-
Notifications
You must be signed in to change notification settings - Fork 64
/
Copy pathtrain.py
41 lines (38 loc) · 1.46 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import torch
def train_epoch(model, optimizer, train_loader, criterion, epoch, writer=None):
model.train()
num = len(train_loader)
for i, (data, label) in enumerate(train_loader):
model.zero_grad()
optimizer.zero_grad()
data = data.cuda()
label = label.cuda().long()
result = model(data)
# print(result.shape)
# print(label.shape)
# print(result[0])
# print(label[0])
# exit()
loss = criterion(result, label)
loss.backward()
optimizer.step()
if i%10==0:
print('epoch {}, [{}/{}], loss {}'.format(epoch, i, num, loss))
if writer is not None:
writer.add_scalar('loss', loss.item(), epoch*num + i)
def test(model, test_loader, criterion, epoch, writer=None):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for i, (data, label) in enumerate(test_loader):
data = data.cuda()
label = label.cuda()
result = model(data)
test_loss += criterion(result, label).item()
pred = result.argmax(dim=1, keepdim=True)
correct += pred.eq(label.view_as(pred)).sum().item()
print('epoch {}, test loss {}, acc [{}/{}]'.format(epoch, test_loss, correct, len(test_loader.dataset)))
if writer is not None:
writer.add_scalar('test_loss', test_loss, epoch)
writer.add_scalar('acc', correct/len(test_loader.dataset), epoch)