when we have lots of subplots
ax.set_xticks([])
ax.set_xticklabels([])
ax.set_yticks([])
ax.set_yticklabels([])
if share and i < len(inner_keys):
ax.plot(
[shared_min, shared_max],
[shared_min, shared_max],
c="lightgray",
ls="--",
lw=1,
zorder=-10,
)
if i >= len(inner_keys):
# hide axes that weren't drawn on
ax.set_axis_off()
# use a full-figure subplot for labels that span the other subplots
ax = fig.add_subplot(111, frameon=False)
ax.set_xticks([])
ax.set_yticks([])
stat_docs = stats_functions[stat_key].__doc__
if stat_docs:
title = f"{stat_key}: {stat_docs}"
else:
warning(f"No docstring for {stat_key}")
title = f"{stat_key}"
ax.set_title(title, pad=20)
ax.set_xlabel(sim_key1, labelpad=30)
ax.set_ylabel(sim_key2, labelpad=50)
fig.tight_layout()
pdf.savefig(figure=fig, bbox_inches="tight")
plt.close(fig)
pdf.close()
def parse_args():
parser = argparse.ArgumentParser(
description="Do validation simulations and make QQ plots."
)
parser.add_argument(
"-o",
"--output-folder",
metavar="DIR",
type=pathlib.Path,
default=pathlib.Path("validation"),
help="Folder to store validation plots and tree sequences [%(default)s].",
)
mutex_group = parser.add_mutually_exclusive_group()
mutex_group.add_argument(
"-n",
"--no-plots",
action="store_true",
default=False,
help="Don't make plots, just do the simulations [%(default)s].",
)
mutex_group.add_argument(
"-p",
"--plot-only",
action="store_true",
default=False,
help="Don't simulate, just make QQ plots from preexisting files "
"[%(default)s].",
)
parser.add_argument(
"-j",
"--num-procs",
metavar="NPROCS",
type=int,
default=1,
help="Number of simulations to run simultaneously [%(default)s].",
)
parser.add_argument(
"-r",
"--num-replicates",
metavar="NREPS",
type=int,
default=100,
help="Number of replicates for each simulation key [%(default)s].",
)
parser.add_argument(
"-s",
"--seed",
metavar="SEED",
type=int,
default=1234,
help="Seed for the random number generator [%(default)s].",
)
parser.add_argument(
"keys", nargs="*", help="One or more scenarios to simulate and/or compare."
)
args = parser.parse_args()
if len(args.keys) == 0:
args.comparisons = default_comparisons
args.keys = list(set(itertools.chain(*args.comparisons)))
else:
args.comparisons = itertools.combinations(args.keys, 2)
# sort keys to get deterministic ordering from random number generator
args.keys.sort()
for key in args.keys:
if key not in simulation_functions:
if args.plot_only:
# Might be a mistake, but continue anyway to allow validation
# using arbitrary folders that are in the right place.
warning(f"unknown scenario key ``{key}''")
else:
parser.error(f"unknown scenario key ``{key}''")
return args
if __name__ == "__main__":
args = parse_args()
rng = random.Random(args.seed)
files = dict()
times = dict()
stats = dict()
with concurrent.futures.ProcessPoolExecutor(args.num_procs) as executor:
for sim_keys in args.comparisons:
j, k = sim_keys
assert j != k
print(f"{j} / {k}.", end="", flush=True)
for key in sim_keys:
if key in files:
assert key in times
assert key in stats
continue
if not args.plot_only:
files[key], times[key] = do_simulations(
rng, args.output_folder, args.num_replicates, executor, key
)
else:
files[key], times[key] = find_simulations(args.output_folder, key)
print(".", end="", flush=True)
if not args.no_plots:
stats[key] = list(executor.map(compute_stats, files[key]))
print(".", end="", flush=True)
if not args.no_plots:
do_plots(args.output_folder, j, k, times, stats)
print("done")